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Three particle bound states in even AP($)2 models

R. Neves da Silva1)

Department de Physique Théorique, Université de Genève, 1211 Genève 4, Switzerland

(12. IL 1981)

Abstract. We discuss the existence of three particle bound states in even weakly coupled kP(<t>)2

models. It is shown that, in models possessing a two particle bound state, a three particle bound state

may also occur, depending on certain properties of the three-body Bethe-Salpeter kernel. We consider
a specific class of models in which a three particle bound state does occur.
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Introduction

In this work we shall be concerned with the spectrum of the mass operator in
weakly coupled even kPicf>)2 models, where P(x) lT=o C2kx2k, C2N>0.

These models are defined by a set of distributions, known as the Schwinger
functions, satisfying a number of axioms, the Osterwalder-Schrader axioms. It is
by now well known (see [OS]) that from a set of Schwinger functions satisfying
these axioms one can construct, by analytic continuation, a set of tempered
distributions satisfying the so called Wightman axioms. The reconstruction
theorem [SW] then provides us with a Hilbert space %C, a representation Uia, A)
of the Poincaré group (a is a translation, A is a Lorentz rotation); a local and
covariant field <p(x) and a unique state Ü invariant under Uia, A), called the
vacuum state which is cyclic for the field <p.

The infinitesimal generators of Uia, 1), with a (a0, a) are denoted P0, P,

*) Supported in part by 'Fundaçâo de Amparo à Pesquisa do Estado de Säo Paulo, (FAPESP).
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the energy and momentum operators. The mass operator is defined by M
iPl-P2)112.

The Schwinger functions associated to a given P(<f>)2 model are constructed
by means of the following limiting procedure.

Let dpo denote the Gaussian measure on Sf'iR2) with mean zero and
covariance C(x - y) (-A + mD^ix, y) (x (x°, x1) e R2). Then we have:

J<Mxx) • • • 4>(xJ exp [-A Jd2x :P(<p(x)): /a(x)] dp0

Snik, x1,...,xn) lim
h-*i

exp -A d2x :P(<Mx)): Ji(x) dp0

where Wick order is defined with respect to C(x-y).
More generally, with A;(x) :<j>': (x), one has:

J AhiXi) • ¦ • AJn(xJ exp j^-AJ d2x :Pi<pix)): h(x)J dp0

(AJ1(x1)---AJti(xn))=lim
h^-l [exp -AJd2x :Picpix)): h(x) dp0

These functions are constructed by the cluster expansion of Glimm, Jaffe and
Spencer and satisfy the Osterwalder-Schrader axioms [GJS1,2].

Concerning these models, the results which are known about the spectrum of
the mass operator are, among others:

i) there is an isolated point m (A) corresponding to the mass of the lightest
particle described by the field <p, m(A)>0 [GJS1,2].

ii) for even models, the mass spectrum is discrete and of finite multiplicity
below 2m(A) [SZ].

iii) again for even models, the coefficient C4 of the :<p4: term decides on the
presence or absence of two-particle bound states: if C4>0, there is no
spectrum below 2m(A) in the even subspace of "3Î and if C4<0 there is

exactly one point mB(A) in the interval (m(A), 2m(A)) corresponding to a

two-particle bound state. Furthermore, there is no other spectrum up to
3m(A)-e [DE,DE2].

iv) for general Pi<p)2 models, a similar result has been obtained in [K], where
conditions are given that enable one to decide on the presence or absence
of two-particle bound state (see also [GJ3]).

Our purpose is to carry further the analysis of the mass spectrum in even
models, in such a way that one could study the existence of three-particle bound
ststes. These bound states show up as points in the spectrum of the mass operator
restricted to the odd subspace of %( and for weak coupling they should lie very
close to (and below) 3m(A).

The method we use to undertake such an analysis relies heavily on the work
of Spencer and Zirilli [SZ], Dimock and Eckmann [DE, DE2] and Koch [K]. This
method makes abundant use of analyticity properties of the functions involved.

Most important for our purposes is the three-body Bethe-Salpeter kernel
K3ik, k, Pi, p2, qx, q2)_(for a definition see Chapter I; for a longer motivation, see
[Gil, 2]). Let also Sj(A, k, p1; p2) denote the connected four point Schwinger
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function (in the 1 -* 3 channel, which means that in x-space we choose as
variables t x1-|(x2 + x3 + x4), |1 x2-x3, £2 x3-x4, and fe, p1; p2 are the
associated momenta). Further, i?3(A, fc, p1; p2, qu q2) is the 2-particle irreducible
(2p.i.) six point function (in an even model, we can consider the lp.i. six point
function which is automatically 2p.i.), and let

L3(A, k, Pi, p2) S2(A, fer1 j dp'x dp'2Sfik, fe, p'i, p'2)Rl\k, fe, -pi, -p2, Pl, p2).

Before stating our main result, we shall consider the two-body problem. Let
K2(k, Xx, x2, x3, x4) denote the two-body Bethe-Salpeter kernel and define

Ro2(k, Xx, x2, x-,, x4) S2(A, Xx~x3)S2(A, x2 —x4) + S2(A, Xj — x4)S2(A, x2 —x3).

Consider also R(k, xlt x2, x3, x4) defined by the equation J?"1 JRÔ2 +3K2 or,
alternatively, by R R02-3RO2K2R, and let R(k, fc', p, q) denote its Fourier
transform in the variables a \(xx + x2 - x3 - x4), £ Xj - x2, tj x3 - x4. We know
from [DE] that, in a model possessing a two particle bound state, R(k, fc', p, q)
has a pole at fc' (imB(A), 0).

Remark. The function analysed in [DE] coincides with the function R2 to be
defined in Chapter I. For this function one writes R21 Rö21 + K2, the two-body
Bethe-Salpeter equation. Nevertheless, the combinatorics of the three body
problem is such that the relevant kernel for us turn out to be R, defined with the
factor 3 multiplying K2. One can however easily convince oneself that poles of
R2ik, fc') are in one-to-one correspondence to poles of jR(A, fc'). In particular, if
mB(A) is the two particle bound state pole of R2ik, fc') then the corresponding
pole of Rik, k') is at mB(A) and we have

mB(A)-mB(A) 2ma27r2(-^J +C(A3)

with

«j d„K2ik 0,k' (2im, 0), 0,0).

Let now

p (Po, Pi)eC2,
-i(ml-m2-Km-mB)2)

2(m + mB)

The main result to be proven in our work is the following

Theorem. Consider a weakly coupled even kPid>)2 model having a two-
particle bound state. Assume that:

i) dxK3ik 0, k° i(m + mB), p, p/2, p, p/2) a2 + 0

ii) ôxL3(A 0, fc° i(m + mB), p., p/2) + 0

Then we have that a2 > 0 implies that there is no three-particle bound state,
and a2<0 implies that there is exactly one three-particle bound state. Furthermore,

there is no other spectrum in the odd subspace of 3C in the interval
(m(A), 3m(A)).
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This result is proven in two steps. The first one is to show that the 2p.i.
six-point function R3(k, fc, ph qt) has a singularity that will be physical or unphysical

depending on the sign of a2 as explained in the theorem. The second one is to
analyse the two-point function by means of R3ik, k) and L3(A, fc). Given the
conditions of the theorem, we can show that a physical singularity of R3ik, fc)

always induces a singularity of the two-point function. This singularity is what we
call a three-particle bound state because, as we shall see, it lies just below the
three-particle threshold 3 m. Since it is a pole of the two-point function, we see
that the field itself makes a transition from the vacuum to states consisting of one
such a bound state.

In fact, the situation is as follows: if _fc?(A) hci(A) is the singularity of
R3(A, fc), it turns out that k?(A) is a zero of S2(A, fc). The pole of S2(A, fc) is very
close to this zero, say at fc2(A) im3(A) and we have that m3(A) > kx(A). One gets
for S2(A, fc) the following Lehmann representation:

S2(A, fc)
Z(k) Z3(k)2

k2+m(k)2 k2 + m3(k)rL. dpx(a)
k2 + a'

We can draw the graph of S2(A, k) S2(k, k (ìk, 0)) as follows, according to
this formula

S2(A,x)

/ ,3mU)
m(A)

m(A) + mBU)

xitt)

Figure 1

k^A): the pole of R3(A, k), m3(A): the three-particle bound state, m(A) + mB(A): the threshold of one
m-particle plus one mB-particle, 3m(A): the three-particle threshold.

We sketch briefly the reasons why R3(A, fc) can have a singularity provided
the model under consideration has a two-particle bound state.

We shall use the notation X(A, k) X(k, fc (ìk, 0)) for any kernel X. We
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come back for a while to the two-body problem and the Bethe-Salpeter equation:

R2ik, k, p, q)

-R02(A, k, p,q)-\ dp' dq'R02ik, k, p, p')K2(k, k, -p\ -q')R2ik, k, q', q).

In the approximation sometimes called 'the ladder approximation', which has
been extensively used on a large number of problems, one substitutes for K2 its
lowest order contribution in A. Let us consider a polynomial having a term of the
form C4 :<f>4:, in such a way that there is a first order contribution ai to K2. It is

given by a! A • C4 • const., where const, stands for a positive constant.
In this case, the above equation can be explicitly solved and one gets, with

r00(A, K) ldp dqR02ik, K,p,q):

/2(A, k) I dpdqR2ik, k, p, q) r00(A, K)(l-a1r0o + a2r20

r00(A, K)(l + a1r00(A, k))"1.

One can also use that

R02(A, k, p, <j) 4.tS2(a, p+yJS2(a, p-yj 8(p + q)

and the Lehmann spectral formula for S2 to obtain:

roo(A,K) Z(A)4~|dP[(p-|)2 + m2]"1[(p+|)2 + m2]"1 + p2(A,K)

4Z(A)4(4m2 - K2)'112 ¦ - arc sin r^-+ p2(A, k)
k 2m

where p2(A, k) is holomorphic and bounded for 0<k <3m. So r00(A, k) is singular
as K->2m. Since <*! ~0(A), we see that singularities of /2(A, k) for small A can
only occur for k near 2m. Furthermore, such a singularity can only occur if ax<0
(and so C4<0), otherwise l-ra1r00(A, k) is always bounded away from zero. But
if aj<0, there always exists a solution kb(A) of l + a1r00(A; k) 0 which corresponds

to the two-particle bound state.
A rigorous analysis of this problem faces the question of knowing whether

this result remains valid when the full kernel K2(A, k, p, q) is considered. The
answer to this question, which turns out to be positive, is essentially the first part
of the paper by Dimock and Eckmann [DE].

The corresponding situation in the three-body problem is a bit more complicated.

The three-body Bethe-Salpeter kernel K3 is defined, in analogy with K2, as
the connected part of R31:K3 R31-R2g where the kernel R2B plays here the
role of R02 in the two-body problem. The analysis of the analytic structure of
R2B(A, k) is the subject of Chapter II below, and for the purposes of this
introduction we only need to know that it describes the two-particle rescattering
processes, that is, processes described by graphs in which at most two of the
particles interact at any given vertex. Among the relevant graphs, two of them will



136 R. Neves da Silva H. P. A.

interest us for the moment:

i) the graph describing three free particles, call it R03. It is given by
R03ik, Xi, x2, x3, yu y2, y3) ~ S2(A, xx - yx)S2(k, x2 - y2)S2(A, x3 - y3) and it
is drawn R03 each line corresponding to a propagator S2.

ii) the graphs describing a process where only two of the particles interact,
call it bik, Xi, x2, x3, yx, y2, y3) ~ S2(A, xt - yx)R(k, x2, x3, y2, y3) where in
this example particle 2 and 3 interact (the R factor) and particle 1 remains
free (the S2 factor). It is drawn b c where " corresponds to
R.

Let s0o(A, k) idpi dp2 dqi dq2R2B(k, k, pu p2, qx, q2). Correspondingly we
define: s0Ö(A, k) Jdp dqiR03(\, k, p, qt) and sgftA, k) Jdp dqMK *, Vi, *)•

The result concerning the analyticity properties of s0o(A, k) is quite standard.
It corresponds to a graph like

"Il

'— -"/3x/3

*/3*/3

Figure 2

where dashed lines correspond to amputated lines. This graph has a kinematical
singularity at the threshold k 3 m in the form of a square root branch point. But
unlike the analogous case in the two-particle problem, the function is bounded on
a neighbourhood of k 3 m. Thus the mechanism described above for the
formation of two particle bound states does not seem to apply.

Concerning Sqo(A, k), we must use the result of [DE] on the two-particle
problem. There it is proven that, in case there is no two-particle bound state,
R(A, k, p, q) is analytic and uniformly bounded in k' for fixed A on a neighbourhood

of K, 2m. This implies that Soo(A, k) in this case is also analytic and
bounded on a neighbourhood of k =3m.

Refering to the two-body problem, we note that a bound state could occur
because r00(A, k) was not bounded on a neighbourhood of the threshold k 3 m.
We will now see that, provided there exists a two-particle bound state, the function
Sqo(A, k) becomes unbounded on a neighbourhood of the threshold m + mB(A).
This implies that s00(A, k) is also unbounded as k -* m + mB(A) and we will see
that this singularity is sufficient to generate a pole of R3(A, k) by a mechanism
analogous to the one responsible for a two-particle bound state.

Consider then a model possessing a two-particle bound state. In such a

model, the function R(A, k') has the form

Z (A)2
R(A, k, p, q) —*

2 fe(A, p)h(A, q) + p3(A, k, p, q)
— k +mB

with p3(A, k') analytic and bounded around k =2m. As before, the term p3(A, k)
makes a contribution to Soo(A, k) which is bounded around k 3m. The term of
interest to us is the other one, describing the propagator of the bound state. We
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show (see Appendix A) that

MA, k, px, p2, qx, q2)~S2^A, Pi+jjR^A, V.—f '~^+ ^'^ + <Î2) ô(Pi + <*i)

so that the contribution of the bound state term of R is

s030)(A, k) Z(A)2ZB(A)2 fdpx dp2 dqx dq2 - —sJ / IK\I ìk\2 2ìk\2
(.Pi+?)+m (kP1-TJ+m

KA'^1+p2)KA'^+q2)s(pi+qi)

Z(A)2ZB(A)2A 1

dpx -. —
J / IK

with
(pi+f)2 + m2 (pi-2f)\m

A dphik, p).

But this last integral shows the characteristic behaviour of a two-particle threshold
(in two space-time dimensions), namely

J»? 4' fr 4- r{-K*+<m+m-frm,°(K)
\p+j) +m \p—y) ^ b

with î0(k) bounded away from zero and analytic near m + mB(A). We see that in
this case the threshold im + mB) corresponding to a free particle of mass m and a
free particle of mass mB behaves in such a way as to make Soo(A, k) unbounded as

k —» (m + mB). Now consider again the three-body Bethe-Salpeter equation in the
ladder approximation. Assume also that the interaction polynomial has a C6 :<f>6'-

term, so that the first order contribution to K3(A, k) can be written as a2
A • C6 • const, where const, stands again for a positive constant. We can solve
explicitly the equation to get:

/3(A, k) J dpi dqtR3ik, k, Pi, qt) s00(A, k)(1 + a2s00(A, k))_1.

Our previous discussion shows that in models possessing a two-particle bound
state the function s00(A, k) is unbounded as K-*im + mB). This implies that, for
small A, there is a solution of 1 + a2s00(A, k) 0 near (and below) K m + mB
provided a2<0 (and so C6<0). This solution ultimately corresponds to the
three-particle bound state of the model. The preceding discussion permits us to
say that in some sense this three-particle bound state is really a bound state of
two-particles, one of them being the particle of mass m, the other one the
two-particle bound state of mass mB.

The rigorous proof of this result has to deal with two things: that the main
contribution to R2B (A, #c) is indeed the one picked above (namely, the propagator
of the two-particle bound state) and that the consideration of the full kernel K3
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does not change things too much. This is, essentially, the content of the following
pages.

I. Preliminaries

The particles described by a quantum field model correspond to the point
spectrum of the mass operator M (Pq — P2)1/2. This spectrum can in turn be
analysed by looking at the singularities (in momentum space) of the Schwinger
functions defining the model (we briefly sketch this connection in Chapter IV). On
the other hand, the way to carry out such an analysis of Schwinger functions is to
study irreducible functions and then tracing back their analytical properties to the
Schwinger functions. The equations defining functions which are suitably irreducible

in all channels are equations of the Bethe-Salpeter type. We shall be
concerned with these equations in the case of the twoN and the three-body
problem. The basic objects of the analysis are,defined recursively as follows (A is

any product of Euclidean fields):

PoA=(A)
Rn(A, Xx,..., xn, yx,..., y„)

<<p(Xi) ¦ ¦ ¦ taMxj(i-Po-Pi P„-i)<Kyi) • • • 4>(yn))

VnA J dxx • • ¦ dx„ dyx • • • dyn(l-P0 P„_1)</)(x1) • • • -£(x„)

x R-^A, xx,..., yn)(cf>(yx) ¦ ¦ ¦ d>(yn)(l -P0 P„-i)A).
The kernels Rn(A, x, y) (x {xx, x„}, y {yt, ¦¦¦, y„}) are expected to be

(n-l)-particle irreducible in the channel x—»y (this in fact can be proven for
weakly coupled AP(#)2 by the method of Spencer, see [CD]), which amounts to
say, loosely speaking, that we have a bound of the form

\Rn (A, x, y)| < const, exp —nim — e)
Ix, Itt

where m m (A) is the mass of the lightest particle created by the field cp (~ the
decay rate of the two-point Schwinger function) and e e(A) goes to zero as
A —> 0. The above bound implies analyticity in the energy-variable k up to
n(m-e). We can increase the degree of irreducibility by one unit if we take the
inverse:

I*. Xy*
|R^(A, x, y)|:--; const, exp -(n + l)(m-e) ^

L n n

where Rn^A, x, y) is defined by

fdx'R-\k, x, x')Rn(A, x', y) ft S(x, - y.)
J i l

For weak coupling, this decay of R^1 is also established in [CD]. Nevertheless,
R"1 is not connected. Its connected part, Kn(k,x,y), is known as the n-body
Bethe-Salpeter kernel.
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From now on, we specialize our discussion to the cases n 2, 3. The case
n 2 is well-known, so we mostly discuss the case n 3. In this case, let
K3(k,x,y) be the connected part of R31(A,x,y). In other words, K3 R31-R2B
where R2B, which will be soon defined, is precisely the non-connected part of
RJ1. We will see that R2B can be expressed in terms of K2 and Kx (^RJ1), the
Bethe-Salpeter kernels corresponding to the two and one-particle problem,
respectively. Its inverse, R2B (A, x, y), describes the so-called two-particle rescattering

processes. The equation

K3 R3 — R2B (LI)
is the three-body Bethe-Salpeter equation. It can be equivalently written as

R-3 — R2B — R2B-KgiR3 (1-2)

with a formal solution

R3 (1 + R2BÜC3)-1R2B (1.3)

We will be mostly dealing with the equation in this last form (see Chapter
III). For the moment, note that we can analyse the analytical structure of R3
from (1.3) once the corresponding analytical structure of R2B and K3 is known.
According to its définition, one expects K3 to have nice analytical properties (in
weakly coupled kP(<f>)2 these results on K3 can be proven by the method of
Spencer, see [CD] and Chapter III below). The study of R2B is the subject of
Chapter II. Once the analytical structure of R3 is known, we are able to face the
analysis of the Schwinger function, in particular the two-point function. These are
more directly connected to the mass spectrum, as shown in Chapter IV.

In the remainder of this chapter, we define the kernel R2B(A, x, y) and state
the equations in momentum space. At the end we review some general facts about
the two-body problem.

To define R2B we have to introduce the following functions:

R2(A, xx, x2, yx, y2) (<p(Xi)d,(x2)(l -P0-Pi)</>(yi)<Ky2)>
R02(A, Xx,x2,yx,y2) Rx(k,Xx- y i)Ri(A, x2 - y2)

+ R1(A,x1-y2)R1(A,x2-y1)2)
R3U. XU x2> *3> Yl> )?2, Ys) (14)

(taf.(x1)^(x2)</.(x3)(l-Po-P1-P2)4.(y1)^(y2)ta^(y3))
R03(A, xx, x2, x3, yx, y2, y3)

£ Rr(A, Xx - yi)Ri(A, x2 - y^R^k, x3 - yfc)

where rr ranges over the six permutations (i, j, k) of (1, 2, 3),

K2(k, Xi, x2, yx, y2) R21(k, xt, x2, y1; y2) - Röi(k, xu x2, y1( y2)

which is the two-body Bethe-Salpeter kernel. Let a (1, 2), (1, 3), (2, 3) label

2) In an even theory, jRx(A, x —y) S2(A, x —y). We will use indistinctly both notations since we
shall be dealing with even models.
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pairs of initial or final particles. We define:

Aiaß(A,x1,x2,x3, yx, y2, y3)

RT1(k,xi-yj)K2(k,xai,xa2,yßl,yß2), i£a, jiß, (1.5)

M(A, x, y) - £ M„ß (A, x, y)" <*,3

We have now all the ingredients to define:

R2Ì(A, x, y) Ro^A, x, y) + M(k, x, y). (1.6)

Note that (1.6) is equivalent to (using operator notation):

R2B Ro3 ~~ Ro3^R2B (1-7)

which has a formal solution:

R2B=(l + R03M)-1Ro3. (1.8)

We will not prove here that the kernel R2B so defined is the non-connected
part of RJ1. A discussion and a proof of this point can be found in [CD], [GJ1],
[GJ2] to which we refer the reader.

We note that the three-body Bethe-Salpeter equation (1.2) can be realized on
a space of functions f(xt, x2, x3) symmetric under permutation of variables. In this
case, we have the following simplification:

Ro3(A, x, y) 6Rj(A, xt - yi)Ri(A, x2 - y2)Ri(k, x3 - y3)
3

M(A,x,y)=XMj(A,x,y)
i=i (I.5a)

Mj(A, x, y) 5R7X(A, X; - yj)K2(A, xai, xa2, yttl, ya2), ii a,

a (1,2), (1,3), (2, 3).

We introduce the variables:

^1 x1-x2 Th yi-y2
c _„ _- „ _v „ T ^(x1 + x2-rx3-y1-y2-y3)n-*2 "3 r\2-y2-y3

and consider again the equation (1.2):

R3(A, x, y) R2B(A, x, y)- Jtaix'dy'R2B(A, x, x')K3(k, x', y')R3(A, y', y)

Introduce also:

Ç'i x'i-x2 T.x yï-y£ r' \ix'i + x'2 + x'3-y'i-y2-y'3)
|2 x2-x3 Tj2 y2-y3 T" |(yi + y2 + y3-y1-y2-y3)
Note that the transformation x', y' -* £f, tjJ, t', t" has Jacobian one.
We use the translation invariance of the kernels to write:

R3(A, T, 4 Vi) R2B(A, t, ê, t,.)- jd& <tn{ dr' dr"R2B(A, t-t'-t", & £0

X K3(A, T', $>, t,0R3U, r", r,f, r,t) (1.9)
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Let px, p2, qx, q2, k be the momenta conjugate to £i, |2> %» 1.2. t respectively.3)
We take the Fourier transform of each of the above kernels.4) Let:

R3(A, k, pu %) (2tt)-5 j dèi dru dr

xexp [i(fcT + p1^1 + p2^2 + q1Tj1 + q2Ti2]R3(A, r, & tj,)

K3(A, fc, ft, 4) (2ir)"3 j dfi dt), dr

x exp [j(fcT + pilj + p2£2 + qiTji + q2T)2)]K3(A, t, & tjO

R2B(A, fc, p, qt) (2-n-)"5 I d^ dtfc dr

x exp [i(fcr + pxèi + p2g2+ q^i + q2T)2)]R2BU, r, &, t?,-)

Using the fact that the integral (1.9) is a convolution in the .--variables, and
the r —> — r invariance, we can write the equation in momentum space:

R3(A, fc, ph qf) R2B(A, fc, p, qt)- J dp[ dq[R2Bik, k, p, p[)

x K3ik, k, -pi, qOR3(A, k, -q., 4)
or, as operators:

R3(A, fc) R2B(A, fc)-R2B(A, k)K3(k, k)R3(k, fc). (1.10)

We consider this as an equation for operators acting on a space of functions
f(qi. qz) invariant under the transformations

f<.i-*-<h+<_2 „.. „ fqi-*qi n„\\ qi<^-q2, \ (in)lq2-»q2 lq2 -»<h-q2
which express the symmetry under permutations of the functions in x-space.

Following [SZ] and [DE], we realize equation (1.10) on a space of analytic
functions. For Pi (pf, p^), p2 (p20), p21}), consider the Hardy space A3 of
functions /(px, p2) invariant under (1.11) and analytic in the domain |Impi0)|,
|Imp20)|<|m(A)-e=ô03), limpidi, |Imp21)|<|m(A)-6 8?\ with norm given
by:

ll/IL, sup dp! dp2 Iw(pi + iai)w(p2 + ia2)f(px + iau p2 + ia2)\2
ai'°<8P'J

where
2 -itali-. ™ 2^-2/3w(p) (p2+16m2)

We realize thus equation (1.10) as an equation in !£(A3,A3), with A* the
dual of A3 and !£(A3, A*) standing for the set of bounded maps from A3 to Af.
3) Note that pt and p2 are not the relative momenta between particles 1 and 2, 2 and 3,

respectively. Instead, letting rt, r2, r3 denote the momenta of particles 1, 2, 3, respectively, we
have: k r, + r2 + r3, 2(fc/3) - Pj r2 + r3, fe/3-p2 r3.

4) We shall NOT distinguish the kernels in momentum space from the kernels in position space.
The argument of the function should make clear this point.
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Remark 1.1. The index 3 in A3 indicates that this is the adequate space for
studying three-particle processes. In d\3) we use the index to stress its connection
to A3 (we will soon have analogous definitions with an index 2).

We begin our review of the two-body problem by considering again the
equation defining R(A, x1( x2, yu y2), namely R~1 R0~21 + 3K2. Changing to the
variables tr |(x! + x2-yt- y2), £ - *x ~ *2, V y i ~ y2, we take the Fourier transform:

R(A, fc', p, q) (27r)-3|d(7d|dT.ei(kV+*p+1,q)R(A, a, £ *,)

K2ik, fc', p, q) (27r)-1|dcrd|dTici(fcV+p€+^)K2(A, cr, «f, V) (1.12)

R02(A, k', p, q) (277)-3|dtaT^dT,ci(fc'<r+pi+^)R02(A, a, £ n).

In momentum space, the equation defining R reads:

R(A, fc', p, q)

R02(A, k', p, q)-3 Jdp' dq'R02(A, fc', p, p')K2(A, fc', -p', q')R(A, fc', -q', q)

or, as operators,

R(A, k') R02(A, fc')-3R02(A, fc')K2(A, fc')R(A, fc'). (1.13)

The kernel R(A, fc') will arise in the next chapter when considering R2B. We
will see that an essential point in the analysis of R2B is the study of a process
where one of the particles, say particle 1, does not interact with the other two.
Such a process is described by a kernel

bxik, x, y) Rj(A, Xx, yx)Rik, x2, x3, y2, y3).

In momentum space, we have

biik, fc,Pi,p2,qi,q2)~S(p1 + q1)R1^A,-+ p1jR^A,y-p1,-^1-l-p2,y-rq2j.

Hence, matrix elements of bxik, fc) are given by integrals of the form

(if/x, bxik, k)if,2)A3

~ J dpiR^A, 3
+ Pi) J dp2 dq2dji[pi, y+p2JR^A, y-Pi, P2, q2J<^2(pi, ^"^)

Since tfteA3, we have that, for fixed p1; ^iiPliq)=^iiPi, pJ2 + q) are functions

in A2, where A2 is the Hardy space of functions fiq) fi~q) analytic in
|Im q(0)| <|(|m - e) 8[f\ |Im q(1)| <\i\m - e) Sf with norm given by

sup j d2q |w(q + ia)fiq + ia)\2
«,<sp>J

This is the motivation to realize equation (1.12) in the space A2 (which is
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defined with 8\2) ^8\3\ i 0,1). This fact, together with the factor 3 multiplying
K2 in the definition of R, introduces slight but harmless changes in the results of
[DE] and [K].

Remark 1.2. With respect to the norms on A3 and A2, we have the following
result: let «/.(Pi, p2)e A3. Define d/Piip2)eA2 by t£p,(p2) iKPi,pi/2 + p2). Then

sup \wipi)UJA2\^0il)U\\Ay
|Imp,«>|<8P

This follows from Cauchy's theorem.

We next present some results about R(A, k'). These results are best expressed
in terms of a new variables, £, which we now introduce. For k\ real, let
C \/4m(A)2 + k'2 + fc02. We think of this transformation as a conformai map of
the fc0-complex plane. The physical sheet of the k0-plane is mapped onto Re £>0.
Functions analytically continued across the imaginary axis to Re £ < 0 correspond,
in the k0-variable, to functions continued to a second sheet of the energy-plane.
One defines:

3) ={ko:0<Im k0<|m,Im k0^[V4m2-rkf,fm)}
£â={f:£ V4m2-rk'12 + ko2, k'0eSè}

ê' â U -ê U (connecting line)

aiß) {C:Cee',ReC>-ß}
2)iß) {k'0:y/4m2 + ki2 + k'(>2 Ceeiß)}.

(1.14)

We use the notation f(C) f(k') when £ V4m2 + k'12 + fc02.

We have also the following definitions:

Z(A)2
Riik, p) S2(A, p) ~ 2fUi.,2+ f

"
27T \p +m(A) 4n

R02(A, k', p, q) R02(A, k', p) 8ip + q)

dpxia)
p2 ++ a2)

¦ 4rrS2\k, y+ pJS2(a, y-pj 5(p + q) p01(A, k') + p02(A, fc')

With ep € Af given by (& ep>A2 «A(p),

Poi(A, k') r00(k')Z(A)4e0(-, e0>A2

and

^fco^jd^d+p)2^2]-^!^)2^2]"
(4m2 + fc'2r1/2r0(fc')

with r0(fc') holomorphic and bounded for k'0e3>,

r0(fc' (2.m,0)) —.
m

According to this decomposition of R02(A, k'), we have:

T(A, k') 3K2(A, k')R02(A, k') T^A, fc') + T2(A, k').
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We state the following lemma:

Lemma 1.1. R(A, £) p\(A, £) + p2(A, £) and there exists a C°° function ^(A)
with values in Êi8?)-2e) such that (£-£x(k))px(-\.C) and p2(k, £) e S6(A2, AJ)
are C°° in A>0 small and holomorphic in 3)(8x2)-2e) together with their k-
derivatives. Furthermore,

P2(A,0 Po2(A,£)(l + f2(A,nr1
and px is the rank-one operator given by

WA, o=/(A;^, d+1*(a, or1e0<; d+tf(A, or'eoK
fc 4ivA;

and £i(A) is the solution of

Cx(k) + r0(A, ^(A)K(l + f2(A, dik)))-1 ¦ 3K2(k, dik))e0, £0>a2 0

and we have

(£-£l(A))r0(A,£)
r(A,£)

C + r0(A, £)<(! + T2(A, É))"1 • 3K2(A, Ç)e0, £0>a2

We note that this is Lemma 27 in [K], wiffi me s.ighf modifications caused by our
choice of A2 and the factor 3 multiplying K2. The modifications brought about by
A2 are:

i) in the definition of the domain 3>, we have 0 < Im fc0 < fm instead of
0<lmk'0<3im-e)

ii) the region of holomorphy in Lemma 1.1 is Ê(8x2)-2e) with 8[2)

\ • \{m - e) instead of Sj lim - e) in Lemma 27 of [K].
These are harmless changes for what follows. D

Remark 1.3. The pole £j(A) of R(A, £) is close to £ 0 and it is always real.
Negative values of £i(A) do not correspond to poles on the physical sheet of the
kó-plane. In what follows, we will be always considering models for which
£!(A)>0. These are the models that have a two-particle bound state.

Coming back to pj(A, f), we shall need a further decomposition of it. Let

Ha^o^a+T^A,^))-1^,-) a.15)

We can write

p\(A, Z, p, q) -r~x H(k, Ç, p)H(k, £, q). (1.16)
fc ~ fciW

We define

P(A, C, P, q) ^_:^^)H(A, fcU), P)H(A, ^(A), q) (1.17)

and

p3(k,C) Px(KÛ-p(KÛ. (1.18)
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We have:

Lemma 1.2. The operator p3(k, £)&Sß(A2, A*) is holomorphic and bounded in
3>(8<x>~2e). It is C°° in A >0 small and the k-derivatives are also holomorphic and
bounded in ^(8<12)-2e).

Proof. Given the properties of p\(A, £) in Lemma 1.1, the result follows from
the fact that, given a function /(£) holomorphic and bounded uniformly in a
domain 3), and given a point Cx of Û, then

f(0=f(tx)+(£-Ci)f(0
with /(£) holomorphic and bounded uniformly in Û. The bound on /(£) depends,
in general, on fi if t,x can approach a singularity of /(£). This is not the case here,
since £i(A) is close to zero and p\(A, Ç) is holomorphic on a disc (of radius
8[2)-2s) around the origin. D

We come back to the k'-variable and close this chapter stating some results
about the operators p2(A, fc') and p3(A, k').

Lemma 1.3. Let <pe A2>„(={</>6 A2: ||^||2,« sup|Imp«»|<8p»|4>(p)|«»}). Let

g2i<t>,tp,k,k') (cp,p2ik,kWA2

^d2pd2q<f>ip)4>iq)p2ik, fc', p, q))
and

g3i<p,tfj,k,k') (<f>,p3ik,k')^)A2.

Let also k\ be real and 0<lm k'0<jm. (The factor 5/3 is arbitrary. All we need is
that Im fc0 be bounded away from the threshold 2m).

Then

i) IfeCfc </., A, fc')|.<ta7(l)((Re fco^ + fcf + l)"1 IkMk-IMk
|g3(4>, if,, A, k')| <-7(l)((Re fc0)2+fcf +1)"1 Uh- ||«/>IL2.

// fc0 is in 9(S$°-2e) (see (1.14)), then:

ii) |^(^^A,k')^(l)(4m2 + fc02 + fc'12)-1/2||<f»||2,c<,||^||A2, i 2,3.

Proo/. The proof of ii) follows from the fact that &(<£, dj, A, £) is holomorphic
in âi8x2)-2e). Using that

-dA ta^l _^ ^1 fe, (4m2 + k,2 fe,2r 1/2

dko d£ dfc0 d£ M4m + *<>+*..)

and that (dg;/d£) is bounded uniformly in â(ôi2)-2e), we have the result.
The proof of i) for g3 is immediate from its definition. The proof for g2

follows from:

<<fc Po2(A, k')<f,)A2 < ta7(l)((Re fc0)2 + fcf +1)"1 UW*. IWU, for 0 < Im k0 <fm.
D
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IL The two-body rescattering kernel

Our starting point is the equation defining R2B (see (1.7) and (1.8)):

R2B=Ro3(l + MR03r1. (11.1)

We define
3

a(A,x,y) MR03(A,x,y) £ Oi,(A,x,y) (II.2)
i,j l

with

OyU, x, y) !ô(Xi - yJ)K2R02(A, xai, xa2, y0i, yß2),

a={l,2,3}\{i}, (3={1,2,3}\{j}.
Let also

buik, x, y) R03(è+aiifrHA, x, y) (II.3)

Recalling that

R =Ro2 +3K2

we can write

fei,(A, x, y) 27Rj(A, Xi - yj)R(A, xai, xa2, y0l, y02) (II.4)

a and ß as above. With these definitions, we have

R2B(A,x,y) t b^k,x, y))~\ (II.5)
M,J=1 '

We now introduce the r, £, t); variables and consider equation (1.7) in momentum
space:

R2B(A, fc, p, q;) R03(A, fc, p, qx)- I dpf dq?R03(A, fc, p, pf)

xM(A, k, -p?, pOR2B(A, k, -qf, %)
with

R03(A, fc, p, q) (2w)-5 j drd-fj dm

xexp [i(fcr + pxîx + P2& + qi*} 1 + q2T.2)]Ro3(A, r, £, Tfc)

and

M(A, fc, p, qf) (21r)-3|dr dfi dT)i

x exp [i(kT + pxti + p2|2 + qjTh + q2Tj2)M(A, t, è, nò-

One can also verify that

R03(A,k,Pi,qi) 6-4Tr2R1(A,- + p1jR1(A,--p1 + p2JR1(A,--p2j

X8ipx + qx)8ip2 + q2), (II.6)
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M11(A,fc,Pi,qi) yRr1(Ay+ p1jK2(A,y-p1,^1 + p2,|L + q2j

xg(p1 + q1). 5) (II.7)

See the Appendix A for a derivation of these formulas.
Using the fact that R^ik, k/3 + px) ^n^R^A, fc/3 + Pr))"1, one gets for a^
axx(k, k,pi,qi) ^8(px + qi)Rx\k,--px + p2JRx\^,^-P2j

xK2(k,f-px,^+p2,^+q2). (II.8)

The analogous expression for ftu is:

MA, k,Pi,qi) 27 • 2-n-5(p1 + q1)R1(A,| + PlJR(A,y-p1,I^1-rp2,^ + q2j

(II.9)

with R(A, k', p, q) defined in (1.12).
The expressions for general ati, bti are obtained by the following rule, which

corresponds to symmetrization in x-y-space. We make the convention that the
first index correspond to the p-variables, the second to the q-variables.

index 2: replace px -* - Px + p2, p2 -> p2 or qx -* - qx + q2, q2 -*¦ q2

index 3: replace Px** _p2 or qx**-q2
in the expressions (II.8), (II.9) for an and bXx-

In what follows, we will be mainly concerned with bn since a general b;, is
obtained through the rule (11.10). We take also fc1 0 (this corresponds to analyse
the problem in the center of mass system) so that fc -dependence becomes
fc°-dependence.

The form in which we will be dealing with equation (II. 1) is the following.
The variable fc° plays the role of a parameter and we write:

R2B(A, k°)= I b^ik, fc0))"1 (11.11)
\,j=i '

considering R2B(A, k°) as an operator in i£(A3, A*).
We note that the individual buik, k°) are not operators on iE(A3, A*)

because they do not preserve the invariance properties of functions in A3. This is
the reason why we introduce a space of functions A'3 which is the same as A3
except that functions in A3 need not be invariant under the transformations
(1.11).

We now proceed to the analysis of bn(A, fc°). Let

A'Xa, {<peA3:\\cf>\\A^= sup |<p(Pl, p2)|<°°,/ 1,2, i 0,1}
|ImpPI<Si<3>

and let d>, iff e A'3, <j>eA3ce.

5) We use MX1 MaB with a ß {2, 3}.
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The objects under analysis will be matrix elements of bn(A, fc°):

(<p, bxi(k, k°)dj) I dpi dp2 dqx dq2<p(pi, p2)

x bn(A, fc°, Px, p2, -qu -q2)<Mqi, q2).

Using (II.9), we have:

(<f>, ba(k, k°)iff) 54irj dpxRAk,ö+Pi) J àp2 dq2<p(px, p2)

xRik^-px^+ p^j-q^ipuqJ
or, equivalently,

{cf>, bxxik, fc°)./r> 54TrjdpiRi(k, -+ Pl J J dp2 dq2<pPi(p2)

/ 2fc \
xR^A,y-p1,p2,q2J^Pi(-q2) (11.12)

where we have defined

<Mp2) </>(pi,Y+P2), </'Pl(q2) </'(pi,y+q2). (11.13)

Remark II. 1. If <f>, if, e A3, we can check that

<M-P2) <MP2), «/>Pi(-<.2) tyçMï) so that <j>Pi, djpie A2.

Our strategy in analysing bn(A, k°) is the following: we break it into several
pieces, all of them regular bounded) near the thresholds 3 m or m + mB with
the exception of the last one, which is a rank-one operator singular at the
threshold m + mB. This one (which is analogous to s^A, k°) defined in the
Introduction) enables us to pursue the analysis of R3 in Chapter III along the lines
of a modified ladder approximation as explained in the Introduction.

The first two pieces are defined according to

1 / Z(A)2 f°° 1 \Ki(A, p) r—(-â-—j+ dpx(a) 2 2lrr\p2+m2 J,m_e p2 + a2/

Let J(A, k°) (d>, baik, k°)d/) Jxik, fc°)+J2(A, k°) with

Jiik, fc°) 27 f dpi f
"

dPk (a) — \-2

(j + Pi) +a

x J dp2 dq2<f>Pi(p2)i/.Pi(-q2)R(A, y-Pi, P2> ^2)

/2(A, fc°) 27Z(A)2|dPl — L
(3 + P1) +-2

x J dp2 dq2<f)Pl(p2)^Pl(-q2)R( A, -—p1; p2, q2J

The kind of result we are interested in is illustrated by our first two lemmas.

(II.4)
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Lemma 11.1. Let <f>,djeA3, <peA3a,. Then /X(A, fc°) defined in (11.14) is

holomorphic in 0<Im k0<|m and in this region it satisfies, uniformly in A^O
small and fc°:

\Jx(k,k^c(i)U\\Aj\<l>K

Lemma II.2. Let <p,djeA'3, (peA'3rx>. Then J2(k,k°) defined in (11.14) is

holomorphic in k°€'<f {fc°: |Re k°|>4m^ 0<lm fc°<lm}U{fc°: 0<lm k°<2m}.
In addition, in this region we have, uniformly in fc° and A s 0 small:

\J2(Kk°)\-<C(l)U\\AjmA3.
Proof of II. 1. We show that the integral in (11.14) can be analytically

continued in 0<lmfc°<|m, satisfying the bound. To see this, note that [(fc/3 +
Pif + a2]-1 is holomorphic in |Im(fc°/3 + p<10))l<3(m-e) (i) and hx(k°,Px)
ìdp2dq2<pPlip2)djpii-q2)Rik,lkl3-px,p2,q2) is holomorphic in 0<
Im(2k°/3-p(10))<2m-e. (ii)

We can thus deform continuously the contour of the p^-integration (for
instance up to Im p(10) 3lm) in such a way that (i) and (ii) above always hold for
any fc° such that 0<lm k°<lm.

To show the uniform bound, note that we can choose the contour in such a

way that, for 0<lm fc°<lm:

|lm(y + pf)|<2m 0<lm (y^-p?>)<§m.

so that

[(^^^^^^©^[(Re^ +p^ + p^+ij-^ for a

|h1(fc^p1)|<©(l)[(Re(^-pf>))%P«2 + l]"^|^J|A2JWA2.

>3m —e,

The last inequality follows from Lemma 1.3.
Hence

\Jx(Kk0)\-^C(l)U\\A3Jip\\A3
f ((Rep^ + pi^ + l)2'3

x J «Pi j

[(Re ^+p(o)))2 + pa)2+1][(Re (?|!_p(0)^2 + pa)2 + 1j

where we have used that

sup Jwipx)UJJ-^eil)U\l3, see Remark 1.1

and that J dpxia)< 1.

Since the integral above is bounded uniformly in Re k°, we get the result.
D

Proof of II.2. The idea is the same as in 1.1. We can deform the contour of
the Pi0)-integration in order to avoid the singularities of the integrand. This is
possible because, if |Re fc°| > 4m or if 0 < Im fc° < 2m, the singularities never pinch
together.
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ia.

-r*-

Figure 3

|t)| |Refc°|

2l
3

JraB

This situation is pictured in the above figure, a and â are the singularities of
[(fc/3 + px)2 + m2], which move as indicated when we go from Im k° 0 to Im fc°

\m. aB and äB are the singularities of R(A, fc°), which also move as indicated. T is
the deformed contour. Note that this is possible since |u| (Rek°) is bounded
away from zero. D

Remark II.2. We have obtained a region of holomorphy going up to |m but
we remark that we could obtain 4m - e by refining our proof. Since \m is
sufficient for our purposes, we do not pursue this point further.

We are left with analysing J2(A, fc°) in the region around the interval
(2m, |m). Next we break again J2 in two pieces:

1

/2(A,fc°) /21(A,k°) + J22(A,k0),

/21(A,fc°) 27Z(A)2f dpi-0Vl«« (y + Px) + m'

x j dp2 dq2^Pl(p2)^Pl(-q2)R^A,y-p1, p2, q2J

/22(A,fc°) 27Z(A)2f dpi
-1

¦1Pl(1>|<4n-

(11.15)

+ m"(f+ Pi

x j dp2 dq2<pPiip2)djpii-q2)R\k, — -pi, p2, q2J

We have the following result:

Lemma Ü.3. Let cp,if/eA'3, <peA'3^. Then J21(k,k°) defined in (11.15) is

holomorphic in 0<lmfc°<|m and it satisfies in this region the uniform A, k°
bound:

\J2i(k,k°)\^û(i)U\\A3M\A3.
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Proof. This can be proven in exactly the same way as Lemma II. 1 (note that
both [(k^ + p^f + px^ + m2]-1 and R(A, (2fc°/3-p(10), pi"), p2,q2) are
holomorphic for 0<lmfc°<|m and |p<11)|>4m). D

We further split /22(A, fc°), this time according to:

R(A, fc', p, q) p(A, fc', p, q) + p2(A, fc', p, q) + p3(A, fc', p, q)

(see Lemma 1.1 and (1.17), (1.18)). Define

/22(A, fc°) /221(A, fc°) + /222(A, fc°),

\2
+ m2

/221(A, fc°) 27Z(A)2 f dpi L
\3 + Pl)

x j dp2 dq2<pPii-q2)d/piip2)ip2 +p3)lk, ——p1( p2, q2J

/222(A,fc0) 27Z(A)2f dpx

(11.16)

»|s4m / «- \ 2/fc V
l3 + Pl)

x J dp2 dq2<pPiip2)d/Pii-q2)p{k,-—plt p2, q2J
Let

«={ko:0<Imfc0<lm,Imfc°^[3m,lm),|fco|>2m} 6) (11.17)

The restriction Im k0^ [3m,lm) is due to the fact that /221(A, k°) has a
branch point at fc° 3im. Nevertheless, it remains bounded as fc0-* 3im. This is

the result of our next lemma.

Lemma II.4. Let 4>,djeA'3, cpeA'^«,. Then J221(A, fc°) defined in (11.16) is

holomorphic for fc° in ^. In this region it also satisfies, uniformly in k° and AaO
small:

|J22i(a, k°)|^<r?(i) I1<pIU3.„ H^H^-

Proof. By Lemma II.2, we only consider the region |Re fc°|<4m. In this case,
we decompose the pì0>-integral in two parts:

/221 I1 + I2, with Ix dpx- ¦ • ,l2=\ dpi-- •

•,Pl"»|<6m V,n>l>6m

It is clear that, in I2, both [(k/3 + p1)2 + m2]-1 and (p2 + p3)(A, 2fc/3-p1; p2, q2)

are holomorphic for |Im fc°|<|m. Using Lemma II.3, i), we have

j J dp2 dq2^Pi(p2)«APi(-q2)(p2 + p3)^A, y~Pi. P2, ^2) |

<tf(l)[(Re (^-pf^ + pr+ l]"1 HcPpJkJI^II

6) The restriction |k°| > 2m will be needed later, when defining the rank-one operator et(\, k°), see
(11.20) and the comments following it.
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then

|i2N0(1)Ma3.JMIa3
(pf2+p<»2+i)213

x .„«.„^.„dPiIpf'lsUm "fl r / .0 \2 "ir/ Ofc0 \2 1
iPh>6m ^Rel.+p«») +p(m + 1j^Re^__p(o)j +p^+ ij

where we have used that sup|Imp«)i<8c3>|w(p1)||ift,J|A2|sO(l)||^||A3. Since the
integral is finite, the uniform bound follows. Consider now Ix. Keeping the
Pi0)-integration real, we see that the integrand is an analytic function of k°e %. It
suffices then to show the bound. But this follows from

(<f>Pl, (P2+P3)«APl>A2 =£ o(i) HJA2,„ UJA2,

sup |w(Pl)||^J|A2|<Ü(l)||taM|A3
|Imp?>|<8?'

and

J l„îo)i«.Am L \G> / J|P;0>N6m

It remains to analyse J222(k, k°) given in (11.16). We remind the reader that (see
(1.15), (1.17) and Remark 1.3):

P(A, fc P, q) r^' j*~ H(A, ^(A), p)H(k, dW, q)

where £lvA) is the pole of R(A, £). Let

mB(A) V4m(A)2-^(A)2. (11.18)

We will see that /222(A, fc°) is not bounded as fc° -* i(m + mB) but one can show
that its singular part is contained in a rank-one operator which we now turn to
define. For H(k, d(k, ¦) defined in (1.15), let et(A, k°)eA'3* be defined by:

(<p,e1(A,fc°)) ^(p(fc0)),

^(Pi) \dp2cf>(pi, ^+P2)h(A, &(A), p2) (11.19)

for
<MPi,p2)eA3(or A3) and p(fc°) (p0(fc°), 0)eC2,

WÌth
02x (11.20)

1 / k02\
/xo(fc°) ^o (mB-m2 + y-)A:a2m(|k0|)

and x^2m(\k°\) denotes the characteristic function of {fc°:|k°|>2m}.
It follows that po(k°) is holomorphic for |fc°|>2m, and that |lmp0(fc°)l<

|(m-e) for 0<lmfc°<|m (with k°=u-riu, we have

llmp0(fc°)l= |2(|/+<;2) (ml-m2-^^)ya2m(|k°|)|<|(m-£)

for |u|<jm and Vu2 + u2>2m).
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The function x=-2m spoils the holomorphy on a disc of radius 2m about the
origin in the k°-plane. But since the region of interest to us is a neighbourhood of
fc° 3im, we shall not mind about this point. Note also that

u, sx(k, fc°))i= ||dp2^p(fco),^+p2)(i+f*(A,^1)ri(o,p2)|

=K(i+f*(A,<r1)rv(i(fco))(o)i
< 0(1) ||(1 + ff (A, ^»-^^lUta
^0(1)II4voc°)IIa2

so that e^A, fc°)e A'* for |Im k°|<|m, |A| small, as asserted above.
We are now able to define the rank-one operator. Let yn(A, k0)e£(A3, A'*)

be defined by:

Yn(A, fc0)^ 27Z(A)2 • 2^(A) • r(A, ^(A))t(A, fc°)ei(A, fc°)Q(p(fc0)) (11.21)

for iffeA'3 (or A3) and

eMpi) | dq2</.(Pl, ?l-q^H(k, £i(A), q2),

(11.22)

We analyse t(k, fc°) in Lemma II.7 below. By now we consider, for cf>, tf/e A3,
<peA'Xoo:

J*(k, fc°) J222(A, fc°) - (cp, Tll(A, fc°H>. (11.23)

We are going to show that J*(k, k°) is bounded as fc —» i(m + mB) (and can
even be continued across the cut [i(m + mB), °°), see below). This result justifies
our previous claim that the singular part of J222(A, fc°) (and so that of bn(A, fc0)) is
contained in a rank-one operator, namely 7n(A, fc°) (and Lemma II.7 will show
that y xx is indeed singular at k° i(m + mB)). On the other hand, it is possible to
show that /*(A, fc°) has a square root branch point at k° i(m + mB) but, as
remarked above, it is bounded on a neighbourhood of it. This suggests that
changing to co' Vfc02-r(m + mB)2 would remove this singularity and this is indeed
the case. Nevertheless there remains the branch point at k° 3im or, in the
w'-variable, at <u' ±ìt)(A), with tj(A) V9m2-(m + mB)2. Since n(A)-»0 as
A —» 0, we must be careful. The way we have chosen to deal with this problem is
the following. We define a new variable

<o ^r-:Vk02 + (m + mB)2,
T)(A)

with

7)(A) V9m2-(m + mB)2 (11.24)

(We choose the square root with positive real part). This is defined for any A > 0
and since the transformation is also a scaling, the branch point at fc° 3im
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remains fixed at co ±i. Of course, we loose differentiability at A 0. Let also

$ ={fc°:0<lm fc°<|m,Im k°^[(m + mB),im), |k°|>2m}
(11.25)L : co -4- (k02 + (m + mB)2)1/2, fc° € »Ì.

I T](A) J

The transformation k° -* w is a conformai map of S8 onto Û. Let also

tal' ÉU-talu(connecting line).

Imk

© Im oi

¦ +
: +

>«H*
Rek

,Im(o 0

****
Remm+mB

Rem

Figure 4

Note that if a function f(k°) can be analytically continued across the imaginary
axis at m + mB <Im k°<im then f(<o) f(k°) for to =[llr\(k)](k02 + (m + mB)2)1'2
is holomorphic in $' (this is the case of ^(A, fc°) and J21(k, fc0)). On the other
hand, if a function f(k°) is holomorphic in <<2 then f(co) f(k°) is holomorphic in
Û'c, where

.'c Û'\{co :co ia,a real, \a\> 1}. (11.26)

This is the case for /22i(A, k°).
We have one last definition before stating our result on J* (A, k°). Let

l={«)6tal':|Retao|-l-|Im<ta)|<ß if Re<u<0}
ac(ß) {(oea'c:\Re(o\ + \lm<o\<ß if Rew<0}.

(11.27)
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We write J* (A, k°) in the following way:

J*(A, fc°) J222(A, fc°) - (cp, ya(k, fc» I,(k, fc°) + I2(A, fc°) (11.28)

h(k, fc°) 27Z(A)2 • 2£1(A) • f(k ; d(A)

xf dpJ^+ PiY + m2]
*

¦,p}1>|s4m LU / J

x [(y-Pi)2+ m2]"1(h(p1)-/t(p(k0))) (11.29)

h(Px) J dp2 dq2d.Pi(p2)xl,Pi(-q2)H(k, £a(A), p2)H(A, ^(A), q2)

%e"x(Px)txli(px) (11.30)

I2(A,fc°) 27Z(A)2r(A,£1(A))

xf dPi[(x+Pi) +m2|
^P«>|s4m LU / J

x[((y-Pl)2 + 4m2y/2 + ^(A)] \(Pl) (11.31)

Lemma II.5. Let <f>,djeA'3, cpeA'3„. Then îx(k,<o) defined in (11.29) is
holomorphic in ^([S(13)-2ê]/t}(A)) and in this domain it satisfies, uniformly in co

and A > 0 small:

\îi(k,<o)\^0(l)U\\A3Jdj\\A3.

Lemma Ü.6. Let <p,il/eA'3, i^eA^. Then î2(k,w) defined in (11.31) is

holomorphic in Û'c and in this domain it satisfies, uniformly in co and A > 0 small:

\î2(k,co)\^c(i)U\\A3M\A3.

Proof of II.5: Let c(A) 27Z(A)2 • 2^(A) • r(A, &(A)).

71(A,fc0) /11(A,fc0) + /12(A,fc°),

/11(A,fc°) c(A) f dpj^+ p^+m2^1
•,Pl(1>|<4m LU / J

x [(y-Pi)2 + m2]_1(h(pf>, p<")-n(p0(fc°), p?)),

I12(k, k°) c(k) f dpJ^ + PiY + m2!"1
•,P><u|s4m LU / J

x [(y -Pi)' + ™b] 1(n(p0(fc°), p<") - h(p0(k°), 0)).
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In the first term we put:
1 1

(j+Pi) +™2 (y-Pi) +m|
1 r 1 1_

ç-2w>[(|+p,)%^ (f-p,ym|-m2+-

so that we can write

711(A,fc°) c(A)f

x

+ mî

'|s4m
dPi

n(p(10),p(11))-h(po(fc°),p(11))

2fc°(po(fc°)-p(10))

|_(f + Pi)2+m2 (f-Pl)y-Pij + m,

and each of the two resulting terms can be analytically continued to 0<lm fc°<
\m by suitable shifting the contour of the pi0)-integration. Note that p0(w) is

holomorphic in Û' and this implies that /n(A, co) is holomorphic in this region.
The uniform bound follows by noting that

SUP |w(p1)(/l(pf,p(11))-h(po(fc0),p(l1))l^^(l)lkllA3„WA3
|Imp«>|<8P

and that the integrals
r (px0)2 + Px1)2 + l)2'3

-\p[u\s4m
dpx

and

[po(k°)-p(i0)][(pi0) + Rey)2 + p11)2+l]

r (p(r+p(ii)2+D2/3
W4m Pl[Po(fc0)-p(i0)][(p(i0)-lRefc0)2 + P(i1)2+l]

are uniformly bounded, since we can suppose |p(10)-p0(fc°)|> 1 and |Re fc°|<4m
(see Lemma II.2).

Consider now the term Ii2(A, k°). We can do the p^-integration by residues,
obtaining, with g(a) Vp(i1)2 + a2:

/12(A, k°) c(k)rr [ dp(11)(h(po(fc°), pi") - h(p0(k°), 0))

1
X

"uLg(n

+

g(m) [-k0+i(g(mB) + g(m))][-fc°-i(g(mB)-g(m))]
1 1

g(mB) [fc0+i(g(mB) + g(m))][k°+i(g(mB)-g(m))]

ir-c(A)f

+
U(n

dp(1"(h(po(fc°), P?) - h(lM0(k°), 0))
»|<4m

fc02+ml-m2 + 2ik°g(m)

+-

g(m) (k02+m2-m2)2 + 4k02(p(11)2 + m2)

1 k02+m2-m2B

g(mB) (k02 + m2-mly
B + 2ifc°g(mB) 1

+ 4fc02(p(11)2 + ml)J"
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Note that

(fc02 + m2 - m2)2 + 4fc02m2 (fc02 + (m + mB)2)(fc02 + (mB-m)2)
2(k02+m2-m!)2 + 4fc02m

so that the imaginary terms cancel and we are left with

J12(A, fc°) tt • c(A) f dp(1"(h(po(fc°), p?) - n(po(fc°), 0))
¦,pï"i=s4m

uLg(n

k02 + ml-m2
g(m) (fc02 + (mB + m)2)(k02 + (mB-m)2) + 4fc02p(i"2

1 fc02+m2-m!
rx1)2\g(mB) (fc02 + (mB + m)2)(k02 + (mB-m)2) + 4fc02(p(1

We introduce the co -variable:

k02 + (mB + m)2 T)(A)2tata)2,

fc02 + (mB-m)2 4m'm'B-co2 m mE
4fc02

fc02 + ml- 2-m
4k02

k02 + m2- ml

s(û.), m'= m'B
4(m' + mB)2-û>2 JVW/' "' T,(A)' "*ö t)(A) '

Si(<ü),

4ko2
=s2(co).

We have, thus:

/12(A, w) «¦ • c(A) [ dp(1"(/r(po(û>), pi") - h(po(<o), 0))

Si(w) s2(û>)
i"2]J-Lg(m)[T,(A)2a,2s(cü) + pi"2] g(mB)[T,(A)2tü2s(taO) + p

Both terms are analysed in exactly the same way. Note that Sx(o>) and s2(co) are
holomorphic and bounded on a large disc centered at co 0 (in fact they are
holomorphic on a disc of radius (m + mB)r\(k)~x). Write the denominators in the
form:

1 1 f 1 1 ]
T.(A)2co2s(<o)pi1)2~2pi" Lpi" + iT,(A)tata)S1/2(tata>)+ pi"-iT,(A)cüS1/2(cü)J -

Choose the determination of sV2(co) u + iv for which u>0. We claim that
(see the proof in Appendix B), with co=x + iy:

i) if x>0, uy<0.
ii) if x < 0, vy > 0.
iii) So<|s1/2(tata))|<l, some s0>0.
We analyse the term (pÌ^ + ìtKAVs"2^)):
(pi" + iriCA^»)-1 (pi" + T,(A)i(xu - vy) - r,(k)(xv + yu))-1

(Pi» + ili + l2)-\

If x > 0, the denominator never vanishes since xu - yv > 0. If x 0, then v 0 and
0, and so there is a real zero pi" q(A)yu on the integration path. So the
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integral defining f12(A, co) is a holomorphic function of co for x Re co > 0. But we
can take advantage of the holomorphy of h(p0(to), pi") to deform the contour of
the pi"-integration and analytically continue Ii2(A, to) to the left half-plane. This
is done according to the picture below.

ilm p

-4m

0)
ilm p;

4m Rep,'1)
-4m

ä!'»-1

4m -Rep,("

Figure 5

We can now go with to to the left half-plane as long as | lt\ < Si3) - le. A very crude
bound is |ii|^(|x| + |y|)T|(A) and so we can analytically continue I12(k,to) to the
left half-plane in the domain

ito : Re co < 0, |Re to| + |Im co\ < 8j3)-le}
t|(A) J

(in the case of (pi"-.Ti(A)ta».s1/2(&.)) the contour is deformed in the opposite
sense). This defines an analytic continuation of I12(A, &>) to Û([8[3) — 2e]/tj(A)).
The uniform bound follows as in the case of In (A, to). This completes the proof.

D

Proof of Lemma II.6. We have to show that J2(A, k°) is holomorphic and
satisfies the bound for k°e <€. This implies holomorphy in 3ß'c. As in the proof of
Lemma II.4, we consider separately the regions |pi0)|-S6m. In the region |pi0)|>
6 m, both functions in the integrand are holomorphic in %. The bound is also easy
to show. In the region |pi0)|<6m, we note that the integrand is analytic in k0etü?
and that

Lt-tM{ï+4+m2Y[(IpÌ1
lpi°

2k
3

"

\2 "1-1/2

Pi) +4m2 <°o

uniformly in k° e %. Since we always choose the determination of the square root
which has positive real part, this also proves our result for ((2fc/3-p1)2 + 4m2)1/2-r
ii(k) once we note that ^(A)>0. D

Our next task is the analysis of the singular part, 7n(A, fc°). From its
definition (see (11.21)) we can see that its analytical properties are those of t(k, k°)
defined in (11.22). We state our result on t(k, k°).

Lemma II.7. Let t(k, to) be defined by (11.22) and set

1
t(k, to)

Tj(A)(ta)
(0(A, to).
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Then t0(k, to) is holomorphic in Û([8[3)-le]l-n(k)) and in this domain it is

uniformly bounded in to and A > 0 small. We have also:

t0(k,0) rr2 ---vm(A)mB(A)

Proof. We use the same notation as in Lemma II.5. Performing the pi0)-
integration by residues we get, as before:

(*) t(A,k°) 7rf dpx
•iPl(1)|s4m

(1)

fc02+ml-m2
g(m)[(fc02 + (mB+m)2)(k02 + (mB- m)2) + 4k02pi"2

X \—; .r/, m / i ,?w, m / \?.. -i 02__rm + m**mB[

Again we introduce the to-variable, obtaining:

;,. x f (i)[ Sj(to)'^"'"V Lg(m)h(A)2to2s(to) + pi"2]

Si(to)

g(mB)[T}(A)2to2s(ta-))-rp

Now write the denominators as:

1 1

i"2]J •

q(A)2to2s(o)) + pi"2 2iTj(A)tos1/2(to)

X Lpi"-ÌT,(A)tos1/2(to)-pi1) + ÌT,(A)taOS1/2(to)J '

From this representation, it is clear that we can repeat the proof of Lemma II.5 to
show the holomorphy of f0(A, to) in é([ôi3)-2e]/î)(A)).

On the other hand, for fc° ìk, (mB — m)<K<(mB + m), we can explicitly do
the integral marked (*) above. We use

f, 1 1
dx 71 2x / 2 2= / -, - arctg

J (x2 + c2)Vx2 + a2 cy/a2-c2

•Ja2-c2x
a2>c2,

cyfx2 + a2'

and obtain:

t(k, ìk) rr(-K2 + (mB + m)2)"1/2(ic2- (mB - m)2TV2

r (K2-ml+m2)pi" 1 |4m Ix arctg ~ ; +m**mB\.
L (K2-(mB-m)2)1/2(-K2 + (mB+m)2)1/2 Vpi"2 + m2l_4m J

When k -* m + mB(to -> 0), the last factor goes to 2-it, so

1 tt2
t0(A,0) 2ir

V4mmR v mmp
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since (K2-(mB-m)2)~1/2—»(4mmB)~1/2 as K-*(m + mB). This completes the
proof. D

This lemma completes also the analysis of bn(A, fc°). There remain the other
bi,(A, k°), defined by the rule (11.10). It is clear that by a change of variables, all
results on bn(A, k°) carry over to bu(A, fc°). Let us see briefly what things look
like. Define

<H?(P2) </>(?-, + Pl),

<pfM) <*>(-~+p2, ~ + p2) (11.32)

<(p2)=*(-f-p2,-pl),

with analogous definitions for </>p"(q2). The index i in tf>pl], i/.^ refers to the
channel. Our previous <£„,, i/.Pi coincide with tp(1^, djp».

One can verify that

(cf>, by (A, fc»
547r|dp1R1(Ay+ Pl)|dp2 dq2</»pii)(p2)R(A, y-Pl, p2, q2)<}(-q2). (11.33)

For 6(pi,p2)eA'3, we define ef(A, k°)e£(A'3, A'3), i 1,2,3:

(Ö,£i(A,fc°))='ö^(p(fc0)),

-—- f (11.34)
0ei(Pl) J dp20p'1)(p2)H(A, ^(A), p2)

and, as in (11.21), %eiPl) i dp2epi](-p2)H(k, &(k), p2).
Let also

7i](A, k°)djm27Z(A)2 • 2£1(A) • r(A, d(k))t(k, fc°)e.(A, k°)^(p(fc0)) (11.35)

and

a,,(A, k°) by(A, k0)- yy(A, k°). (11.36)

Then our previous lemmas and the above definitions imply the following theorem:

Theorem 11.1. Lef n(A) V9m2-(m + mB(A))2 and let also tf>,ipeA3, <f>e

A3>oo. Then (<p, âu(k, to)d/) and r\(k)co(tp, Y;j(A, to)dj) are holomorphic functions in
to eStalc([ôi3)-2e]/T)(A)). Furthermore, in this region we have, uniformly in to and
A > 0 small:

U, a„(A, to)dj)\ <©(1) ||4>||a3.„ Wa3.

Proof. Follows from the preceding discussion. D
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We turn to the discussion of R2B(A, fc°). Recall (11.11)

R2B(A,k°)=(jt b^(A,fc°))_1.

Write this in the form (we omit sometimes the A, k°-dependence)

R2B=h(bxx + bx2 + bx3)[{t Ki1)-äbxx + bx2 + bx3)\ ¦

We have as a first result:

Lemma D.8. On the space A3, the following identities hold:
i) Ofri + b~xl + bxi) -h-(bxx + bx2 + b13) 1

ii) (Kl + bTi + b^-h- (bxx + bx2 + bx3) l+0(k \to\), i =2,3.

Proof
i) it suffices to remark that bu b12 b13 acting on A3.
ii) we write

(Kx1 + KÌ + bTi) •h-(bii + b12 + b13)

(Kx1 + b£ + bTi) ¦h-(bii + bi2 + bi3)

+ (bTx1 + b:21 + b-31)-h-(bxx + bx2 + b13-bix-bi2-bi3).
As in i) above, the first term equals 1 when acting on A3. In the second, we note
that, on A3,

(bTx1 + bT2X + bT31)-h-(bxi-bii + bi2-bi2 + bi3-bi3)
(bri1 + br21 + br31)-è-(a11-ajl + ai2-ai2 + ai3-ai3).

Now we remark that each by1 is O(|to|) as |to| -* 0. Then it suffices to show,
to complete the proof, that ay-cta¦, 0(k). But this follows from b^ — bg-
0(A/|to|) since each bu(A, k°) is C™ in A for A 3:0 small and they coincide at A 0.

D

From Lemma II.8, we can conclude that, acting on A3, [(£3,,=i by1) • è(bn +
^12 + ^13)]_1 3 + 0(A |to|) and we have the following result on R2B(A, fc°).

Write

R2B (A, to) ßx(k, to) + ß2(k, to),

ßx(k, to)* 2Z(A)2<r1(A)r(A, ^(A))t(A, to)si(k, to) (11.37)

X [£^(p(to)) + e2dj(p(to)) + E3dj(p.(to))]

For i/.eA3, we have:

ßi(k, to)if, c*(k, to)(T)(A)to)-1ê1(A, to)-Q?(p(taO)) (11.38)

with

c*(A, to) 6Z(A)2^(A)r(A, d(k))t0(k, to). (11.39)

Theorem Ü.2. Let tp,\fi&A3, epe A3oo. Then (<f>, ß2(k, to)tfj) and
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¦q(k)to(tf>, ßi(k, to)tff) are holomorphic in to s ^c([8\3)-2e]/t](A)). In this region we
have, uniformly in to and A > 0 small.

\(d>, ß2(k, 00)^0(1) \\<p\\A3 JM|a3.

Proof. Follows from the preceding considerations. D

in. The analysis of R3(A, k°) and S2(A, k°)

The analysis of R3(A, fc°) has two main ingredients: the knowledge of the
analytic structure of R2B(A, fc°) and K3(A, k°). These two things are not really
independent since in defining K3 we have extracted from RJ1 all of its non-
connected part (namely R2B). So in K3 RJ1-R2B we expect that in addition to
three-particle irreducibility (in the x —* y channel) we have also connectedness in
all channels. This is indeed what can be proven in models to which Spencer's
method of (-derivatives applies, as it is the case for weakly coupled kP(d>)2
models. In [CD], Corollary 2.1, it is shown that the suitable (-derivatives of
K3(k, t) (in fact it is proven for Kn, n > 1) vanish at 0 so as to give, applying
Spencer's method, the decay:

\K3(k,Xx,x2,x3,yx,y2,y3)\<0(l)exr>[-(4m-e)-^\xx + x2 + x3-yx-y2-y3\
-(m-e)(|x1-x2|-r|x2-x3| + |y1-y2| + |y2-y3|)].

(III.l)
This result can be translated in p-space by saying that K3(k, k°, pls p2, q1; q2)

is holomorphic in

|Imfc°|<4m-e,
|Im pi0)|, |Im pfl, |Im qf |, |Im qf | <|m - e S03), (III.2)
|Im pi"|, |Im p2"|, |Im qi"|, |Im q<"| <\m - e 8?\
Note that holomorphy in the p, q variables expresses the connectedness of K3

and is in some sense equivalent to it (see [B]).
For our purposes we need some results on K3 going a little further, namely:
i) K3(k, fc°, Pi, qt) is bounded in the region (III.2).
ii) K3(k, fc°, Pi, qt) is a C°° function of A a 0 small.

These two properties can be derived from the representation of K3 as a
convergent Neumann series:

K3 (1 + R2BG3) R2BG3R2B, G3 R3 — R2B.

If C(x-y) denotes the free covariance and Cj^C^CglC1®^1, the
singularities of C31G3 and of C^G^^1 are isolated using integration by parts, as
in [S] and [K]. We sketch a proof of this in Appendix D.

Note that X3(A, k, p;, •) e A3 since it is invariant under the transformations
(1.11) and it is bounded (in fact \K3(k, k°, p, q|< O(A), since K3(0, k°, p, q) 0).

Given these properties, we are able to study the analytic structure of
R3(A, fc°). Recall equation (1.10):

R3(A, k°) R2B(A, k°)-R2B(A, fc0)ü:3(A, fc°)R3(A, fc°).
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Let

V(A, fc°) K3(A, k°)R2B (A, fc°). (III.3)

According to the decomposition of R2B given in (11.37), we decompose also:

V(A, fc°) Vx(k, k°) + V2(A, fc°),

V;(A, k°) K3(k, k°)ßi(k, fc°), i 1,2.
•

Since K3 is holomorphic and bounded, we can apply Theorem II.2 to conclude
that Vx(k, k°) is a rank-one operator in 5-(A3) given explicitly by, for any i|reA3:

(Vx(k, to)dj)(pu p2) c*(A, <o)(T)(A)to)-1I^(p(to))K*(A, <o, Pl, p2) (III.5)

with K*(k, to, px, p2) e A3 given by:

K*(k, to, px, p2) Jdq2K3(A, co, Pl, p2, p(to),^+ q2)iï(A, fc^A), q2) (OI.6)

We quote a first result.

Proposition III.1. The operators r}(k)toVx(k, to) and V2(k, to) are holomorphic
in -oeâ8c([-5i3> — 2ê]/t)(A)). Furthermore, we have in this domain

\\V2(k,to)\\^0(k).

Proof. Given the properties of ßi(A, to) and ß2(k, to) in Theorem II.2, and the
fact that |K3(A, to, p, q)|< O(A), the result follows as in Theorem II.3 of [DE].

D

As a preparation for the main theorem, we prove here the following:

Lemma III.l. Let Vx(k, to) be defined in (III.5). Then we have \\toVt(k, to)||<
O(A) for toeta#c([5i3)-2e]/7)(A)).

Proof. Given that \K3(k, to)\ < O(A), the result follows once we prove that
c*(A,to)Tj(A)~1|<0(l). But this is a consequence of ^1(A)t}(A)_1<0(1).

D
Recall now that

R3(A, k°)=R2B(A, fc°)(l + K3(A, k°)R2B(A, fc0))"1

R2B(A, k°)(l- V^A, k°)+ V2(A, fc0))-1.

Turn to the to -variable:

R3(A, to) R2B(A, «.Xl + (1 + V2(A, to))-1 V^A, a))-\l + V2(k, to))'1,

where the existence of (1 + V2(k, to))'1 follows from ||V2(A, to)||=sO(A) for toe
^c([ô(i3>-2e]/Tj(A)), see Proposition III.l. It follows that R3(A, to) is meromorphic

in ta2lc([ta5i3) —2e]/ii(A)), with poles at those values of to where the trace of the
rank-one operator (1 + V2(k, to)y1V1(k, to) is equal to -1. Let

Fx(k, to) Tr [(1 + V2(A, to))-1 VX(A, to)]

c*(A,to)
i.(A)to

SiUiKto)) (III.7)
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where we have defined if/0eA3:

•Ao (l + V>2(A,to)r1K*(A,to). (III.8)

We write, explicitly:

exdj0(ß(to)) J dp2 dpi dp'2 dq2 H(k, d(k), p2)

x(l + V^-^A, to, ß(to),^-p2, -p'i, -p2) (III.9)

x K3(a, to, p'x, p2, p(to),^ + q2)n(A, ^(A), q2).

Lemma III.2.
i) H(k,Cx(k),-) 8(-) + CA2(k).

ii) (1 + V2r\k, to, px, p2, qx, q2) 8(Pl -q,) S(p2-q2) + ü(A).

Proof

i) follows from

H(A, CM), ¦) d + f2(A, tx(k)))~l(0, ¦)

and ||f2(A, £x(k))\\x(A2) *- 0A2(k), see (1.15) and [DE].
ii) follows from Proposition III.l. D

We can state now our first theorem:

Theorem III.l. F\(A, to) —1 has one real solution cox(k) in öl.c([-5i3>-
2e]/t)(A)). In addition, we have that K3(k,to=0, p(0), p(0)/2, /1(0), p(0)/2)§0
implies tOi(k)$0 respectively.

Proof. Since \Fx(k, to)<0(A |to|_1) (this is a consequence of Lemma III.l),
the solutions of F^A, to) -l can only occur for small |to|. We look thus for
solutions inside the curve y {to : |to| r} for a fixed and small r. Let Gi(A, to)
coFi(k, to) and note that Fj(A, to) -1 is equivalent to G\(A, to) + to 0. Consider,
then:

H(A, to) GX(A, to) + to= (Gi(k, 0) + to) + (Gx(k, to) - Gi(k, 0))

Hi(k,to) + H2(k,to).

We see that Hj(A, to) has a real zero at to0i(A) -G^A, 0). Remark also that,
by Lemma III.2, and for A small, K3(k, 0, p(0), p(0)/2, £(0), £(0)/2)s;0 implies
G\(A, 0)^0 and so toOi(A)_§0, respectively (this follows because c*(A, 0)t](A)_1 is

positive). Let toOi(A)>0 and consider the semi-circle -/iUy2, with

7r {to : \to\ r, Re to > 0},

y2 {to : to iy, -r < y < r}.

Onji, using that G^A, to) is holomorphic inside a circle of unit radius, contained
in ta#c([ôi3)-2e]/Tj(A)), we have |H2(A, to)| < r/2 for sufficiently small A. Also
|Hj(A, to)|>r/2 for A sufficiently small, so that on yx, |H2(A, to)|<r/2<|Hi(A, to)).



Vol. 54, 1981 Three particle bound states in even \P(4>)2 models 165

On the other hand, we have the bound

|H2(A,to)|<ta?(A|to|)

uniformly for |to|<r, so that on y2

\H2(k,to)\<\y\<\Hi(k,to)\

for A sufficiently small.
So |H2(A, to)| < |Hi(A, to)| on yx U y2 and by Rouché's theorem, H(A, to) has a

unique zero to^A) > 0 inside yx U y2. Since the zero is unique, it is real. If to0i < 0

we use the same argument to show that tox(A)<0.

One last result we shall need about R3(A, to) is the following:

Theorem III.2. R3(k,to) âx(k,to) + â2(k,to) with (to-to^A)) &x(k,to) and
â2(k, to)e££(A3, A*) holomorphic in toe(Èc([8x3)-2e]lr\(k)). Furthermore,

&x(k, to) d(A, to)(to - ù>xW)~\1. + Vf (A, to))- 1êl(k, to)

X(;(l+\^(k,to))-1Sx(k,to)),

&2(k, to) ß2(k, to)(l + V2(A, to))-1,

and

to-tOx(k) c*(A, to)
d(A,to)

to + Gx(k, to) t)(A)

Proof. Since (1 + V2(A, to)) 1V1(A, to) is rank-one, we have, with Tr(l +
V2(A, toT1Vi(k, to) Fi(k, to) + -1.

[1 + (1+ V2(A, to))-1 Vi(k, to)]-1 1 -(1 + V2(A, to))"1 VjU, to)[l + F\(A, co)]-1.

Hence we can write R3(A, to) as follows:

R3 R2B (1 + (1 + V,)"1 V^-Hl + V,)-1

R2B(l-(l + V2)-1V1(l+F1)-1)(l + V2r1

d + v^Vid + vd-1ß2(i+v2r1-ß2
1+Fx

^j-w^y^j^y^
CJ2 — ßo2 H2 1 + Fi

+ *, gt êx(k, to)((l + V,)"1 -, sx(k, to))
tj (A )(to + toF1)

where we have used that:

ß1(l+F1-(l + V2r1V1) /31
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since, for a general if/:

c*
ßi(l + V^r1 $x*l> ßid + V2r1 • ^TT- ei«Kp(<o))K*(A, w), see (III.5),

Tj(A)ft>

lT^(p(to)) • ß>0 ('/'o d + V^"1«:*, see (III.8)),
T)(A)tO

/ £* \2 ^ta—ta^
(—r-T—J e1if(p(to))e1i/»o(A(w))êi(A, to).
\T)(A)tO/

On the other hand,

c*
ßtÜ + Fj)«/. ßxifr+Fx ——- Ex<KllM)êx(k, to)

T)(A)tO

/ c* \2-^ -M + 1 /. £i^0(A(<»))ei^(p(û>))êi(A,to).
\T)(A)tO/

Returning to R3:

R3 <t2+ ,.wC g,, (êi(A, to)-ß2^0X(l + V2)-1-,e1(A, to))
r)(k)(to + toFx)

¦*sk

*? + ,.VC
¦ a, (1 - ß2d + v^iyê.U, to)((l + V,)-1 -, 81(A, to))

T](A)(to + toF1)

since

ß2^0 ß2(l + V2rlK* ß2(l + V^-^sê^A, to)

*3 à2+ 77ZTT W\ 0- + Vf)"1ê1(A, Û.X-, (1 + Vfr1ê1(A, to))
T)(k)(tO+loFx)

where we have used that

l-ß2(l + V2)-1K3 (l + Vl!)-1, with Vf ß2K3.

Note finally that to + toFx(k, to) H(k, to) is holomorphic in ä.c([oi3)-2e]/T)(A))
and has a unique zero tot(A), so that we can write

c*(A, to) 1

T}(A)(to + toF1(A, to)) to —tOj(A)

with

•j,. x to-tOj(k) c*(A, to)
d(A' w)

-L. û <\—\ 7Wio+toFiik,to) t)(A)

holomorphic in âci[8f)-2e]lriik)). D
The spectrum of the energy-momentum operator is directly connected to the

Schwinger functions via the Osterwalder-Schrader theorem [OS]. Up to now, we
have studied the 2-particle irreducible six-point function and we must now carry
out our results to the Schwinger functions. We shall see that one way of doing so
is to look at the two-point Schwinger function, S2(A, x — y). Let S2(A, k°) be its
Fourier transform, and let C(fc°) (fc02 + m2,)-1 (as before, we put k1 0). Define

<2(A, to)
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also the one particle irreducible two point function Kxik, fc°) by:

K1(A,k0) S2(A,k°)-1-C(fc0)-1,
or

S2(A, k°) C(fc0)- C(k°)K1(A, k°)S2(A, fc°). (OLIO)

In an even theory, we have Spencer's result [S] that Kx(k, k°) is holomorphic
and bounded by O(A) for |Im k°|<3m-e. From this result we can conclude the
existence of a pole of S2(k,k°) (l + C(k0)Kx(k,k°))-1C(k0) because 1 +
C(fc0)K!(A, fc°) has a zero at some value fc° im(A) near the pole of C(fc°) at
ka2 -m2,. This pole corresponds to the mass of the lightest particle described by
the theory. We shall now see that 1 + C(fc°)K1(A, k°) 0 can have a solution near
fc02 -(m + mB)2 because of a pole of Kt(A, k°). We begin our study of Kt(k, fc°)
in x-space, considering:

Jdx'C-^x - x')<<Mx')<Hy)> 8(x - y)-k(P'(x)tp(y))

8(x-y)-kC(x - y)(P"(x)) + k2\dx'(P'(x)P'(x'))C(x' - y).

This follows by integration by parts, and we use P(x) as a shorthand notation
for P(d)(x)), and P is the Wick-ordered interaction polynomial. The primes on P
stand for derivatives. We have also:

KxC-^S^C-1
(1 - C^SJS^XC(1 - C^SJ + (1 - c-xs2)

A2 jdZl dz2 dz3(P'(x)4>(zx))S21(zx, z2)C(z2-z3)(P'(z3)4>(y))

-k2\dx'(P'(x)P'(x'))C(x'-y) + kC(x-y){P"(x))

A2 jd2l dz2 dz3(P'(x)cp(zx))S21(zx, z2)(tp(z2)P'(z3))C(z3-y)

-k2\dx'(P'(x)P'(x'))C(x'-y) + kC(x-y){P"(x)),

where we have used

Ajdz3C(Z2-z3XP'(Z3)«p(y)) A|dz3(tP>(z2)P'(z3))C(z3-y)

-(tf>(z2)tf>(y)) + C(z2-y).
We can express Kx in the following way (recall the definition of Pn in Chapter I):

Kx(k, x-y) -k2(P'(x)(l-Vi)P'(y)) + k 8(x - y)(P"(x)). (Ul.ll)
At this point we use the fact that P is even to rewrite Kx as:

K1(A,x-y) -A2(P'(x)P3P'(y))-A2(P'(x)(l-P0-P1-P2-P3)P'(y))
+ AS(x-y)<P"(x)>, (III.12)
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since P0P' P2P' 0 for even P.
We define:

Bx(k,x-y) -k2(P'(x)V3P'(y)).

D2(A,x-y) -A2(P'(x)(l-P0-P1-P2-P3)P'(y)>, (III.13)

D1(A,x-y) AS(x-y)(P"(x)).
We write explicitly B^A, x-y):

Bx(k, x-y) -A2J dzx dz2 dz3 dz'x dz'2 dz3(P'(x)(l-Vx)<p(zx)<p(z2)<i>(z3))

r<R3\zx, z2, z3, z'i, z2, z3X<^(z'1)t/.(z2)t^(z3)(l-P1)P'(y))

and we let

L3 (A, x, ylt y2, y3) A j dz, dz2 dz3(P'(x)(l -Yi)i-(zx)<p(z2)<p(z3))

xR3\zx, z2, z3, yx, y2, y3). (m. 14)

With z (zj, z2, z3), we write:

Bi(A, x - y) - J dz dz'L3(A, x; z)R3(A, z, z')L?(A, z'; y). (III.15)

Introduce

T x-|(y1 + y2-i-y3), ft yi-y2, ft y2-y3

and consider the Fourier transform of L3(A, x; yls y2, y3) (=L3(A, t, ft, ft) by
translation invariance):

L3(A, k, Pi, p2) (2 tt)"2Jdr dft d|2ei(kT+p.£'+pA)L3(A, t, ft, ft)

Similarly, with

T' è(yi + y2+y3)-x, ft yi-y2, ft y2-y3

we Fourier transform L*(A, yl5 y2, y3; x) (=L3 (A, r ft, ft) by translation
invariance):

L*(A, k, Pi, p2) (2.T)-2 jdrdft dftei(kT'+p1^+pA)L*(A, r', ft, ft).

Remark. Using that R3~1(A, x, y) R31(A, y,x) and that

(P'(x)(l -P1)</>(y1)</>(y2)^(y3)) (^.(y1)</>(y2)</>(y3)(l -P^PXx))
we can conclude that L3(A, x; yu y2, y3) Lf(k, yls y2, y3; x), or that
Lf(A,T',ft,ft) L3(A,-r',ft,ft). This implies that Lf(A, fc, plt p2)
L3(A, -k, px, p2).
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Equation (III. 15) reads as follows, in momentum space:

Bx(k, fc°) - J dpx dp2 dqx dq2L3(k, k°, pl5 p2)R3(A, k°, -p1; -p2, ql5 q2)

xL*(A,fc0,-q_,-q2), (III. 16)

where we have put as usual k1 0.
Consider also:

D2(k, k°)=-f- fdTeikOXP'(T)(l-Po-P1-P2-P3)P'(0)),
27T J

(III. 17)

Dx(k, fc°) -^, a0 (P"(x)) (P"(0)).
27T

We should know, to go ahead, what are the analyticity properties of Dj(A, k°),
D2(A, k°), L3(A, k°, Pi, p2). The result for D^A, k°) is trivial, since it is a constant.
Kernels like D2(A, fc°), defined with the Euclidean projectors Pn, are expected to
be 3-particle irreducible. In weakly coupled kP(cf>)2, where the modified cluster
expansion of Spencer [S] converges, one can show that (see the proof of Theorem
1.1 in [CD]) the suitable (-derivatives of D2(A, x, y) vanish at 0 so as to give
the expected decay:

|D2(A, x - y)| < const, exp [-(4m - e) |x - y |].

This property can be translated in momentum space by saying that D2(A, fc°)
is holomorphic in |lmfc°|<4m-e.

A similar result can be proven for L3(A, fc°, px, p2). This is essentially done in
[CD] (see their proof of Theorem II. 1) and the result is again that the suitable
(-derivatives of L3(A, x; y1; y2, y3) vanish at 0 so as to give the decay
(assuming that Spencer's method works, as is the case in weakly coupled kP(d>)2):

|L3(A, x; y1; y2, y3)|<const, exp [-(4m - e) |x-Kyi + y2 + y3)l

- (m - e)(|y1 - y2| + |y2 - y3|)].

This means that, in momentum space, L3(A, k°, pls p2) is holomorphic in
|Imfc°|<4m-e, |Impi0)|, |lmp20)|<|(m-e), |Im pi"!, |lmp2"| <\(m-e). Regarding

L3(A, fc°, px, p2), one can prove that it satisfies the following two properties
(the proof is sketched in Appendix D).

i) L3(A, fc°, px, p2) is bounded in the above region,
ii) it is a C°° function of A for A >0 small.

We have already used similar properties when dealing with K3. As in the case
of K3, these properties in the present case can also be derived by isolating the
singularities of C3X • (cf)(xx)cf>(x2)tf>(x3)(l-'Pi)P'(y)) using integration by parts.

The same technique can also be applied to show that D2(A, fc°) is bounded
by 0(A2). Introducing the to-variable and taking into account the above
discussion, we conclude that Di(A, to), D2(k,co), L3(k, to, p) and Lf(k, to, p) are
holomorphic and bounded by O(A) in toe^c([6i3)-2e]/T)(A)).
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We further analyze BlvA, to). Recall Theorem III.2 and consider:

B1(A,to) B(A,to) + D3(A,to),

B(A, to) -L3(k, to)&x(k, to)Lf(k, to), (III.19)
D3(A, to) -L3(k, to)&2(k, to)Lf(k, to).

Define also

D(A, to) Dx(k, to) + D2(k, to) + D3(k, to) (III.20)

so that

K1(A,to) B(A,to) + .D(A,to). (III.21)

Note also that C(fc°) C(to) is holomorphic and uniformly bounded for
to eÛc([8f)-2e]lri(k)) since we stay away from k° im0, the pole of C(k°). We
can summarise the preceding analysis in the following.

Proposition III.2
i) D(A, to) and (to-tox(k))Ê(k, to) are holomorphic and uniformly bounded in

toeac([8lx3)-2e]l7ì(k)). In addition,

\D(k,to)\<0(k).
ii) The same for C(to)D(k,co) and (co-to1(A))C(to)B(A, to), with

|C(to)D(A,to)|<0(A).
These statements are true uniformly in A > 0 small. D

Consider the two point function:

S2(A, to) (1 + C(to)Kx(k, to))-1C(to)

(1 + C(to)B(A, to) + C(to)D(k, to^CM
(1 + (1 + C(to)D(A, co^CMÊ^, »»"Hl + C(to)D(A, to))-1«^«)

where we have used that (l + C(to)D(to)) is bounded away from zero, for small
A>0, so that (1 + C(to)D(A, to))-1 is holomorphic and uniformly bounded in
we$c([ta5i3)-2e]/T](A)) and A>0 small.

Define

F2(A, to) (1 + C(to)D(A, to))-1C(to)B(A, to). (111.11)

Then it is clear that poles of S2(A, to) correspond to the solutions of F2(A, to) — 1.

Theorem III.3. Assume dkK3(k =0, to 0, p(0), p(0)/2, p(0), p(0)/2)^0.
Then F2(k, to) +1 0 has one real solution to2(k) which has the same sign as to^A).

Proof. Consider L3(A, to, px, p2) and L*(A, w, p1; p2) € A3 (this follows from i)
and ii) in (III. 18).

Define

?(A, to) <(1 + V2(A, to))"1L3(A, to), sx(k, to)),

î*(k, to) ((1 + V2(A, tofr^^A, to), êx(k, to)).
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We can write B(A, to) as follows: (see (III. 19) and Theorem III.2)
B(A, to) -(to-tOi(A))-1 d(A, to)f(A, to)f*(A, to).

Let

Q(A, to) (1 + C(to)D(k, wT'CM â(k, to)î(k, to)î*(k, to).

Then F2(A, to) +1 0 is equivalent to

.f(A, co) tox(k) - to + Q(k, to) 0

or, with Jx(k, to) tox(k)-to + Q(k, 0)

J2(A,to)=Q(A,to)-Q(A,0),
J1(A,to) + taf2(A,to) 0.

The function Jj(A, to) has a real zero at

to02(A) û)1(A) + Ô(A,0).

One can also verify that:

i) f(A, 0)f*(A, 0) | f(A, 0)|2 > 0
ii) d(A,0) [-to1(A)/G1(A,0)][c*(A,0)/T}(A)]>0 because tOi(k)>0+*

Gi(A,0)<0 and c*(A,0)>0
iii) C(0)<0, |C(0)|<O(l)
iv) (1 + C(0)D(A, O))"1 > 0, |(1 + C(0)D(A, 0))"1! ^ O(l).

The result is that Q(A,0)<0. We shall now verify that |Q(A,0)|<|tB1(A)| so
that to02(A) has the same sign as to^A). To see this, note that, by our assumption
on dKK3, we have G^A, 0) kv(k), with |v(A)|avo>0 for small A. On the other
hand, |.(A, 0)|<O(A), so that \Q(k,0)\-<O(l)\tox(k)\-O(k2)/k 0(l)k\cox(k)\.
For small A, we have then |Q(A, 0)|<|tO!(A)|. Assume now that toj(A)>0, so that
w02(A)>0. Consider again a semi-circle YiU y2,

yx {to : \to\ r, Re to > 0},

y2 {to : to iy, —r £ y < r}

for r fixed and small.
Since G (A, to) is 0(A2), on yx we have:

l^(A.»)|<^<|tafi(A,a))|.

In addition, we have the bound for |to|<r:
|Q(A, to)- Q(k, 0)| < 0(A2 |to|) (this follows from the holomorphy)

so that on y2 we have:

|J2(A,to)|<|y|<|J1(A,û))|.

Since |i2(A, to)| < |/i(A, to)| on yt U y2, we conclude by Rouchè's theorem that
.f (A, to) has a unique (and real) zero to2(A) > 0 inside yx U y2. If to^A) < 0, a similar
argument shows that to2(A)<0. D
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We close this chapter by observing that the physical region of the to -plane is
the half plane Reto>0. So to2(A)>0 lies on the physical region. In order to
decide whether or not this pole of S2(A, to) at to2(A)>0^ corresponds to a point in
the mass-spectrum, we have to analyse the residue of S2(A, to) at to to2(k). This
is done in the next chapter, together with a brief analysis of the connection of the
mass-spectrum to the poles of the Schwinger functions.

IV. The spectrum of P0

We begin this chapter by showing that the residue of S2(A, to) at to to2(A) is
not zero. Then we make the correspondence between the functions already
studied and the four and six point Schwinger functions. Finally we establish the
relation between Schwinger functions and points of the mass spectrum.

In this chapter we shall use the notation k° ÌK, and we assume that we are
dealing with a model such that to2(A)>0 (and so tOi(A)>0).

Let m3(A) be defined by:

m3(A)2 (m(A) + mB(A))2-T,(A)2to2(A)2. (IV.l)
Let also

Z3(A)2= lim (-K2 + m3(A)2)S2(A,K). (IV.2)

We have the following result:

Proposition IV.l. Assume L3(k, to 0, p(0), £(0)/2) f 0. Then Z3(A)2> 0.

Proof. According to the definition of Z3(A)2, this is equivalent to prove that

2to2(A) lim (to-to2(A))S2(A,to)>0.
<d—*<a2(A)

Recall the notation used in the proof of Theorem III.3. We have:

S2(A, to) (1 + C(to)D(k, to^Cbo)
d(k,to)î(k,to)î*(k,to)\-1

• 11 - (1 + C(to)D(A, to))'1^) ¦

(1 + C(to).D(A, to))-1^) %U) " W

to—tOj(A)

/(A, to) '

But since .?(A, to) is holomorphic and has a zero at to2(A), we can write:

taf(A, to) (to -to2(k))[dJ(k, to2(k)) + 0(to-to2(k))].
Note that

3<Utaf(A,to) -l+ô<uQ(A,to')

and that

kQU^U))!---.^2).
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So, we have

Z3(A)2 2to2(A)(l + C(to2(A))D(A, to2(A)))"1C(to2(A)) ^g^rr:.-l + d<0Q(k, to2(A))

Our condition on L3 guarantees that to1(A)-to2(A)>0. On the other hand,
C(to2(A))<0, so that Z3(A)2>0 as asserted. D

This result shows that m3(A) is the mass of a particle, the three-particle
bound-state. Even though we have not proven any C°° property in the A-variable,
we calculate in Appendix C the first correction of m3(A) with respect to (m(A) +
mB(A)). In the remainder of this chapter, we show that k^A)2
(m(A) + mB(A))2-Tj(A)2to1(A)2 is not a point in the mass-spectrum. The situation
resembles very much the two-particle problem in the case of a non-even model,
where the pole of the 1-particle irreducible four point function is not a point in
the mass-spectrum but rather induces a pole of the two point function, see [K]
and [GJ3].

We shall use the following notation: points of R2 are denoted by x (x°, x1)
and when the (imaginary) time component is zero, we write x (0, x1).

Considering products of (Euclidean) fields, we define the usual Wick-ordering
and a modified one, where instead of using C(x-y) Jeilc(x_y>(fc2 + mo)-1 d2k in
the contractions, we use S2(A, x —y). We denote, for example:

¦.tp(x)tp(y):=<p(x)My)-C(x-y)
¦:tp(x)tf>(y)\=tp(x)tp(y)-S2(k,x-y)

Let

SJ(A,x,y) (:^(x1)^(x2)ta|.(x3): .tMyi)<My2)<Ky3)0 0V.4)

with the usual notation (•) for Schwinger functions. Let also

Sf(A ; Xx; x2; x3; z) (tf>(xx); <p(x2); tp(x3); tf>(z))c (IV.5)

where we use the semicolons to indicate truncation as, for instance, in [S]. In an
even model,

(<p(xx); <p(x2); <f>(x3); 4>(z))c

(tp(xx)<p(x2)<r(x3)<r(z))-(cp(xx)cp(x2))(Mx3)<?(z))

-(ta^(x1)ta^(x3))(ta^(z)tap(x2))-(ta^(x1)ta^(z)X^(x2)-Ti(x3)). (IV.6)
Recall the definition of R3(A, x, y). We claim that

R3(A, x, y) Sj(A, x, y)- I dzx dz2Sf(A, xt; x2; x3; zt)

xSjHA, zx, z2)Sj(A; z2; yt; y2; y3). (TV.7)

This can be explicitly verified using (IV.6) and the definition of .Wick-order-.
Consider also

(P'(X)(1 -P1)ta^(y1)^(y2)^(y3)) (P'(x)</,(yi)«f>(y2)^(y3)>

- Jd2l dz2(P'(x)«p(z1))S2"1(A, zx, z2)(4,(z2)<p(yx)<l>(y2)<p(y3)) (IV.8)
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One can also verify that:

(P'(x)(l -P1)cp(y1)«p(y2)tp(y3)) (P'(x); <Hy.); <t>(y2); <My3)>c

- Jdzx dz2(P'(x)t^(z1))S21(A, Zx, z2)(tp(z2); t/»(yi); <My2); 4>(y3))c- OV-9)

We want to express the Schwinger functions Sj(x, y) and Sj(xx, x2, x3, z) in terms
of the functions already studied. This is done in the next proposition:

Proposition IV.2

Sf(A; x; yx; y2; y3) -(S2L3R3)(A; x, y1; y2, y3)

Sj(k, x, y) R3(A, x, y) + (R3L3S2L3<R3)(A, x, y)

or, in momentum space, with k° ÌK,

Sf(A, k, qlt q2) -S2(k, k)\ dpx dp2L3(k, k, pu p2)R3(k, k, -pu -p2, qx, q2)

Sj(k, k, p, q) R3(A, k, Pi, q)+ j dp[ dq[R3(k, k, p;, pf)

xL3(A, k, -Pi)S2(k, K)Lf(k, k, q[)R3(k, k, -qf, q).

Proof. Recall the definition of L3(A;x;y) to write:

L3R3(A ; x ; y) A(P'(x)(l -P1)^(y1)<f>(y2)^.(y3))

A(P'(x); tp(yx); <Ky2); <My3)>c - a JdZl dz2

x(P'(x)t/,(z1))S21(A, Zx, z2)(tp(z2); tf>(yx); </»(y2); t/»(y3))c

by (IV.9). Integrating by parts, we have:

A(P'(x); tKy.); <p(y2); <My3)>c

- |dZ2C-1(x-z2Xtaf,(Z2); tt>(yi); tp(y2); tp(y3))c

and

kjdzx(P'(x)d>(Zi)S2 \k, Zi, z2) Kx(k, x - z2)

so that

-L3R3(A;x;y)

^dz1(C-1(x-z2) + Ki(k,x-z2))(tp(z2);cp(yi);tP(y2y,tP(y3))c.

We conclude, then:

Sf(A; x; yt; y2; y3) -S2L3R3(A, x, y1; y2, y3).

By taking Fourier transform, we have the equation in momentum space.
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Consider now

Sj(A,x,y) R3(A,x,y)

+ J dzx dz2Sf(A; xx; x2; x3; z1)S21(A, zx, z2)Sf(A; z2; y^ y2; y3).

We use the preceding result to write

Sj(k, x, y) R3(A, x, y) + (R3L3S2LfR3)(k, x, y).

Again by taking the Fourier transform, we have the equation in momentum space.
D

Consider again Kt(k) V(m(A) + mB(A))2-T}(A)2to1(A)2. Since it is a pole of
Kxik, k), it is a zero of S2(A, k). We show in the next proposition that both
Sj(A, k) and Sj(k, k) are bounded as k —> Kx(k). This is done in terms of the
to -variable:

Proposition IV.3. SfU, co) and Sj(k, to) are bounded on a neighbourhood of
tOi(k).

Proof. According to the representation of SJ given in Proposition IV.2, it is
clear that the pole of R3(A, to) at to tot(A) is compensated by the zero of S2(A, to)
at to tOi(k), so that Sf(A, tot(A)) is finite. We analyse Sj in more detail.

Let e (A, to) e A* be defined by

e(A, to) (1 + Vf (A, to))-1ê1(k, to)

so that we can write

R3(A, to) (to-tOiM)-1 d(k, to)ê(k, to)(; ë(k, to)) + (Reg),

where (Reg) stands for terms which are regular at to^A). Let

f(*>(A, to) ((1 + V2(A, co^LfXk, to), êx(k, to)) (L3*\k, to), ê(k, to))

with L3*) L3 or L*. We express the two point function as follows:

S2(A, to) (1 + Cito)Kxik, to^Cito)
il-ico-tOxik)y1Cito)dik,to)îik,to)î*ik,to) + iReg))-1Cito)

Note that Cito) âik, to)f(A, to)f*(A, to) is bounded away from zero as to -* toi(A).
So

S2(A, to) (to - to1(A))(C(to) d(A, to)îik, to)î*ik, to))-1

x[l + (to-to1(A))(Reg)r1C(to)
ito-tOiik))idik,to)îik,to)î*ik,to))-1 + ito-tOiik))2iReg).

We can thus write, using Proposition IV.2:
SJ(A, to) ito-tOiik))-1 d(A, to)ê(A, to)(-, e(A, to))

-ito-tOiik))-1 dik, to)f(A, tw)ë(A, to) ¦ (to-to^A))
x(d(A,to)f(A,to)f*(A,to)r1

• (to-to^A))"1 d(A, to)î*ik, to)(; êik, to)) + (Reg)

(Reg)

and this proves the proposition. D
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We next want to briefly sketch the connection between the spectrum of the
energy operator and the singularities of Schwinger functions. We will see that the
relevant functions to analyse in order to know the spectrum in the odd subspace
up to energies of order 4m - e are exactly S2(A, k), Sf(k, k), Sj(k, k). This result
together with our preceding analysis demonstrates that k m3(k) and k m (A)
are the only points, below m(A) + mB(A), in the spectrum of the energy operator
restricted to the odd subspace of the physical Hilbert space.

This connection is a standard result and relies on the proof by Glimm, Jaffe
and Spencer [GJS1] that the subspace of energy less than n(m(A)- e) is spanned,
in the physical Hilbert space, by vectors of the form

where ft is the physical vacuum, En is the orthogonal projection onto the
subspace of energy less than n(m(A)-e), P0 is the energy operator, and

bih,) JdXi • • • dxp\(Xx, ...,x)) :tp(Xi)- • • <Hx,): (IV. 10)

with hj6L2(R').
In an even P(d>)2 model, this means that the odd subspace of energy less than

4(m-e) is spanned by vectors of the form:

e'p<>E4(cpi(hx)Cl, etP°E4tp3(h3)il.

Since the difference

Idix dx2 dx3h3(xx, x2, x3)(ltp(xx)cf>(x2)tp(x3)l - :cp(xx)<p(x2)tp(x3):)

is an element of the form <f>1(h1), we can take the .Wick dots! in (IV. 10). By
taking into account the invariance of ft and the covariance of tp(x) under the
action of the Poincaré group, we can restrict ourselves to the span of

e'po+i^E4tf>iifi)a, e'p°+i^E4t/>3(/3)ft,

where

4>x(fi) fi<f>.(0), fx a constant,

<M/3) }dft dft/3(ft, ft) :tM0)4>(-ft)«M-ft-ft):

and /3eL2(R2), with Pt the momentum operator.
We consider matrix elements of 6(P1)(P0-k)_1 and a term which is analytic

in k on a neighbourhood of the real axis for 0<K<m(A) + mB(A) will be simply
denoted by (Reg). With 6(t, x,/) e,p»+ixP'E4(t^1(/1) + tf)3(/3))ft, we have (the scalar

product in the physical Hilbert space is denoted by (•,•)):

N(k) (6(t, x, f), 8(Px)(P0-k)-16(s, y, g))

| dr'x [ dr'0e^K(E4(cbi(fi) + <t>3(f3m,

x e-K-t-s)Poei^-x+y,PlEMi{gi) + ^3(g3))ft)
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\ drx\ dr0e^(E4(tf>x(fx) + <p3(f3m,

x e^p"+i^E4(tpxigx) + 4>3(g3))ft)

\ drx\ dr0e«+°+^K(E4(tpx(fi) + <t>3(f3m,
J—oo J—co

x e-|frpo+iT1p>E4(taf,1(g1) + 4,3(g3))ft + (Reg)

where we have used that

[ dT0eT«K(E4(t^1(/1) + d>3(f3))il, e-^+i^E4(tf>x(gx) + <f>3(g3))Û)

and

| dr0eTo-(E4(^1(/1) + 4>3(/3))ft, e-W^^EMiigi) + ^fes))«)

are analytic in k for Re k >0.
Hence

r+°° r+»
N(k) =\ drx\ dr0e"+s+^H(4>x(fx) + 4>3(f3W, e"^W.

J—-CO J—CO

x(.p1(g1) + <fr3(g3))ft) + (Reg)

where we used, with E4 1—E4, that
Ç+QO

dr0e^iitt>iifi) + «p3(/3))ft, e-^po+i^Ei(tpi(gi) + <£3(g3))ft)
J—oo

is analytic in 0<Re K<m(À) + mB(À), since

U(m, e-^po+i^Eitj>(g)ii)\ ^ e-4m|fr Um\\ U(gM-
According to the Osterwalder-Schrader reconstruction theorem [OS], we get,
with

(10/aXPi, P2) /3(Pi, P2) e A3

for f3 € Co(R2) and fc (ìk, 0) the momentum conjugate to t:
N(K) fx ¦ gxS2(k, K) + fx(l®g3, SJ(A, k»

+ gi(l®/3, Staf(A, k))+<1 Cg) /3, S6T(A, k)1 Cg) g3) + (Reg).

This proves our previous claim that the spectrum of P0 can be studied by
means of S2, S4 and Sj.

Consider now the value k m3(A). By the above, it is a point on the
spectrum of P0 restricted to the odd subspace of %t. A standard analysis (see [K],
cf. also [SZ]) shows that the number of particles with mass m3(A) is bounded by
the rank of the bilinear form

if, g)o-^-<f dK[fxgxS2(k, K) + fx(g3, Sf(A, K)>A,
Irri JL,

+ gi<f3. Sf(A, k))a3 + (/3, Sj(k, K)g3)A3]
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with f (fx,f3), g (gi, g3)eRxA3 and 7 a simple curve around m3(A) in the
complex K-plane. Using Proposition IV.2, the fact that R3(A, k) is holomorphic on
a neighbourhood of k m3(A) and that

Z3(A)2 -M dKS2(A,K)^0,
1m JL

we get:

(/, g)o Z3(A)2[/1g1-/1(g3, <p)a3- gi(/3, <P>A3 + <g3, <P>a3</3, <P>aJ

Z3ik)2ifx-(f3, <p)A3)(gx-(g3, <P>A3)>

with tp(A, pj, p2) jdpfR3(A, m3, p, pf)L3(A, m3,-pf)eAf. We conclude that
(f, g)o ih 0 unless (/, /)0 or (g, g)0 0, that is, (•, -)0 is rank one. As a consequence,
we see that there is only one particle with mass m3(A) associated to the
corresponding point on the energy spectrum.

V. Examples

In this chapter, we consider a class of models which can be discussed by our
method. This class of even theories is the following:

P(tf>) -tP4 + a6tp6+féa2ntl>2n, a2n>0. (VI)

The existence of a two-particle bound state for these models has been
established in [DE], so that our discussion applies. We next verify that the
assumption in Proposition IV.l about L3 is always satisfied, namely:

Proposition V.l. Let P(tf>) be as in (V.l). TJien

1 4- L3(A, k, p, q) =-—-5+ ©(A)

Proof

ì L3(A ; x ; y) |dy'(P'(x)(l -P1)^(y'1)^(y2)t^(y0)RJX(A, y', y)

We calculate the lowest order in A of the integrand. Clearly,

(P'(x)Vx<p(y'x)<p(y2)<Hy'3)

JdZl dz2(P'(x)d>(Zi))Sl1(zx, z2)(<p(z2)<p(yx)<p(y'2)4>(y3)).

is zero in lowest order, since (P'(x)tp(zx)) is zero in lowest order. In the other
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term, only :tf>4: contributes in this order. We denote a term of order zero in A by
Oo or X<0).

-4Jdy'(:4>3(x): <My.)<My..)<Myta.)>o(Rf)"%', y)

-4 • | |dy'C(x - y'x)C(x - y{)C(x - yÇ,C~\y\ - yOCTHyS- yJC-\y'3

-y3)

-48(x - yx) 8(yx - y2) 8(y2-y3).

By taking the Fourier transform, we obtain our result. D

Having a :tp6: term in the polynomial simplifies the analysis because in this
case we have a first order contribution to K3. Our result is the following:

Theorem V.l. LetP(tf>) be as in (V.l). If a6<0 there is a three-particle bound
state near (and below) the threshold m(A) + mB(A). If a6>0 no such bound state
occurs.

Proof. Our discussion in Chapters III and IV shows that the pole of S2(A, k)
is in the physical sheet of the energy-plane if to2(A)>0. On the other hand,
to2(A)>0 is a consequence of X3(A, 0, p(0), p(0)/2, £(0), p(0)/2)<0. This is in
turn equivalent, for small A, to the condition dxK3(0,0, p(0), p(0)/2, £(0),
p(0)/2)<0. Clearly, dxK3(A =0) is the first order contribution to K3(A). The :tp6:
term in P(tf>) guarantees that dxK3(k 0) h 0. We shall see that dxK3(A 0) is in
the form of a positive constant times a6, so that the sign of a6 decides on the
presence or absence of three-particle bound states as asserted in the theorem.

Let R0(x,y) 6C(x1-y1)C(x2-y2)C(x3-y3) and let X(1) denote the first
order contribution to X(A). We have:

3 —-Ko U^B **-3 )K0

R^-RoM^Ro
M("(x, y) HCr^Xx - yx)K2"(x2, x3, y2, y3)

+ C-1(x2-y2)K2"(x1, x3, yi, y3) + C-1(x3-y3)X2"(x1, x2, ylf y2)).

Because of the -:tp4: term, we can write:

K^Kxi, Xj, y,, y,) -65U -x,) 8(xi - yt) 6(yf -
Note that the :tp6: term does not contribute in first order. We conclude:

Rö1R21iRo1(x,y) 2(C-1(x1-y1)0(x2-x3)0(x3-y2)0(y2-y3)

+ C-1(x2-y2)8(x1-x3)S(x3-y1)d(y1-y3)

+ C-1(x3-y3)Ô(x1-x2)S(x2-y1)Ô(y1-y2)) (V.2)
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We next calculate R3":

Rta."(x,y) |dx(-f.(x1)<f,(x2)^(x3)taf,(y1)ta|.(y2)-f.(y3)(:^4(x): -a6 :d>6(x):))0

- j dZi dz2 dx(tp(Xi)tp(x2)tp(x3)cp(Zi) :tf>4(x):)0

x C-\zi, z2M(z2)tf>(yx)<p(y2)<p(y3))o

- j dzx dz2 dx(tp(Xi)<p(x2)tp(x3)tp(Zi))0

x C~\zi, z2)(cp(z2)tp(yx)<p(y2)tp(y3) :d>4(x):)0

Note that there is no contribution in first order to S21(x, y). The contribution of
the terms in :tp4: can be written, in graphical language:

R?'(-,y)= " y\ + *2 \ +"' y\ (V.3)

3>r<}* 3Xi« i-X}4!
since we can see that all contributions of the form

Xj Xj or y; y,

x x

are cancelled.
If we now amputate each term in (V.3), we have:

Ro1Ri"Ro1(x,y) |^(C-1(x1-y1)S(x2-x3)ô(x3-y2)Ô(y2-y3)

+ C"1(x2-y2)5(x1-x3)ô(x3-y1)ta5(y1-y3)
+ C~1(x3-y3) 8(xx-x2) 8(x2-yx) 8(yi-y2))

which exactly cancels (V.2).
As expected, the :tf>4: term does not contribute to K3". So the only contribution

comes from

R3"(x,y) -a6-(6l£><^)
and

Ä3 — ri-o **3 K0

6'
ae • T—T S(Xi-x2) ô(x2-x3) ô(x3-yi) ^(yx-y^ <5(y2-y3).

o • o

The Fourier transform reads:

20

2ir):

and the theorem follows.

K31)(K,pi,qi) -^-5- a6
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Appendix A

To obtain R03(A, k, pi; q):

R03(A, k, p, q) rr-^-5 J dr d£ drj;

x exp [i(kx + p!ft + p2ft + qjTij + q2Tj2)]

x R^A, xx - yi)Ri(A, x2 - y2)Rj(A, x3 - y3).

One changes to the variables

x1-y1 to1 t ^(tox + co2 + to3)

x2 — y2 <o2 with inverse ft \(tox -to2 + to3)

x3-y3 to3 relations ^2 \(to2-to3 + to5)

«4=ft + T]l TJl=è(-Û>1 + -«)2 + a)4)

W5 ft+T}2 T}2 3(-W2 + t03 + t05)

the Jacobian is \, so that:

R03(A, k, p, q) ——5 • - dtoj • • • dtOjR^A, to1)R1(A, to2)Ri(A, to3)
(2rr) 4 J

v0™.V ^j-Pi pAo. (k Pij.fli4.P2 fla\

/k P2,q2\, /Pl.flA, /P2,fl2\\l

Now, (l/27r)Jdto1ei^QR1(to1) R1(Q). So,

R03(A,k,Pi,qi) 6--jR1(A,^-|-|)

XRAk'3 1
+

1
+

1 l)
XR(X -ì-^+SÌ] ._JL
XRllA'3 2

+ 2J (2rr)2

x j dto4 dtos exp
I ii~ (pi + qi)+y (P2 + <Ï2)Jj

The last expression is equal to 4 • 4rr2 8(px + qt) 8(p2 + q2) and the final expression
for R03 is:

R03(k,k, Pi, qi) 6 ¦4TT28(px + q1)8(p2 + q2)Rx\k,- + PxJ

xR^A^-pi + p^R^A^-p^.
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To obtain Mn(A, k, p, q) (it is the same for fen(A, fc, p, qf)):

Mn(A, k, p, q) =i • ^3 Jdrd^ d^e'^.^'">
x RrXA, Xx - yx)K2(k, x2, x3, y2, y3).

Change to the variables b"

Xj-y^tOi r =\(2to4 +tOi)

x2 — x3 to2 with inverse ft è(w i ~to2 — 2to4 4-tos)

y2 - y3 to3 relations ft to2

\(x2 + x3-y2-y3) to4 j]x= 2(~oix -to3 + to5)

*i + yi-y2-y3 <«>5 172 ^3
The Jacobian is \.

Using that

Rl1(A,Q)=^-fei'»-0Rr1(A,to1),
2"7T J

K2(k, k', p,q) ^~ \dto2 dto3 dto4ei(k'^+^+^K2ik, to4, to3, to2)
2rr J

we have:

Mi^k.P^^H-^R^A,^-!)
xK2(A,^-p1,^+ p2,^+ q2)|dto5eiW2Kp1^)

YÖ(Pi + qi)Rr1(A,|+ p1)K2(A,y-p1,I|1 + p2,^ + q2).

Appendix B

As explained in the text, to x + iy and we will prove our result for
|x|<§m'(A), no restriction on y. This region contains $.ci[8x3)-2e]l'nik)).

Write sito) in the form:

4m'm'B — to2 4m'm'B — x2 + y2 — 2ixy
sito) -

4(m' + mB)2-to2 4(m' + mB)2-x2 + y2-2ixy

We show, first of all, that |s(to)| < 1. To this end, we will compare the modulus of
both terms:

|4m'mB-x2 + y2-2ixy|2 (4m'mB-x2 + y2)2 + 4x2y2

|4(m'+mB)2-x2 + y2-2ixy|2 (4(m' + mB)2-x2 + y2)2 + 4x2y2.



Vol. 54, 1981 Three particle bound states in even \P(4>)2 models 183

We have therefore:

|4m'mB-x2 + y2-2ixy|2-|4(m' + mB)2-x2 + y2-2ixy|2
(4m'mB- x2 + y 2)2 - (4(m' + mB)2 - x2 + y 2)2.

But, for |x|<2Vm'mB,

4m'mB-x2 + y2<4(m' + mB)2-x2 + y2,

so that

|4m'mB-x2 + y2-2ixy|2-|4(m' + mB)2-x2 + y2-2ixy|2<0
and the result follows.

We continue our analysis writing:

_(4m,mB-x2y2)(4(m, + mB)2-x2 + y2) + 4x2y2-8ixy(m,2 + mB2 + m,mB)

(4(m' + mB)2-x2 + y2)2+4x2y2
(B.l)

From this formula, we can also see that ls(to)l>sn, since the real part of sito)
never vanishes (and is positive) if |x|<2Vm'mB. Considering the region |x|<|m',
we have our result, since 2Vm'mB~2\/2m'>|m'.

We note again that the real part of sito) is always positive, and that we
choose the determination of sll2(to) u + iv which has u>0. This implies that v
has the same sign as the imaginary part of sito).

Looking at (B.l), we see that Im s (to) -xyf(x, y where f(x,y) is always
positive. It then follows that:

i) if x >0,. Im s(to) has the opposite sign of y, and vy <0.
ii) if x<0, Im s(co) and y have the same sign, and uy >0.

This completes our proof.

Appendix C

In this appendix we calculate the lowest order in A of T)(A)2to2(A)2. Given
that m3(A) V(m(A) + mB (A))2 - 17(A)2to2(A)2, we can write

m3(A) m(A) + mB (A) - -^p-^L + 0((T,(A)to2(A))4).
2(m + mB)

We will see that T)(A)2to2(A)2~ 0(A4), but this is not the only term contributing

to A4: there is a A3 and a A4-term coming from mB(A). Since these terms come
entirely from the two-body problem, we will not calculate them here (in fact,
calculate the A4-term in mB(A) requires the knowledge of £i(0), ft'(0) and £{"(0)
with ft (A) the pole of R(A, £); this is quite a long calculation).

We come thus to calculate to2(A). The first order in A is given by dKto2(0), that
is, to2(A) dxto2(0) • A + 0(A2) (it is clear that to2(0) 0). Recall now the notation
in the proof of Theorem III.3. We have that .f(A, to2(A)) 0, so that

(rA dj(0,0)
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But .f(A, to) tox(k)- to + Q(k, to), and

taU(0,0) -l + 3^0(0,0) -l.
So axto2(0) ax/(0,0) axto1(0) + axG(0,0). But Q(k, w) 0(k2), so that
ôAQ(0,0) 0.

The problem is then to calculate dktox(0). Recall now the notation in the
proof of Theorem III.l. We have that toj(A) is the solution of H(k, tOi(k)) 0
where H(A, to) to + Gx(k, to)

- c*(A, to)^^^,
GlvA, to) —— e1^o(p(to)

17(A)

c*(A, to) 6Z(A)2ft(A)r(A, ft(A))f0(A, to)

eidj0(ß(to)) I dp2 dq2 dp[ dp'2H(k, ft(A), p2)

/ <î(<o) \x(l +V2)-^A, to, £(to),^p -p2, pi, -p'2)

X K3(a, to, p'x, p2, p(to), ^p + q2)#(A, ft(A), q2).

Again we have:

d,<Ox(0) df§^f} -a,H(0,0) -dKGx(0, 0).

But

arWnm r g*(A,0), v / ,4, p(k(A)) p(k(A))\
axGi(0,0) lrrn———dxK3 A, k(A), p(k(A)),— p(k(A)),—

*•-*<> t)(A) \ 2 IIk(A) m(A) + mB(A)

One can verify that

i) limx^oft(A)/T)(A) VÌ
ii) r(0,0) 77/m0, Z(0)2 1.

iii) (0(0, 0) ir2/V2m0

where m0 m(0). Note that «(A) -* 3m0 as A —> 0, and that p(3m0) 0.
Let a2 dkK3(0, 3m0, 0, 0, 0,0). Putting everything together:

ta fi TT TT2 6 TT3

dktOx(0) 6- yj- j=—a2 -f=—ia2'3 mov2m0 V3 m0

Note now that

îl(A) vfft(A) + Ü(ft(A)2) - J|— ax ¦ A +0(k2)
V2m0

where ax 3 dx.K2(0, 2m0, 0, 0). The net result is that

T/(A)to2(A) =-yl\ — ai- \—2 a2k2 + C(k3)
> 2 m0 V3 itio
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and

m3(A) (m(A) + mB(A))(l-9^a2ai, ,^1 ^2 + C(A8)^
\ m0 (m(A) + mB(A))2

(m(A) + mB(A))(l -~ a2a22k4 + 0(k6))

Appendix D

In this appendix, we show how to isolate the local singularities of K3
R^-R^b. It turns out that K3(k, x, y) can be defined by a convergent (for A

small) Neumann series and is locally regular in the sense that it has at most
S-functions singularities. It then follows that its Fourier transform, in the k, pf, qt
variables, is a bounded function (integrability at infinity in position space follows
from the exponential decay in the difference variables r, ft tjj).7) The same local
regularity property holds for L3(A;x,'y) and D2(A;x, y) and they are therefore
bounded in momentum space.

We begin by considering again (see (IV.7)):

r3(a, x, y) {tp(xx)<p(x2)tp(x3)(-. -Pi)<Myi)<My2)<My3)>

(.tp(Xx)4>(x2)tp(x3)\ \tp(yx)tp(y2)qb(y3).>

- j dzx dz2(tp(xx); tp(x2); tf>(x3); tp(zx))c

xr(zx, z-2)<<Mz2); 4>(yi); <My2); 4>(y3))c

where we have used the notation:

T(zx, z2) S2 \k, Zx, z2).

The technique is to isolate the singularities of C31R3 using integration by parts,
where C^1 C1 ® C"1 ® C1, C(x, y) the free covariance.

We consider each term separately. We use the notation Cj1(«f)(x1) • • •) to
denote J dx'1C-1(x1, x'x)((p(xx) • ¦ •). We also use

(xxx2---xn)-=(tp(xx)<p(x2)---<p(xn)) and P(x)-=P(tf>(x)).

Our first result is:

C-lC-^Czlixx; x2; x3; z)c -A3(P'(x1); P'(x2); P'(x3); z)c

+ A2 I 8(xa-xa2)(P'(Xi);P"(xJ; z)c (D.l)
i l

-AS(x2-Xx) 8(x3-x2)(P'"(xx)z)
where a ={1, 2, 3}\{i}.

7) To be precise, we should prove the local regularity properties for the kernel K3(A, t, x, y), defined
with the covariance C(t, x, y) used by Spencer [S] in its modified cluster expansion. We omit the
index t, since it does not play a role in the proof of local regularity.
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This formula, as well as those derived below, is obtained by repeated
use of integration by parts. We give the corresponding result on
Cx^C^^CZ^(1x1X2X3- :yiy2y3i) in three steps.

i) CzidxiXiXs- .yiy2y3:>
3

Cj1R03(A,x,y)-t- Z Cxl(Xiyi)(x2, x3; y„.; ya2)c
i=X

3

+ A Z (P'(x1)yi)((x2;x3;y<Vl;y<V2)c + (x2yaiXx3ya2) + (x2ya2)(x3yC(]))
i l

3

+ Z Czl(xx, x2, x3; yi)c(yajya2)
1=1

-A(P'(x1)x2x3y1y2y3) + A(P'(x1)x2)(x3y1y2y3)

+ A(P'(x1)x3)(x2y1y2y3) + A(x2x3)(P'(x1)y1y2y3).

ii) C^Cj.^iXjX^ai .yiy2y3:)

CzlCZ1 f R03(A, x, y) + £ (x^Xx;.; x3; ya,; ya2)cj

3

+ Z C^QXxayiXxi; x3; y0l; ya2)c
i l

3

+ Z CZlCzliXi, x2; x3; y^y^y»,)
1 1

3

+ A Z «P'U1)yi)C-1(x2; x3; yai; ya2>c + <P'(x2)y.Xxi. x3; yai; yjc)
i l

-A5(x1-x2)((P"(x1)x3y1y2y3)-(P"(x1))(x3y1y2y3))
+ A2((P'(x1)P'(x2)x3y1y2y3)-(P'(x1)P'(x2))(x3y1y2y3)

-(P'(x2)x3)(P'(x1)y1y2y3)-<P'(x1)x3)<P'(x2)y1y2y3))

-A2 Z <P'(x1)yi)((P'(x2)yaiXx3y«2) + (P'(x2)y„2)(x3yai))
1

-i/-- l/^-i/iii) C^C^C^CtXiX^l \yiy2y3l)

C-1C-1C-1R03(A,x,y)

+ Z C^C^C^iXiy^ix^x^y^y^c
u-i

3

+ Z CZlCZlCZ*(xx; x2; x3; y,>c<yŒly^>
i l

3

+ A Z «P'(x1)yi)C-1C-1(x2; x3; ya.; y„2)c
i l

+ (P'(x2)yi)C-1C-1(x1; x3; y«,; ya2)c

+ (P'(x3)yi)C-1C-1(x1; x2; yai; ya2)c)

-Aô(xx-x2) Ô(x2-x3)(P'"(x1)y1y2y3)
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+ A2 Z S(xai-xa2)((P'(Xi)P"(xaa)y1y2y3)-(P"(xai)XP'(xj)y1y2y3))
i=l

- A3((P'(x1)P'(x2)P'(x3)y1y2y3) - £ (P'(x„1)P'(xot2))(P'(xi)y1y2y3))
i l

+ A3 Z <P'(x1)yiri)(P'(x2)yir2)(P'(x3)yW3)
TT

where rr ranges over the six permutations (ttx, rr2, rr3) of (1,2, 3). We combine
this last result with (D.l), to get:

C-1C:21Cx-,1R3(A,x,y)
3

C;31CJ21CJ11(R03(A, x, y)+ Z <x.yjXxai; x„2; y3l; yfe)c)
u i

3

+ A Z <P'(xi)yJ)C-1C-1(x„1;xa2;yß1;yß2)c
•,i=i

-AÔ(x1-x2)S(x2-x3)(P'"(x1)(l-P1)y1y2y3)

+ A2 £ o(xai-x„2)((P'(Xi)P"(xa,)(l-P1)y1y2y3)
t=i

-(P"(xai)XP'(xi)(l-P1)y1y2y3))-A3((P'(x1)P'(x2)P'(x3)(l-P1)y1y2y3)

- £ <P'(xai)P'(xa2))(P'(xi)(l-P1)y1y2y3)).
i l

Define A3 by:

A3(A, x, y) C-1CX-21C-1(R3(A, x, y) - R03(A, x, y)
3

- Z (Xj^Xx«.; xtt2; yßi; yß2)c),
u=i

so that our formula can be written

R3(A, x, y) R03(A, x, y)
3

+ Z S2(A, Xi, y,)S?(A, xai; xa2; yßl; y02) + CXlCX2CX3A3. (D.2)
U l

We come back for a while to R2B. We have seen (see Chapter I) that on a space
of symmetric functions the operator M(x, y) has the form:

1 3

M(k, x, y) - Z S2 X(A, Xi, yi)K2(A, xai, x„2, ya., y„2).
•* i=i

On the other hand, the Neumann series for R2B can be written:

«2B (Z (-l)n(Ro3Mr)R03

Z (-!)"(£ i® r02^2)")ro
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where we use the notation 1 Cg)j R02K2 8(Xi - yi)R02K2(xai, x„2, yai, ytt2). This can
be put in the form:

3

R2B -2R0 + 3 Z S2®R2+b
i=l i

3

3 Z S2®S%+R03 + b,
r-i l

where we have used that R2- R02 S4 and b stands for the sum of all terms on
which the lines 'cross', for instance RosAtfiRosiV^Ros, etc.

Turn again to R3 and consider (D.2):
3

R3 R03 + 3 Z <*#.)<*«,; x«,; yai; ya2)c + C^C^C*^
i l

where we have used that, on symmetric function,

Z <Xiy/><xÄ1; x„2; yBl; yß2)c 3 Z (x^eX*«,; xa2; yŒl; ya2)c.
u <

Then,

R3 — R2B Cx. CX2CX3A3 — b.

Consider the above expansion for R2B and, for each term X in this expansion,

consider Rq3XRq3. This is a product of the form MitaR03Mi2R03 ¦ • • RcaM^.
A factor M; has the form T <S>t K2 and is potentially singular because of the
r-factor, which contains a C"1 part. Note that if it i2 • • ¦ - in, then this T
factor remains at the end. But this cannot happen if the lines 'cross' at least once.
In this case, one can see that all factors Y are cancelled by some factor S2

contained in R03, and the net result contains only S2 and K2 factors. These are
locally regular (in the above sense).

We can therefore conclude that Rö3bRö3 is locally regular. In addition it is
exponentially decreasing in xf — xy, y - y,, x( - y, (this follows from the fact that
S2(x - y) and K2(xx, x2, y1; y2) are exponentially decreasing).

Similarly, consider Rö3C^C^C^A^ Using that Rô^èrcgircgir and that
T K1 + C~1, we get: Rö3CXiCX2CX3A3 A3 + A3, where A3 is a sum of terms of
the form idx'\~\f=1 tr^Xf-x[)A3ix',y), and trj(x;-x') <5(Xi-xO or KiC^-x').
From the form of A3, we see that both A3 and A3 are locally regular (in the
above sense) and exponentially decreasing. Furthermore, the y-variables of A3
and A3 can be put equal, since they appear truncated or in the combination
(1 —P1)y1y2y3, which cancels the singularities at coinciding points. The same is
true of Rö3b. We can thus define, for A small, the inverse (l + R2iG3)_1, with
G3 R3-R2b C CX2CX3A3-b, using that R2B Röl + &T®,K2. The worst
term, R0jG3 R03CXlCX2CX3A3- R03b, is analysed in the way sketched above.
The other term is even better, since there is only one T-factor.

Finally, we note that R2BG3R2B is also locally regular. We consider again the
most singular (potentially) part RöiG3Röi: the term Rô3bRôi was already
discussed above. In the other term, A3Rô3 + A^R^i, one should again integrate
by parts to show that only 6-function singularities remain. But this follows again
from the fact that the y-variables in A3 appear truncated or in the combination
(1-Pi)yiy2y3.
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We conclude, then, that

K3 R3 —R2B (1 + R2BG3) R2BG3R2B

is defined, as a distribution, by a convergent Neumann series (for A small) and
that it is locally regular and exponentially decreasing. It then follows that its
Fourier transform, in the k, pf, q-variables, is a bounded function, in fact bounded
by O(A) since G3 is O(A).

The discussion for L3 is essentially done, since:

l*(a, x, y) a|r3 \k, x, y'Xyiyiy^l -Pi)P'(x)) dy'

Ajdy'(K3(A,x,y') + R^(A,x,y'))(y'1y2y3(l-P1)P'(x)).

The term with the K3-factor is regular by our previous discussion of K3. The other
one is analysed in the same way as Cx"31CX21Cx1(x1x2x3(l-Pi)y1y2y3). This time
we do not worry about terms having a S(x;-y;) since we will not have a right
multiplication by Rq3 as it was the case for G3 in defining K3.

This completes also our proof that L* and L3 are bounded by O(A) in
momentum space.

Concerning D2(A, x-y) -A2(P'(x)(l-P0-Pi-P2-P3)P'(y)), one can also
easily see, using the above methods and the definition of P„, that a term like
(P'(x)P„P'(y)) is locally regular in the sense we use this expression in this
appendix.

Acknowledgements

I would like to thank Prof. J. P. Eckmann for his help during the elaboration
of this work and Dr. H. Koch for many discussions and suggestions.

REFERENCES

[B] J. Bros, Analytic Structure of Green's Functions in Quantum Field Theory. In Mathematical
Problems in Theoretical Physics, K. Osterwalder (ed.), Springer Lecture Notes in Physics,
Vol. 116, Berlin, Heidelberg, New York, 1980.

[CD] M. Combescure and F. Dunlop, n-part.de irreducible functions in Euclidean Quantum Field
Theory, Ann. Phys. 122, 102 (1979).

[DE] J. Dimock and J.-P. Eckmann, Spectral properties and bound state scattering for weakly coupled
\P(<t>)2 models, Ann. Phys. 103, 289 (1977).

[DE2] J. Dimock and J.-P. Eckmann, On the bound state in weakly coupled k(<t>6-<J>4)2, Comm.
Math. Phys. 51, 41 (1976).

[GJ1] J. Glimm and A. Jaffe, Two and three body equations in Quantum Field Models, Comm.
Math. Phys. 44, 293 (1975).

[GJ2] J. Glimm and A. Jaffe, Particles and bound states and progress toward unitarity and scaling,
In International Symposium on Mathematical Problems in Theoretical Physics, A. Araki (ed.),
Springer Lecture Notes in Physics, Vol. 39, Berlin, Heidelberg, New York 1975.

[GJ3] J. Glimm and A. Jaffe The resummation of one particle lines, Comm. Math. Phys. 67, 267
(1979).

[GJS1] J. Glimm, A. Jaffe and T. Spencer, The Wightman axioms and particle structure in the P(d>)2
quantum field model, Ann. Math. 100, 585 (1974).



190 R. Neves da Silva H. P. A.

[GJS2] J. Glimm, A. Jaffe and T. Spencer, The particle structure of the weakly coupled P(4>)2
model and other applications of high temperature expansions, In Constructive Quantum Field
Theory, G. Velo and A. Wightman (eds), Springer Lecture Notes in Physics, Vol. 25, Berlin,
Heidelberg, New York, 1973.

[K] H. Koch, Irreducible kernels and bound states in AP(<j>)2 models, Ann. Inst. Henri Poincaré
A31, 173 (1979).

[OS] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's Functions, Comm. Math.
Phys. 31, 83 (1973) and 42, 281 (1975).

[S] T. Spencer, The decay of the Bethe-Salpeter kernel in P(<f>)2 Quantum Field Models, Comm.
Math. Phys. 44, 143 (1975).

[SW] R. F. Streater and A. S. Wightman, PCT, Spin and statistics and all that, Benjamin, New
York, 1964.

[SZ] T. Spencer and F. Zirilli, Scattering states and bound states in \P(<t>)2, Comm. Math. Phys.
49, 1 (1976).


	Three particle bound states in even λP(φ)_2 models

