Zeitschrift: Helvetica Physica Acta

Band: 53 (1980)

Heft: 4

Artikel: A relativistic two-body model for hydrogen-like and positronium-like
systems. |l

Autor: Reuse, F.

DOl: https://doi.org/10.5169/seals-115138

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115138
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. 53 (1980). Birkhauser Verlag, Basel 552

A relativistic two-body model for
hydrogen-like and positronium-like systems II

by F. Reuse')?)
Institute of Physics, University of Neuchétel, 2000 Neuchatel, Switzerland

(20. VIIL. 1980; rev. 12. XII. 1980)

Abstract. This paper is devoted to a generalization of a relativistic two-body model previously
formulated in the spin-free approximation. New terms have been introduced for the description of the
spin interactions. Except for fixed physical constants like masses, charges and gyromagnetic factors for
both particles, our interaction terms contain two dimensionless parameters h,, and h,,, one for each
particle.

The resulting fine and hyperfine structures are evaluated up to contributions of order a*, for
arbitrary mass ratio. In the particular case of the hydrogen atom, for h,_ = 1.048, the model predicts
the correct fine and hyperfine structures of the hydrogen spectrum, (including the Lamb shifts). On the
other hand, the fine and hyperfine structures of the positronium are obtained, taking for h,_ = h, , the
values 1.048, as in the hydrogen atom.

1. A two body model for interacting spin —3 particles

The two body model of hydrogen-like systems described in part one [1], did
not account the interactions due to the spins. We now generalize the above model
to a more realistic situation where the spins interact with the electromagnetic
field, giving rise to the so-called fine and hyperfine structure of the spectra.

Essentially this generalization is incorported into the same scheme as in [1].
According to [1] we again postulate the equality n{;,=n{;,=n" for the bound
states of the system. We then write a self adjoint operator K,, (on the Hilbert
space H, ® H,) which differs from the one given in (I17) ) by some new covariant
terms including spin operators. The construction of the new evolution operator K,
that we propose is based upon the following assumption. First, each particle
interacts with the field produced by the other. Second this interaction is described
by terms of the same form as the one given in (I12) for a particle interacting with
an external field.

1 Supported in part by the Swiss National Science Foundation.

2)  Present address: Department of Theoretical Physics, University of Geneva, CH-1211 Geneva 4,
Switzerland.

*)  This notation means formula (17) of [I].
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More precisely we propose the following evolution operator (with g* stand-
ing for qf,—qty)

1 "
K, = g (P(1)u - 54(1);;.( = Q))(pu)u - d(l)v( - CI))

g M) : . )
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Where e, My, na)=eh/2M;y and (—e), My, pey=(—e)h/2M,,, respectively
denote the charges, the masses and the Bohr magnetons of the particles (1) and
(2). Moreover g, and g, denote their gyromagnetic factors and h, hy, are
dimensionless phenomenological constants.

In this expression &y, (—Xx)= o), (X1)— X)) (resp. ), (X) = A2y, (X2)— X1y))
denotes the effective 4-potential as seen by particle (1) (respectively (2)), as-
sociated with the 4-vector potential Ay, (—x)=A,.(Xqy—Xxa) (resp.
Ay, (X)= A, (x2— X)) created by particle (2) (resp. (1)). Similarly F(;),,(—x)
(resp. Fi,,,(x)) are the corresponding electromagnetic field tensors:

Ay (X — X)) dAmL (Xp — X))
ox{h X

F(i)uv(x(i) - x(j)) = ’ (l’ ]) = (19 2)a (23 1) (2)

Finally the dual field tensors are given by

2
= C .
F(i)u.v = __E su.vaF(i)pk3 1= 13 2 (3)
The expression for Ay, (X — X)) and A, (X~ X(1)) are suggested by the
following classical considerations. The 4-vector potential A, (x) corresponding to
a classical particle of charge e and magnetic moment M* whose motion is
uniform and in the direction n* (suppose q"(7)=n"7), is given by

e n 1
dmege® d(n, x) 4meqc

(T

A (x)= = fm,(n, x)M”

where d(n, x) is defined in (I18) and where f:w(n, x) stands for

P A
€ X R

d3(n, x)
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This expression A, (x) can be found by considering the case n =n,=(0, 0, 0, 1).
We then have

A =(AG), ~V)= (o - )

dmeoc?® X dme, |x|
which is a well known result. The above 4-vector field verifies the Lorentz gauge
condition 9, A*(x)=0 because
x* +n*(n,x")/c?
d(n, x)

Mdn, x)=

and thus
*f,.(n, x)=0

In view of the previous results where n* plays the role of a 4-velocity and as
regards to the evolution properties of n in our model, we propose the following
expression for A ;),(9e) — 4a)) = A).(q), the 4-vector field as seen by the particle
(2) and created by the particle (1) of charge e and magnetic moment g ) W(i):

€ n, S8yl z v
Awn(@)= + LW, 4
(2)u(q) 41TSOC2 d(n, q) 41780C2 fuv(n q) (1) ( )

Analogously for A y.(q1y—4q) =A@, (—q), the 4-vector field as seen by the
particle (1) and created by the particle (2) of charge —e and magnetic moment
22 W(l%), we find

—€ n, M2 z
A (—q) = ~ , QW 5
@w(q) 4meoc d(n, q) 4weqc? fuu (1, YWy )

In other words, in this model, the usual dependence of the field on the particle
velocity is replaced by a dependence on the corresponding mean value which is
precisely given by n*.

Finally, in view of the expressions (5) and (4) for Ayy,.(—q) and A, (q) and
according to (I17), we propose the following expressions for the effective 4-
potentials &y),,(—q) and ), (q)

—ée n ~
w__Baba g q)wa)} (6)

Ay (—@) = €)A
ww(=q) e{ D 4mec? d(n,q) 4meoc

and similarly

€ n Sk z
A TR (n, Q)W } 7
@ 4meoc? d(n, q) 4dmeoc® ™ (n, W @

where the values of Ay, and A, are given by (I60).
At this point, the general expression (1) of K,, and the definitions (4), (5), (6)
and (7) completely define the model (via (2) and (3)).

The energy spectrum associated to the bound states of the system has to be
calculated in a perfectly similar way as in [1]. Let us recall that in [1] we had been
led, as a first step, to an eigenvalue problem (see (I38)) which, in a formal way,
looked like a non-relativistic bound state problem for a particle in an external

Ao (q@) = — e{
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potential. (Actually, in (I38) we had directly written the corresponding radial
equation).

Presently we also will be led, in a first step of the evaluation of the spectrum,
to a non-relativistic bound state problem as above, i.e. to an eigenvalue problem,
relatively to a “fictitious hamiltonian” (depending on the energy W). The
expression of this “hamiltonian” is given by (23) and by (21) and (22). To
determine the expressions (21) and (22) we first have to develop the explicit
expression of K,, obtained from (1), taking into account the exphclt forms of A,
Ay F(,)m, and F,., obtained from (4), (5), (6) and (7) via (2) and (3).

This is a straightforward calculation where (as in [1]) it is convenient to
replace p(p),. and p,, by their expression in terms of the total and relative energy
momentum P, and p, as defined in (120) and (I22).

Such a calculation leads to K, expressed as a sum of terms. In this sum we
have to distinguish four kinds of terms. Grouping together the terms of the same
kind, K,, may be written in the following way

K,=KQ+KP+KP+KD (8)

where K\ denotes the spin free evolution operator which has been considered in
[1]. This operator reads

KO=£_ (P +a m—LO" )(P +a?m - )

9
g™ aoh,, 2. QoM
+2m (p“+)ta md( q))(pv+)ta md(n, q))

For convenience we have introduced the fine-structure constant a =
e?/4meshc and the Bohr radius a,=4meoh*/me®. On the other hand let us
remember that M = M;,+ M,,, denotes the total mass and m = M;,M)/M the
reduced mass. Moreover, from (160) A =+v1—m/M, when M =M.

The operator K denotes the terms of K, which are of the type of a
spin-orbit coupling. This operator reads

(1) a’me® wf so SOYx/v
K= % as{P .fu.v (n,q )[G(l} Wi, + Go W(z)]
where
Gso 8w mM,, Gso— _8a mMy,
(1) 2 MZ > (2) 2 M2
and > (11)

gs0 - 8w M) (M + M) g0 = 8@ M (M + M)
@2 M7 SP 2 M?

#

(Note that for formal symmetry reasons we have factorized " in (11). Let us
remember that 4= ameca,.)
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The operator K groups the hyperfine structure like-term of K,. We have:

m n. P"* n.p* a
K =a'me® {g‘“g‘z’ Mz T8 n‘ifz } d3(n(j a) T(n, @)
" (12)
WNnere

M) — Mg,
2M

In the above expression, T(n,q) denotes the so-called tensor coupling
operator between W{j, and W,

q,. W(”i) q, WE)2)

gHS =8w&w (13)

T(n, q)= W), Wi —3 (s, ar (14)
Finally, K denotes all remaining terms of K.
4
a
K =a®mc*{gP + g T(n, q)+3g" W, W, } qu) (15)
where the dimensionless constants g2, gP* and g% are given by
1
gh = 3N {Myh,+ Miyhdy+2M o, M, g%, |
+2M My gt}
m (1 m M, —M,

gt =M (5—2 A—/I—ALM—Q)gu)g(z) ’ (16)

in view of (I29), and

DS m

g = M 8 8@

Py

As we shall see, these terms will contribute to the spectrum in a similar way
as the so-called Darwin terms in the usual Breit model. For this reason we call
those terms Darwin-like-terms.

As in [1], we now denote that the commutation relations

[K.. P.]1=0

hold since K, does not depend on Q". Hence, as expected, the total energy-
momentum of the system is a constant of the motion. Consequently we have to
consider solutions ¢(X, x) of the equation

Mc?
2
of the form (I32) which satisfy the additional condition (I33)
¥(X, x) = exp (iP, X"/h)(x), P, =Wn,/c?

On the other hand, for convenience and without loss of generality, we choose
n* to be equal to nf. This choice simply corresponds to a description of the
system relatively to its rest-frame.

Ky(X, x)=— P(X, x) )]
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In such a situation

d(n(): x) = Ix‘ =r
k

f 7 X ..

fi4(n0) x) EO, fi]'(no, x) = 8ijk4 "r?’ L], k = 1’ 2, 3
and

W(l) (S(t)s O)a = 1, 2

Then

T(no, X) = S(]_)S(z) -3

(xS(l))ng(z)) =T (18)
r

abbreviated below by T(x).
In view of the above expressions, obv1ously no term K depends explicitly

on q°. As a consequence n§p, = —ihd/ox* commutes with K, (and with P, too).
More generally this means
[n.p*, K.1=0
Moreover (in the case where n* = n§) the total relative momentum operators
J=L+HhS

where L=qAp and S=8§.,+8,), which obviously commute with P, and ngp,,
also commute with K, because of the rotational invariance of the system.

Consequently, for the same reasons as in [1], we have to determine solutions
of (17) for n* = n§, of the particular form

(X, x) = exp (iP, X"/h) exp (— iwx*/h) ) (x) (19)

where P, = Wn,/c*> and where ¢}(x) is a four-component, spatial relative wave
function verlfylng

YoM(x) =J(J + DA2HM(x), J=0,1,...
and
J30Y(x) = Mhd)(x), M=-J...,J-1,1.

The functions (19) are then solution of (17) if the spatial relative wave
function ¢} (x) obeys the following equation

Mc?
2

obtained by considering the restriction of (17) to the spectral subspace which is
associated to the eigenvalues P, = Wn,/c?> and w. Hence

KB = 5+ YD+ Y@ 4 9

where %, ¥V, ¥*® and ¥*® denote the corresponding spectral restrictions of K,
K, Kffg) and K& respectively. Clearly, from (9), (10), (12) and (15):

Kroy(x)=—

Y(x) (20)
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%= ——— (W+Aa2mc29'9)2
2Mc? r
(21)
(w + Aa’mc? @)2 +p—2
2mc? r 2m
1) a*mc? ag SO SO 1
vV = h L(ghSw + 82 5w)
m "% w )ag
VO = —atme® {g“’g(” M8 mcz}r_;) T | (22)
and
4
a
Y =a’mc*{g" + g T(x) +387°S,S2)} —2
Finally the eigenvalue equation (20) for ¢} (x) reads
2
{p__xazmcz j“_O_E_ﬂc_a_g+V(1) _|_oV(2) +:V(3)} ?/I(x) — sd)?‘(x) (23)
2m r 2 r
where (as in (I38) with A=1 and K = —Mc?/2)
w w '
+A 24
Mc? " mc? 24
and
1 (W2 w? )
-~ — 25
€ 2 \Mc* mc? g (25)

Following the same argument as in [1], the bound states of the system are
supposed to correspond to the solutions of (23) that belong to C*®L*(R?, d°x).
The corresponding values of & together with the condition (") =0 lead to the
values of W belonging to the energy spectrum. For symmetry reasons, the “mean
value” (@)¢ can be expected to vanish. On the other hand, the relation

4

t’a“E%[Kno, q“]=%+ha2 r°+gHs b T(x)

aM
and the condition (4*)¢ =0 imply the equality

Y = (“")@—g*‘sa“ = ( T(x )) (26)

mc r 4M
in the same way as in (I42), (I43) and (144).

2. Evaluation of the energy spectrum

This section is devoted to the evaluation of the energy-spectrum of the
previous two-body model of hydrogen-like systems, up to terms in a®.

As regards to (23) we have to consider a problem whose formal analogy with
a non-relativistic two-body problem is obvious. At first, our aim is to calculate the

o
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values of & corresponding to the solutions of (23) in C*®L*[R? d3x), by a
perturbative procedure treating the sum
4 2 42
V=T YOy Dy 27)
r

as a perturbation in (23). The solutions of the unperturbed problem, where:

2 2 2
p 2 zao__h 1 0 2 0 L 2 2a0
H,=——xa’mc?—=————1r>— —ya*me*— 28
°"om X £ 2 20r OF TmiE * r 25

are well known. There are wave functions associated to given angular momentum
quantum numbers | whose normalized radial part R, (r)e L*R., r* dr) corres-
pond to the eigenvalues of %,

2

oD —azmczi);—z , n=12,... (29)

For a given principal quantum number n, the degeneracy relatively to [
corresponds to the values [=0,1,...,n—1. Because of (24) and (25) the above
result yields a relation between W and w. By replacing w in this relation by its
unperturbed mean value w® we finally obtain the unperturbed energy spectrum
W, The mean value w is given by

Wy 2/ %0 A (W WY
2= SAEO= ) = A e A —
mc r/ o@ n Mc mc

We refer to (26), without the perturbation term g™a*m/4M(a3/r’)T(x), and
to the analogy of the present calculations with those performed in [1] from (I43)
to (I49). (Actually the only difference is that here y=1.)

We then get
_o_ AAa’me* W
W, = —
n?+A%a? Mc?
and finally
2 —1/2
WO = M 2[1 o = ] 30
n T T T M P2 - m/M) o)
using the value of A proposed in [1]. Expanding this result we have
o’ ot ‘
w =Mc2—mc2{——2-—(1—m/4M) —t O(aﬁ)} (31)
2n 2n

A corresponding set of normalized eigenfunctions is given by

where Y76, ¢) € C* denote the angular eigenfunctions of 2, J;, L? and §?, j being
given by

i=L+#S,, (33)
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for the eigenvalues J(J+1)#%, M#h, I(I+1)A* and j(j+1)A* respectively. This
choice is done, assuming a non-symmetric situation where M,> M. The
particle-antiparticle system where M,;,= M,,, will be discussed in Section 4.

Obviously the total momentum quantum numbers J and M are ‘“good”
quantum numbers for the perturbed system. On the other hand, concerning [ and
j, we first notice that the operators

LS( 1) LS(Z) 5 T(X) and S( 1)S{2)

appearing in the expression of " do not change the parity. Then for given J and
M, the eigenfunctions ¢} (x) of ¥,+ %, i.e. satisfying (23), are then necessarily of
one of the following forms (J# 0)

R.(r)Y1i;+4(6, )+ R_(r) Y37;-4(6, ¢) (34)
(i.e. a superposition of wave functions for I=J and j=J+3) or
R.(r) JI+1!+§(0 ¢)+R_(nNY .U 11—"(9 b) (35)

(i.e. a superposition of wave functions for I=J+1,j=J+iand [=J—1, j=T—3).
In particular for J=0, the form is

R(r)Yg3u(0, ¢) or R(r)Y5u(6, ¢)

Let us now denote by E, ;,, the two-dimensional (one-dimensional if J = 0)
subspace of C*® L*(R?, d>x) generated, for n>J and M fixed, by

R, (r) Jl](e ), =17, ]=Ji§ (36)

Correspondingly, we denote by F,, ; ., the two-dimensional (one-dimensional
if J=0 or if n=J+1,J) subspaces generated, for n=<J and M fixed, by

Ru(NYN(6,4), 1=Jx1, j=Jx} (37)

Because of the Darwin-like-term ¥*® in (41), which introduces a singular
potential with a r~* behaviour, our perturbative treatment depends on whether
we consider an eigenvalue associated to an eigenfunction with a [ = 0-component
or without such a component. In other words we have to discuss separately the
perturbations of an unperturbed solution in E,, ; , with J# 0, respectively in F,, ;
with J#1 or in E, ¢, respectively in F,, ; p,.

Let us consider the first case where a [ = 0-component does not appear in the
solution. Then the contribution of order a* from (27) to the spectrum can be
obtained by a standard first order perturbation.

More precisely, suppose W and w to be fixed parameters in (23). Then the
perturbative term (27) contributes to € with terms of order a* and higher.
Actually the contribution to ¢ is given by the eigenvalues of the restriction of ¥ to
the subspaces E,, jn, J# 0 and F, ;. J# 1, as is usual in a first order perturbation
calculation. Smce the Darwin-like-term ¥ obviously gives rise to a contribution
of order «® we can neglect it in the present calculation. Let us denote by
a*mc?e(w, W) the contribution of order a* from ¥ to ¢, i.e. to one of the
eigenvalues of ¥ |g_;p OF ¥ |5 s (When ¥ is neglected).
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The resulting relation between w, W which comes from (25) reads

2
% (I\‘Z:Z WC ) =9+ a*mc2eB(w, W)+ O(a®)
m

= —a?me 2&%’11_)—+ mc2eB(w, W)+ 0(a®) (38)

where we recall that y, given by (24), depends on w and W. In the same way as
previously, in order to obtain an equation determining the energy spectrum, we
have to replace w by its corresponding mean value w, ; for states ®, ;,, built up
from solutions of (23) (we refer to (I43)) and verifying the condition (26).
Presently, solutions of (23) differ from the unperturbed one by a* and higher
terms. Under this condition the right hand side of (26) differs from the one in the
unperturbed case by terms of order a* and higher. Thus

Wy = W + AW,

where Aw,; = O(a*). For what follows, it is important to remember that w> =
O(a?).
Consequently, putting

=WO+AW,, (39)

in (38), where w was been replaced by w'® +Aw,,;, we easily conclude that AW,
necessarily contains o* and higher order contributions. More precisely we con-
clude that

AW, ;= a*mc?e X (w =0, W= Mc?>+ O(a®) (40)

In other words, the contributions of order a* from ¥ to the energy spectrum
are obtained from the restriction to E,, j.oar and F,, y.q s Of
a’mc® ag a’mc® ap

Gt = — 3 F+ % L(g(sf)jsu)*'g(z)s(z))

3

—a'me®— 4M g(ng(z) 3 > T(x) : (41)
as follows from (27) (where ¥® has been neglected) and (22) where we set w=0
and W = Mc?. Moreover the restriction has to be considered for subspaces E,, 1M
and F, ;,, associated to the radial wave functions R, (r) for w=0 and W= Mc?
i.e. to the radial wave function of (28) with x =1, (see (24)).

These calculations are in all respects similar to the ones of the usual
evaluation of fine and hyperfine structure in the non-relativistic case. For this
reason we only give the results of these calculations and refer to [2] for more
details.

We first consider the matrix elements

2m
VM = J;r er sin BdOL doRE(r) Y0, &) V'R, (r)Y15;(6, ¢)

i.e. the restriction of ¥” to E,, ;,, relative to the basis (36).
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For j=j' =T+ (J#0,J=1<n), we obtain

V= W
__a'me® 1 {2 N gv2I+3)—g5I+1) m  gwge }
2n® 2J+1 (J+1)(Q2J+1) 2M (J+1)(2J+1))
and for j=j'=J-3 (J+£0,J=1<n),
v
_ a*me® 1 {2__ gvI—1)—gxHR2J+1) m guge } 42)
2n® 2J+1 J2J+1) 2MJ(2J+1)
The non-diagonal elements (where j =J—3 and j' =J +3) are given by
V= (e =
_ a*mc® 1 2g35-m/2M - g1,80
2n® 2J+1 ~JJ+D2J+1)

o

The eigenvalues of this 2 X2 hermitian matrice correspond to the contribu-
tion of order a®, from ¥ to the energy spectrum when J+# 0.
We now consider the matrix elements

oo ar 2ar
Vi = L r er sin 6 dGL deR¥(r Y36, &) V' Ru(r) Y 35(6, &)

i.e. the restriction of ¥” to F, j,, relative to the basis (37).

For j=j=J+31=1I'=J+1){J#1,J+1<n)
YrIM — )
__a'me® 1 { gh+es . m gwim }
2n® 2J+3 J+1  2M{J+1)QJ+1)
For j=j=J-3(=I'=J-1DJ#1,J=n) < (43)
P o |

ii’
_o'mc® 1 {z_g(sf))+ g . M gm8wm }
2n® 27—1 7 2M I(2T +1)

In this case the non-diagonal elements vanish.*)

Thus, the above diagonal elements (43) are simply the contribution of order
a* of ¥ to the order spectrum when J# 1.

Next, we have to consider the particular situations where a [ = 0-component
appears, and for which the above perturbative procedure does not apply. This
corresponds to the subspaces E, o, and F, ;.

In the first case (J=1=0,j=32) the solution of (23) has the following form

$o(x) = R(r) Yoox(6, ¢)

4 * 3
) It can be shown that: L R, .-(")* %Q R, (r)r*dr=0 for n=3.
r
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Since
LS., Ygo— LS, Y ool =0, T(x) Ygo% =0
and

0  __ 3
S Yoor= —32 Yoo

the eigenvalue equation (23) implies the following radial equation for R(r),
obtained by taking (22) into account

r°——xa“mec - —-—

{ Ww1ld 24 > o0y a‘mc?af
2m r*dr dr r 2 r

+a®mc*(g® —5g"°°%) 4}R(r)—.eR(r) (44

In fact we have to find values of & corresponding to solutions of (44)
belonging to L*(R., r? dr).
It can be shown [5] that such solutions behave as follows, near the origin:

R(r)=exp (—a?V2gP —g"%ay/r) - O(1) for r—0 (45)

when one, of course, assumes that 2g” — gP$>0.
For this reason it is convenient to set

R(r)=exp (—a®*V2g®° — gP%a,/r)R(r) (46)

By virtue of this definition an easy calculation shows that R(r) obeys the
following differential equation obtained from (44)
{ n1d 24 , 00 a'mc® aj

mra & ™ T 2

a3

d - ”
—a*mc*V2g® — gDS—r—SE* }R(r)= eR(r) (47)

A function R(r) corresponding to a solution of (44) in L*[R,, r* dr) behaves
near the origin as R(r) = O(1) for r — 0. On the other hand R(r) as well as R(r)
are analytic functions of r in ]0 o], decreasmg exponentially for r — o. Conse-
quently such functlons R(r) are in L*(R,, r* dr) and, conversely, solutions of (47)
belonging to L%(R., r* dr) give rise to a solution of (44) belonging to L*(R,, r? dr)

Hence, a first order standard perturbation calculation can be performed in
(47). Treating the terms

a*mc? ao =—psdo d _
Go_ st d o, 48
S 2 ¢ *mc*V2gP —¢ o (48)

in (47) as a (non self-adjoint) perturbation, we recognize the unperturbed
solutions to be the usual Coulomb radial wave functions R, (r) associated to the
eigenvalues

X
e =—a’mc? L=

2n?
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Then, first order perturbation calculation leads to the following contribution
of order a* to &:

a*mc?eld(w, W)=L RE(NV'R,o(1)r* dr = —a me? +{2x°—4v2g° — ¢"°x%

Finally, the corresponding contribution of order a” in the energy-spectrum is

given by a*mc?e(3(0, Mc?) (i.e. x=1), as follows from a similar argument as the

one that led to (40). Then, for J=0 (1=0,j=3) and for n=1,2,... we have

AW, = -2 “me”  (2-4v2g" — g™} + O(a®) (49)

This result completes (42) in the case J=0.
Consider now the second particular case corresponding to solutions of (23) of
the form (35) for J=1. In this case

d1'(x) = R.(r)Y122(6, )+ R_(r) Y10,(6, &) (50)
From (23) and (22), we obtain the following coupled radial equations for
R.(r) and R_(r):

{ hzld 2i+ h? [6 0
2m rPdr dr 2mr*l0 0
a*mc® a; a*mc? 30

R

e o o 8
am B8 = 8 e o

A AR

since Y13; and Yo are linearly independent angular functions. We have to
determine the value of ¢ corresponding to solutions of (51) in C2Q LR, , r* dr).
As previously, it is convenient to set

R ”
[ +(r)] exp (—a*v2gP +3 Dsaolr)[R (r)] (52)
R _(r)

where we assume that 6g” + g5 > (. Substitution of (52) into (51) gives

(At [s B2 o

where ¥ stands for

3r_3
,ag  a*mc? son @0 [—5 0]
—a'*me® 5 +—— + —=

r (g(l) g(2) 0 0

2
m W wlall[ 1 —-1/V2
—a*mc? M {gmg(z)M —t+g™ } r;) 17\/_ 0 ]

4 1 _1
vasmer G gor] B T gt L (59

ao
] xa’me?* —
"

mc
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The solutions of (53) in C*® L*(R., r* dr) give rise, via (52), to solutions of
(51) in C?’®QL3R,, r*dr). In (53), we can evaluate &£ by standard first order
perturbation methods, treating ¥~ given by (54) as a perturbation. The solutions
of the corresponding unperturbed problem are obviously

R 0
[ “2(')],n=3,4,... and ] n=1,2,... (55)
0 no(r)
and the corresponding eigenvalues are
2
X
£?=—a?mc? o

First order standard perturbation calculation consists in determining the
eigenvalues of the restriction of ¥ to the two-dimensional (one-dimensional if
n =1, 2) subspace of C*® L*(R,, r* dr) generated by (55). In spite of the singular
terms occurring in (54), such a restriction exists as it is easy to verify since
R, (r)=O(") for r— 0. The following term of ¥

6 29_8 DT[ 2 _1/\/5]
o mc g _1/\/5 0

r4
giving rise to a contribution of order «° in ¢, can be neglected. On the other hand
the only possible non-diagonal contribution of order a*, i.e.

L RE,(NV'R,o(r)r? dr, n>2

comes from the third term in (54). However, such a contribution vanishes. Up to
order a*, the restriction of ¥ relative to the basis (55) is diagonal. Hence, up to
order a*, states with [ =0 and 2 do not mix.

For states with [ =2 (J = 1) the contribution of order a* of ¥” to ¢ is given by
the diagonal element of ¥” associated with

[R"S(r)], n>2

i.e. by the mean value of

4 2 2 3
a'mca; 3 , L <o, so 4o

5 2 a4 (g +2) 3
a*me® m { W o ous W }ag

2 amM \BE@ a2 E ]

3
d
—a*mcV2gP +ig 2=

r? dr

with respect to R, ,(r). But, in this expression, the last term does not contribute
because:

] 3
L R, (r) 20 8Ra0) 1>
r dr
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Finally, the mean value of the above sum of operators, for w=0 and
W=Mc? (x=1) reads (n>2):

a‘mc1 g t+gn  m 8(1)8(2)}
AW, = -2 212+ + o
n1 2n> 5{ 2 2M 6 0

and gives the corresponding contribution of order a* to the energy-spectrum. It is

important to note that this result coincides with (43) (for j =j' =J+3) where J = 1.
Significant differences appear for states with [ =0 (J = 1). The contribution of

order a* of ¥” to ¢ is given by the diagonal element of ¥” associated with

[Riuj n=12,...

i.e. the mean value of the operators

a‘mc? a? a d
— — —a*mc®V2gP +1gPs
2

2 2 dr
relative to R, o(r). The above mean value, for w=0 and W=Mc? (x =1) reads
Amﬁamﬁzwk+Wﬂ (57)

and gives the corresponding contribution of order a* to the energy-spectrum. This
result completes (61) in the case j=j =J—3 for T=1.

Let us now summarize. The spectrum, up to order a*, associated to solutions
of the form (34) is given by the expansion (31) for W' up to the same order,
where the contributions of (42) or (49) have to be added. For such states [ is a
good quantum number but j is not (except if J=0 with then j=3).

The spectrum, up to order a*, associated to solutions of the form (35) is
given by the expansion (31) for W where contributions given by ((43), (56) or
(57)) have to be added. For these states | and j are approximate good quantum
numbers in the sense that there exists a mixing between [ =J + 1-components in
terms of order «® and higher. Exceptionally, [ (and j) are good quantum numbers
when J=0 and then [=1, j=1.

3. An application to the hydrogen atom

In this application, particle (1) is a proton and particle (2) is an electron. We
may thus suppose M, < M, i.e. m/M« 1.

Our aim is to determine, from the previous results, the energy-spectrum of
the hydrogen atom up to terms of order a* and up to terms in m/M. This implies
from (11)

\
so__ 8@

SO m -
g =& M’ 1 40)) )

and from (16) > (58)

1 m
gl = 32 {h(22)+ (28— 3h(22))}: g% =gw)8e) M

/
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The other dimensionless constants play no role at all because of (42), (43),
(49) and (57). As a consequence of the above expression for gfj; we note that the
non diagonal elements in (42) are of order m/M and thus contribute to the
eigenvalues of the 2 X2 matrices "™, through terms of order (m/M)* (whenever
the corresponding trace does not vanish). So, the diagonal elements in (42) lead to
AW, ; up to terms in m/M. This result together with (43), (49), and (57) gives
directly AW ;...

For convenience, we express AW, ;... as a sum of a so-called “fine structure
term” AW and a so-called “hyperfine structure structure term” AWy

AW, = AWE + AWES (59)

The energy levels of the atom are labelled by n, I, j, . As follows from the
previous comments, j and [ may be assumed to be good quantum numbers since
the mixing between states of different j and | is very small.

In this way we obtain the following AW and AWEF, for 1# 0 (from (42) and
(43)). We have

‘me? 1 g2x»n/2—1 A
AWFS=—a mc { L 82 }
2n° j+3 1 21+1 (60)

for I =j+1 respectively
“mc? 2g g2 —1
AWHS = _amem N {i L 82 }
2n®* MQJI+1Q21+1) 1 2j+1

for j = J +3 respectively for the first sign and for [#J or | =J respectively for the
second sign.

For [ =0 (from (49) and (57)), we have

(61)

*mc? 2g%,—3h2
AWFS = L me { _[ _ _”1( 8 (2))]}
2"3 1 h(Z) 1 + M 2h(2) (62)
and
“me? m 2g g/2—h
AWES — o meTm 2gq {i i_ga_,.__@} 63
2"3 M 2J+ 1 1 h(2) ( )

depending on whether J=0 or 1.

The above results need some comments.
The first terms in the expressions (60) and (62) of AW, ie.

a*me® 1
2n® j+3

(64)

are the same as the fine structure terms of the Dirac spectrum [6] where the mass
of the electron has been replaced by the reduced mass m. These terms exhibit the
well known degeneracy relatively to ! for fixed j. In our model this degeneracy is
removed by the second terms in (60) and (62). These terms contribute thus to the
Lamb shifts of the fine structure spectrum. Usually the Lamb shifts are obtained
as radiative corrections to the Dirac results. The energy shifts terms obtained by
such a procedure [7] may be compared with the corresponding energy shifts terms
resulting from expressions (60) and (62) of AW, Both types of expressions, ours,
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which read

a4mC2 g(z)_z )
2n® (2j+1(21+1)
for [ =j+1+0 respectively and > (65)

M(k _1+EM)
2n® '@ M 2hg,

for =0, and the ones obtained from radiative corrections are rather similar,

particularly in what concerns their n-dependence. (For a comparison, see also
Ref. [17] Section 2.)
Actually, in the hydrogen atom, where

g2 =2.0023
1s the gyromagnetic factor of the electron, and where we put
h(z) =1.048

our fine structure terms AW™ exhibit Lamb shifts with good numerical agree-
ment. For the "S,;,,—"P,,, energy separations (n =2) we have the expression

a4mC2 _ _nl 2g(22)_3h(22) g(2)_2
) h(z) 1 +
2n M 2hy 6

corresponding in the hydrogen atom (where a*mc?/h =350.19 [GHz] and m/M =
0.5440 - 107>) to the frequencies 8.464/n> [GHz]. The above value of h(,, has
been chosen to reproduce the experimental value 1.058 [GHz] for the %S, —°P; ),
energy separation [8]. The predicted numerical values for n>2 may then be
compared with the experimental results [9].

s

(66)

n  theory[GHz] experiment [GHz] *)

= 0.314 0.315
4 0.132 0.133
5 0.068 0.065

*)  Experimental data are reproduced up to
the last significant figure.

In the above cases where j =3, the line width is always smaller than the Lamb
shifts, but for j =3 it is larger than the predicted energy splitting.

We now consider the hyperfine structure contribution AW™ given in (61)
and (63). The first terms in these expressions of AW can be written in the
unified form

:Fa4mC2_nl ng
2n® MQJ+1(21+1)

which, (for the gyromagnetic factor of the proton g,,=5.585), corresponds to the
hyperfine energy shifts for the hydrogen obtained from the Breit equation [10].
These results are in agreement with the experimental ones.

Finally, the second terms in the expressions (61) and (63) of AW™® are small
corrections in the present case as g, is very close to 2 and h,,, close to 1. For I1# 0

(67)
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these correcting terms are negligible but for [ =0 their contributions are about
4% of the hyperfine energy shift. For experimental data on the ground state
hyperfine structure of hydrogen we refer to [11].

4. The particle-antiparticle system. The positronium

In this particular case
My =M =2m = M2
Moreover, we assume that
g8n=82=g and hy=hy=hg
Then, from (11), (13) and (16) we have

gy =80 =¢=3g g*=
p _8& thil2 pr__1__1¢ ps _8 (68)
g 64 = & 64 643’ & T3

We evaluate the energy spectrum (up to terms in «*) by a perturbative
treatment of (23). As previously we assume the terms (27) to be a perturbation ¥
in (23). In this particular case (from (22) and (68)),

4 2 h
c1/~(1) _ o mc -1 ao
16 3gh LS
n__a'me® W ag 69
12 TR g>— T(x) > (69)
h% g ag
g - me” ( E +=- sz)
16 8 T( %) J
where S stands for the total spin operators
SZS(1)+S(2)
From this definition it follows that (18) also reads
1 2
T =3 (°-3°5) (70)

The following procedure and the basic considerations are quite similar as in
Section 2 except that now, the total spin §* obviously commutes with %, and with
#o+V. As a set of normalized eigenfunctions corresponding to the unperturbed
energy spectrum (45), we thus take

R.(N¥7is(6, ¢) (71)

where ¥ }5(0, ¢) € C* denote the angular eigenfunctions of 3, J,, L? and §? for the
eigenvalues J(J+ 1)4%, M#, 1(1+1)A? and S(S +1) respectively.

This implies that J, M and S=0,1 are good quantum numbers for the
system. On the other hand, for what concerns [, we note that the operators

LS, T(x) and §°
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occurring in the expression of %" and acting on the angular part of (71), do not
change the parity. Then, for given J, M and S, the eigenfunctions ¢7}s(x) of
Ho+V, i.e. verifying (23), necessarily have the following forms:

For S =0 (singlet state)

¢70(x) = R(N¥Y370(6, $) (72)

For S =1 (triplet state) and J#0

¢71(x) = R(NY37.(6, ¢) (73)
(i.e. a wave function for [ =J) or

d).l;/{(x) = R+(’)@?§+11(9, ¢b)+ R—(")qyl}}—n(aa ¢) (74)

(i.e. a superposition of wave functions for [ =J+1 and [ =J—1). For the special
case where J =0, the corresponding form is

¢g1(x) = R(")Gygll(ea ) (75)

Let us now denote by E,;,s the one-dimensional sub-spaces of C*®
L*(R?, d*x) generated by

R.(N¥5s(6,0), 1=J (76)

for n>J, M and S fixed. (J#0 if S=1).
We denote by F, ;. the two-dimensional (one-dimensional if J=0 or if
n=J+1,J) subspaces of C*® L*[R>, d®x) generated by

Rnl(r)a'y.%S(ea (b), l — J = = 1 (77)

for n=J, M fixed and S=1 (J#0).

As previously, because of the “Darwin” like term ¥® in (69), which
introduces a singular potential of r~* behaviour, the perturbative treatment
depends on whether we consider an eigenvalue associated to an eigenfunction
with a [=0-component or without such a component. In other words the
perturbation from unperturbed solutions in E, ;s With J# 0 and in F, 5., with
J# 1 can be performed in the standard way: the eigenvalues of the corresponding
restrictions of ¥ leads, with (40), to the contributions of order a* of ¥ to the
spectrum.

The special cases of perturbations from unperturbed solutions in E, ¢,
n=1 and in F, ., n=1 will be treated as previously in Section 2.

We separately consider the singlet S =0 and the triplet S =1 cases.

The singlet states. Then S =0, ¥» and ¥*® do not contribute since
LS¥%},=0" and T®%¥},=0

On the other hand, ¥*® gives rise to a contribution of order a°® for
perturbations from E, ;a0, J#0. Then, up to order a*, the contribution of ¥
comes from the first term in (27). The corresponding contributions to the
spectrum are given by

a‘mc? 1

AW, = — -
n 2n® 1+Y°

I=J#0, n>J (78)
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For E, .0, the solution of (23) reads
R(r)@&m(ﬂ, b)

and the radial function R(r) verifies the eigenvalue equation

S5 Xxa mC -

{ W1 d 2d 24y a'mc®ai a®mc® hiag
2m r*dr dr r 2 2 64r

}R(r) =eR(r)

which is similar to (44). Then in analogy to (49) we have

4
AWn0=-a2:_f {2—1‘25} [=J=0, n=1 (79)

Finally, for singlet states, we note that [ is a good quantum number.

The triplet states. We first consider the one-dimensional subspaces E, ;a1
(where the case [=J=0 does not occur). To perform a standard perturbation
calculation we have to determine the action of the operators # 'LS and T(x) on
the angular functions ¥3}7,(6, ¢). We obtain

AILSWM, = -, and TE)WYM, = ; i (80)

Since in this case ¥ gives rise to a contribution of order «® we neglect this
term in the following integral

L r er smOdGL depR*(NYUM.(6, &) V'R, (1YY, (6, d)

:_amcz 1 {2 2+(§ 1w 2) x> }
ST o 2 X T4 s Mt ) 1g

The previous expression follows from (69) taking into account (80). Because
of (40) we finally have for the contribution of order a* of ¥, with W =mc?> and
x =1 in the above expression.

_a'me® 1 3 g 1 g? }

AW 2n® 2J+1 {2+4I(1+ 1) 8J(J+1) (81)
for J=1 and n>J.

Consider now the subspaces F,, ; .1, for J# 1 and determine the correspond-
ing restriction of ¥” (i.e. " where ¥ has been neglected).

The non-diagonal elements of the restrictions of ¥” to F, . relative to the
basis (77), vanish. For diagonal elements we have the following results, from (69).
We have set W=Mc? and x =1 (see (40))

a‘me® 1 3 ¢ 1 g’
AW, = — {2+— P }
w 2n® 2J+3 4J+1 8UJ+1(2J+1)
for [I=J+1 and n>1, and q (82)

a*me® 1 3g, 1 g°
AW, = - {2 gl _}
i 2n® 2J-1 47 8J(2J+1)

EN

/
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for l=J—-1and n>1.
Furthermore we have to consider the particular situations where a [ =0-

component occurs. This corresponds to the subspaces F, ;as;- In this case the
solutions of (23) are of the form (74) for J=1.

¢51(x) = R (N¥3%.(6, ¢) + R_(r)¥75,(6, ¢)
From (23) and (69), we obtain the following coupled radial equations for
R.(r) and R _(r).
{ hzld 2d+ h* [6 0
2m rPdr dr 2mr2l0 0
a*mc?al oa*mc?*3gai[-2 O
2 P 2 47 [0 0]
a*me* W ,al[ 3 —1/2
16 Mc2® _[—1/J§ 0 ]

rarme B{(HE, L) £ 3 WEWROL[20] 6

The analogy of these coupled radial equations with (51) is obvious. Our
problem is similar to the one we had treated in Section 2 and we can use this
formal analogy to express the result for | =J+1 using (56).

Qo
] xa’me?—
r

a*mc?1 { 3 1g }
AW, , 2n352 g86 I=J+1=2 (84)
i.e. the same expression as (82) for J=1 in the case [ =J+1.

The result for | =J—1=0 is obtained similarly from (57)

4 2 1
A= -2 o L) 1-r-1-0 )

Collecting the results (78) and (79) for S =0 and the results (81), (82), (84)
and (85) for S =1 we obtain the following formula for the contribution AW of
order a* of ¥". For |#0

( 0 ] for $=0, J=1 A
— 3
(zswfllj(fz)zigslf for §=1,J=1+1
W= _a;P::zZli-l [2+§< [%(;f/f) for S=1, J=1
Ls_(l-(_j)m;f;;/4 | fors=1Ju=1-1 > (86)

For 1=0

Ync? h for =0
AW=~a2m: [2—% i >
" VhZi+3g? for S=1 )
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whereas the unperturbed spectrum is given by
2 4
Wf?)=Mc2-mc2{a———1-5-a—+ O(aé)} (87)
n

These results call for some comments. First, for [# 0 and g =2, the formula
(86) corresponds to the fine and hyperfine structure of the positronium as
obtained from the Breit equation [12]. Consequently, for g=2.0023, the
gyromagnetic factor of the electron (and positron), our results are very close to
the predictions of Breit. For theoretical predictions from Bethe-Salpeter equation
and QED techniques applied on bound state problems we also refer to [12], [13]
and [14].

Second, for | =0, to compare our results with the other theoretical predic-
tions and with the experimental data [15], [16], we obviously have to take into
account the energy shifts due to the instability of the positronium. In this way we
have to add an energy shift term

1a*me?

2 n?
(from the Breit equation) to the energy level n>S, of the positronium and which is
due to the virtual electron-positron annihilation. In (86), taking for hg = h;), = h)

the value 1.048 as for the electron in the hydrogen atom, we then find the
following hyperfine energy separation for the S-states of the positronium

4 2
W(n3S,)— W(n'So) = 1.095 22 (88)
n

which corresponds to the frequencies 191.81/n>[GHz]. For the ground state
n =1, the measurements of E. R. Carlston, V. W. Hugues and I. Lindgren give
the frequency 203.4 [GHz]. (This result is reproduced up to the last significant
figure.)
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