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On quantization of the electromagnetic field

G. C. DEmma*

Laboratoire de Physique Générale et Optique (L.A. n° 214 “Holographie et Traitement Optique des
Signaux”), Faculté des Sciences et des Techniques, F-25030 Besancon Cedex.

(6. X. 1980; rev. 4. XII. 1980)

Abstract. We first construct the Hilbert state space of the classical electromagnetic field. This
construction is given in the helicity representation and uses the theory of the extensions of representa-
tions of the Poincaré group. Each state satisfies the Lorentz gauge condition; a particular rdle is played
by the Lorentz radiation gauge (Coulomb condition). The results obtained show that the field operator
splits into a classical scalar part and a quantum transverse one.

Introduction

The problem of the quantization of the electromagnetic field is a very old one
[1]. During the twenties, Dirac studied the emission and the absorption of
radiation [2]. In his model the relativistic invariance is completely destroyed,
because the field is split into a radiation field and a static Coulomb field; then only
the radiation field is quantized, the static field remains classical. Since then, the
covariant treatment of this problem has been considered by many authors [3a].

In the standard procedure of quantization of the electromagnetic field, one
difficulty is the Lorentz gauge condition [3b]: it is considered as a subsidiary
condition acting on the state vectors which describe the electromagnetic field.
However, the best known method is that due to Gupta and Bleuler [3c], [4], [5].

In their scheme, the state space is a vector space with indefinite metric. There
are four kinds of photons: two kinds of transverse photons, the longitudinals
photons and the scalar photons. The states describing the scalar photons have
negative ‘norm’. Longitudinal and scalar photon states are eliminated by the help
of the weakened subsidiary condition: one must take the Lorentz gauge condition
only for the annihilation part of the potential operators acting on the ‘physically
desirable’ states. The ‘physically undesirable’ states are connected with gauge
transformations.

Indeed, states with the same number of longitudinal and scalar photons have
zero ‘norm’: one can then define different vacuum states with positive ‘norm’
using particular linear combinations of such longitudinal and scalar states.
Moreover, for a given transverse state, the addition of such a linear combination
corresponds to a description in terms of potentials related by a gauge transforma-
tion [6].

* This research has been partially supported by the Swiss National Science Foundation.
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In this paper, essentially based on the author’s Ph.D. thesis presented to the
Faculty of Sciences of the University of Geneva [7], we present a group theoreti-
cal approach of the problem with two main purposes: to construct the Hilbert
state space of the electromagnetic field [8] and to obtain the decomposition into a
classical part and a quantum one in a covariant manner. Moreover we analyse the
role played by the invariance gauge and the gauge conditions, especially the
Lorentz and Coulomb gauge conditions.

The main mathematical tools used are the extensions of zero mass represen-
tations of the restricted Poincaré group [9]. Indeed, the usual action of this group
on four vectors satisfying the Lorentz condition is given by a decomposable
representation [10]. The existence of an intertwining operator between this
decomposable representation and the extension of zero mass representations with
helicities 0, +1, —1 and O allows the passage from the canonical basis to the local
helicity basis. It follows, in natural way, the decomposition of the field operator
into a classical scalar part and a quantum transverse one. The first one is
associated with the vacuum state and is gauge dependant. If one chooses the
Coulomb gauge, this scalar part is identically zero. We will see that this choice is
related to the direction of the time [11], if the radiation field interacts with a
material system. The quantum transverse part of the field operator is composed
by the two helicity components, which are gauge independant and associated with
photon states. We call photons what Gupta and Bleuler call transverse photons;
so we do not introduce the notions of longitudinal and scalar photons.

Thus we develop a formalism which, on the one hand, avoids the mathemati-
cal difficulties due to the indefinite metric and, on the other hand, splits the field
as in Dirac’s model. Moreover the gauge transformations are clearly related to the
vacuum state representations We point out that this approach does not follow the
axiomatic point of view of the quantum field theory [12].

To conclude this short introduction, we briefly mention the contents of the
following sections. In section I, we shall construct rigorously the Hilbert state
space for the classical electromagnetic radiation field. In section II, we give the
action of the restricted Poincaré group on this Hilbert space. The intertwining
operator is explicitly built up. Then the extension of representations and its
domain are discussed. In section III, we construct the Fock space and define the
field operator and its components. Finally, section IV is devoted to the covariance
and the gauge invariance of the field operator. We shall distinguish two cases: the
free radiation field and the interaction of the radiation field with matter.

I. State space of the electromagnetic field

I.1. Definitions
Let M be the differential manifold R\ {0}, which is embedded in R* by:
M- C,cR*
p=(", p% p’)—p* =(p", p* P |bl/c) = (B, |Bl/c),
where |p|=+((p")*+(p*?+(p?®)®"? and c is the light velocity. The range C, of
this embedding can be explicitly written as

C.={p"eR*|g.,.p*p*=0 and p*>0},
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where the g,,’s are the coefficients of the following sesquilinear hermitian form:
1 00 O
010 O
@)=lg 0 1 o
0 0 0 —¢

Let H=L*(M, dm(p)) be the Hilbert space whose elements are complex functions
dgﬁned on M and square integrable with respect to the measure dm(p)=
d>p/c |p|.

The scalar product of two elements u and v of H is denoted by (u, v) and
defined by:

ity Bl [ dmB)atEyo (), | (L1)

where u( ) is the complex conjugate of u(-).

Let EBHbe the direct sum of four copies of H: QBH H®OH®O®H®H. An
element of @ H is denoted by f and its components by f*. We define in this space
the canonical scalar product between two elements f and h of

(f, ) =(f", k) + (% B+ (3, )+ c2(f, h?), ' (I.2)

where (f*, h*) is defined by (I.1). The norm of f is given by |Ifl=|( I
Henceforth we will call this norm the euclidean norm. We also define a ses-
quilinear hermitian form:

B(f, h) = (f*, k) +(f%, k) + (>, h®)— c(f*, h*). (L3)

4
Among the elements of @ H, we want to restrict our attention to those which
satisfy the following condition:

g.p"f'(p)=0 for any p“eC,,

which we will call the Lorentz condltlon All the elements of EB H obeying this
condition form the subspace H, of EB H, i.e.

p- ()
clpl

We denote by b the restriction to H; of the form B (I.3). We have the
following results:

H={fedHIF®=ELD, where 6)=¢6),76), PE) |

b is a non negative form.

We call ‘kernel of b’ the subspace (H;), of H, on which the quadratic form
associated with b is identically zero:

ker b= (H,)o={g < H, | b(g, g)=0}.
(H,), is given by:

(Hy)o= {g e H, | g*(8) =x()p* and j dm(B) 1BI IxB)P <oo}. (L4)
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I.2. Quotient space

Two elements f and h of H, are defined to be equivalent if they differ by an
element g of (H,), i.e.

h=f+g and g“(P)=x(@)p*, p*eC,, (L.S)

where the scalar function x is finite in the sense given in (I.4). (1.5) is called a
(Lorentz) gauge transformation, because it leaves invariant the Lorentz condition.
The equivalence classes form the quotient space # = H,/(H,),. The equivalence
class of f is denoted by f. The euclidean norm of f is defined as the quotient norm:

Ifl="inf |if+gll (1.6)
ge(Hy)o
% equipped with this norm is a Banach space. i
The scalar product between two classes f and h is defined as the scalar
product between the representative elements f' and h’' which are orthogonal to

(Hy)o:
(f, =", h), 3
(f’7 g):(h" g)zoa VgE(Hl)o. ( - )
(f', h'), (f', g) and (h', g) are given by (1.2). As (H,), is closed, this scalar product
defines a Hilbert structure on %. The norm |(f’, f')|"/* of this hilbertian structure is
exactly the quotient norm (I.6) [13].
. . On the other hand, the sesquilinear hermitian form is simply defined by
b(f, h) = b(f, h) where f and h are any representative elements of the classes f and
h. b is a positive definite form. The quadratic form associated with it allows us to
define another norm, called the b-norm:

I7ls =16 HI2, (L8)

which is less than or equal to the euclidean norm:

s <1

1.3. Coulomb condition

Among all the representative elements of a class, there is a particular one
which plays an important rdle in radiation theory. It is the one which obeys the
Lorentz and Coulomb conditions, namely:

p - f(B)=0.
This representative element f is obtained by the means of a gauge transfor-

mation (I.5) acting on some other representative element f of the same class f.
Explicitly we have:

f*®) =f*(@)+x(®)p* (1.9)
and y is the following scalar function:
y € e p - f(P
X(p) = f4(p) — _E___f.@ .

|6l B
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This particular representative element f is orthogonal to (H,)o:
(f.g)=0 for any ge(H)),.

Thus f is the representative element f’ of (I.7). Moreover b(f k) is equal to (f, k)
(because f* and h* are zero). Collecting these results, we obtain that the scalar
product (f ﬁ) of two classes f and h and the value b(f ﬁ) of the form b (evaluated
on the same classes) are equal:

f, By =b(, h).

In particular, the euclidean norm || - || and the b-norm || - ||s of any class coincide.

From now on, we shall omit the symbol 7 and denote by the same letter f an
element of ¥ (i.e. a class) and a representative element of this class.

A class f is called a state of the classical electromagnetic field: each class is
indeed formed by elements which obey the Lorentz condition and two elements of
the same class differ by a gauge transformation (I.5). We say that each class
corresponds to an electric field and to a magnetic induction and each representa-
tive element of this class corresponds to a four potential obeying the Lorentz
condition: we shall say that the field is described in the Lorentz gauge. If we
represent this state by the element f which obeys the Coulomb condition, we shall
say that this state is given in the Lorentz radiation gauge.

I1. Actions of the restricted Poincaré group %

II.1. Representations of P

We want to give the action of the restricted Poincaré group % in the various
Hilbert spaces of the previous section. Let us recall that, in the Hilbert space
H =L*(M, dm(p)), P acts by the unitary irreducible representations V, of zero
mass, positive energy and helicity A(=—1,0, +1). If (a, A) is any element of 2,
where a € R* stands for a translation and A for a proper orthochronous Lorentz
transformation, V, (a, A) acts on an element u of H as follows:

(Vi(a, Nu)(p) =exp (—iti ' g,gp=a®) - exp (2iA0(A, p)) - u(A™'p) (IL.1)

where # is Planck’s constant divided by 27 and 0(A, p) is a function of A and p
with values in the interval [0, 2#[. If A is represented by the SL(2, C)-matrix

A(A)=(a“ “12), (IL2)
Az, QA
then we have:

exp (i0(A, p’))=ﬁ (IL3)

with v = a(|p|+p?) — a2(p* +ip?). The helicity A takes the values —1, 0, +1.

4 .
In our direct sum space @ H, the action of ? is given by the following
bounded operator:

(U (a, Af)*(B) = exp (— i g op*a®)A%F* (A~ Tp). (IL4)
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The restriction to the subspace H; of é H and the quotient of H, by (H;), do not
induce any formal modification to (II.4). However, we denote by U(a, A) the
action of 2 in the state space #; U(a, A) is unitary.

On the other hand, the operator which leaves invariant the choice of
Coulomb representative element f* is given by:

(O(a, NP ()= exp (= ih7 ggpa®) (At —c 5 AL ) (7). (L)
U(a, A) is obtained by a gauge transformation (I.5) defined by the scalar function
(cf. (1.9)). ) ,

U(a, Mf)*(p AP (AT

I1.2. Helicity representation

The representation WU (a, A) is decomposable. The problem is to find an
intertwining operator II(p) such that:

I(P)U(a, NITT(A ' p)=W(a, A) (I1.6)

where W'(a, A) is an extension of the representations V, (a, A) defined in [9]. The

operator II(p) can be considered as a local change of basis in the space & H.

In order to do this, we consider the underlying helicity representation. I1(p) is
constructed in the following way:

HP) =7 a(p),
where 7 is defined by its action on the f*'s:
(mf)* = >+ cf*,
(=f)* =f'—if?,
(rf)* =f'+if?,
(of)*=—f>+cf*
and a(p) is composed of a rotation p(p) and a boost B(p) such that:
a(p)=B(P)p(p) and a(p)p* =pb (IL.7)
with p4=(0,0, 1, c™"). II(p) takes the following explicit form:
(IH)Y(P) = ¢'(B) = — puf*(P),
(IIf)*(B) = *(p) = —X,. (B)f“ (D),
(If)*(B) = v*(B) = X, B)f* B,
(TIH*B) = ¢*(B) = — puf* (D),
with

A

. \ =1
p.=@ —clp), P. “T5E (B, ¢ |pD, (I1.8)
3 2
E_ p 3) (p2+ ipl):

X0 = 15" BB+ p
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3 1

- ‘p p -
X(p)=ist+m——— (@*+iph), (I1.9)
D= et B TP
. 1_i 2
X4(§)=0-

Then W(a, A) introduced in (IL.6) can be written (in matrix notation) as
follows:

VO(as A) Z(As ﬁ) V+(a7 A) Z(As ﬁ) V—(a’ A) IZ(A) ﬁ)‘z VO(a: A)

_— 0 V+(a: A) 0 Z(Aa ﬁ) VO(aa A)
War=\ 0 V_(a, A Z(A B)Vola, A)
0 0 0 Vi(a, A)
(I1.10)

and its action is given formally by:
Y™ (B) = (W(a, V)" () = W(a, Ayy* (A "p).

These V,’s, A==+1,0, are given by (IL.1) and z(A, p) is the following complex
valued function:

1 ag++é

“A D)= 5 P TyP

(II.11)
with

o= a21(|ﬁl + Pg) - au(Pl £ iPZ),

B =ay;(|p|+p?)+ax(p' —ip?),

Y= azz(‘fﬂ + PS)_ alz(Pl + ipz),

8 = ay(|p|+p?) + axn(p' —ip?).

z appears (with ) in the SL(2, C)-matrix representations of the little group S, of
Po:

e® ze—iﬂ)

0 e

z(A, p) and 6(A, p) (see (I1.3)) characterize the following element of S, :
AOA, D), z(A, P))=APB)ANA (A '),

where A(p) is the SL(2, C)-matrix associated with a(p) (IL.7) and A(A) with
A (I1.2).

A0, 2)= (

Remark. Because of the little group multiplication law
A0y, 2)A(0;, 25) = A0, + 0y, z, +e**12,),
the function z(A, p) obeys the 1-cocycle equation

z((A1, P)(A, D)) =z(Ay, )+ V. (a1, A)z(As, AT'P) Vo' (ay, Ay).
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In the helicity basis, where the states are described by the components ¢*, the
scalar product of ® H is given by:

(4 &)= j dm(B) st B)o" (), (IL12)

where the s/ (p)’s are the coefficients of the canonical scalar product (1.2)
expressed in the new basis:

p?P 0 0 O
, . 1[0 10 0
(Suv(p))—z 0 0 1 0
0 0 0 [p™

The sesquilinear hermitian form corresponding to (I.3) is now denoted by B(¢, ¢)
and is given by:

B, &)= j dm(P) gL " )" (), (IL13)

where the g/,,’s are the coefficients of the sesquilinear hermitian form expressed
in the helicity basis:

=]

1
(gl)==

0
0
2y O

SO RO
O =k OO
R e B

-1
(I1.13) becomes:
B, ) =HW?, ¢+, ¢*)— W', 69— W, oM},
where (¢*, ¢”) is given by (I.1).

Remark. This sesquilinear hermitian form is invariant under the Poincaré
group. The above expression of this form is one of the possible invariant
sesquilinear forms defined by Rideau [9].

I1.3. Domain of the extension

Consider the multiplication operator z(A, p) (I.11). Because of the simple
pole at the origin p =(0, 0, 0), it is an unbounded operator. The domain of the

e4xtensi0n W(a, A) cannot be the space é H. We restrict W(a, A) to the subspace
@D=DODDDDD, where D is the space of C*-functions, of compact

support on M; D is a dense subspace of H and @ D is dense in @ H.
Following the same procedure as in section I, we define the subspace D,
formed by the elements obeying the Lorentz condition, expressed now as follows:

D,={wedD|y*=0}.

So for every element of D,, the first component ¢ is simply related to the fourth
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component f*:
B f(B)
pI?
¢ is called the scalar component.
Now the scalar product (II.12) restricted to D, is:

¥H(p) =2c |B| ' f*(p) =2

1 v T
(¥, &) =HW?, &)+ (W>, ¢3)}+§ _[ dm(p) |l (B (P), (I1.14)
and the restriction to D, of thé form B is given by (we still call it B):
B, &)= %{(A_bz, ¢+ @3, 7). (IL.15)
B is degenerate. Its kernel is the following:
(Dy)o=ker B ={xe D, | x*=x>=0}. (I.16)

The elements of (D,), give the gauge transformations (cf. (I.5)). We see then that
these transformations do not affect the components ¢* and ¢°; they modify only
the scalar component . ‘

On the other hand, the action of # given by #(a, A) on ¥ is determined by
V.(a, A) only: ¢ is the helicity + 1 component, we call it ¢s*. The same is true for
> with the opposite sign of helicity: we call it .

Remark. We have the well-known result that the gauge transformations do
not modify the helicity components.

Going on with the procedure of section I, we define the quotient space
9= D,[/(D,)o; two equivalent elements ¢* and ¢" differ only by their scalar
component:

&' (P) = ¢ () +2x(B),
where x(p) (2,0, 0, 0) is an element of (D,), (it is easy to verify that the image by

I1(p) of an element g of (H;), (see (I.4)) is of this particular form).

The space @ is provided with the quotient norm and the quotient form B (cf.
§1.2, (I.6) and (1.8)).

The action of P on % is defined by a restriction of W'(a, A) (owing to the
Lorentz condition ¢*=0):

Vola,A) z(A,p)Vi(a,A) z(A,p)V_(a,A)

W(a, A) = 0 V.(a, A) 0 (I1.17)
0 0 V_(a, A)

The representative element §* of the class ¢ written in Lorentz radiation

gauge has its scalar component equal to zero (Coulomb condition). It is obtained
by means of the gauge transformation defined by x(p) = —3¢'(p) (see (1.9)):

$'(B) =y (B)+2x(p) =0.

This representation element is orthogonal to (Dy),: the quotient norm of the class
¢ is given by the norm of ¢* (cf. (I.6,7)). Then, by comparison of (II.14) and
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(I1.15), we see immediately that the scalar product (¢, ¢) of two classes ¢ and ¢
and the value B(y, ¢) of the form B (evaluated on the same classes) are equal:

(¥, ¢) = B, &)

On the other hand, the action of ? on 9 which leaves invariant the Lorentz
radiation gauge is obtained by the intertwining operator II acting on U (see (IL.5)
and (I1.6)) and then by restriction to 92:

W(a, A) =TI(3) U(a, AT (A" Tp), (IL.18)
* 0 0

Wmm=@ V.(a, A) 0 ). (IL.19)
0 0 V_(a, A)

The asterisk stands for
P" 4
VO(aa A) 1_CTA“_ %
|B|
This extension is reducible to the direct sum of V.(a, A) and V_(a, A):
w(a, A)=V.(a,A)D V_(a, A),

(Vi@ A 0 | (11.20)
Wi, A) = ( 0 Vi A))'

Its action is given by:
¢'(p) = (W(a, N)(p) = Vila, VY™ (A™'p) @ V_(a, A~ (A7"p).

III. Quantization

II1.1. Fock space [15]

We want to sketch the construction of the Fock space in this framework; it is
not necessary for this construction to limit oneself to the subspaces D, D,, (D,),,
D.

(i) First we consider the tensorial product H,=H,® - -+ @ H; with n=1
and H,= C. The scalar product and the form B are simply defined by the product:

(‘ll(n)’ d)(n)) = 1:[ (!l’p d’i):

B(llj(n)s d’(n)) = I_-,[1 B(ll’p (bj)’

where !l’(n) = (d’l: veey d'n) and (b(n) = (d)la v (bn) belong to Hn' (d’]’ (b]) is given by
(I1.14) and B(y;, ¢;) by (I1.15).

The kernel of B, (H,),, is given by the direct sum of n subspaces of H, and
each subspace by the tensorial product of (n — 1) spaces H; and one space (H,),:

(Hn)Oz{ll](n)=(¢1) LR '\bn) I ak:v 1SkSn’ ll’ke(I-Il)O}
=(H)oQH, @ - QH)D---B(H,;® - Q@ H, ® (Hy)y).
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The quotient space H,/(H,), is isomorphic to the tensorial product #, =
HK - --QH of the quotient space ¥ =H,/(H,),:

Hn/ (Hn)O == %n'
In %, we define two (bounded) operators:

'G(n)tb(n) = (71’ ‘bl: ] l!’n)a n 20: (III'l)

U/(ﬂ)ll}(n) = B("Ta d-‘l)(d‘Z} ) ll’n)s n= 13

(I11.2)
a(MPep,=0 and m belongs to .

(ii) Next we define the tensor space J (%) as the direct sum of the #,’s:
790 = D %;

an element ¥ of (%) is a sequence of elements ¢, of ¥, such that:

e =]

V= {111(0), PYery> W2y - - .} and H‘I'"z = Z "lb(n)“2<°°-

n=0

Obviously, the scalar product and the form g are defined in J(%) by the sum:

(\P9 (I)) = Z (ll’(n)s (b(n))s

B(‘I’, P) = Z B(lfl(n)a d’(n))'

The operators ¢(+) and «(-) extend (canonically) to J(#):

<(n)¥ =10, G(ﬂ)lb(o)a (M), - - s
a(n)¥ z.{w('ﬂ)lll(n,w('ﬂ)ll’(z)aw('fi)d’(a)a -

Moreover we define two other operators:
(1) the symmetrisation operator S:

Swv ={S¢‘(0), S'!’(na Sll’(z), . }

with Sty = MDY, (Woays - - - » Yoy and the sum runs over the n! permutations
of (1,...,n);
-(2) the number operator N:

N ={0¢q), 1y, 24, - - N3

(iii) Now we consider the subspace 4 of 7 (¥) generated by the finite linear
combinations of elements of the form {0, ..., 0, ¥, 0, ...}. In other words, an
element ¥ of ¥ is such that it exists a subset # of the set N and y;,=0 for
k=N\¥%. 9 is dense in J(%).

The symmetrised space ST (%) is the Fock space . We call %, the symmet-
rised subspace S%; %, is a dense subspace of Z.

II1.2. Field operator

We have seen in section II that the euclidean norm | :|| and the B-norm |- ||
are the same on the quotient space #. But to emphasize the invariant character
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under the Poincaré group we will use the form B instead of the scalar product, in
particular for the adjointness: Let @ be a linear operator defined on J(%); we call
adjoint of O an operator OF such that

B(®, O1¥) = B(0P, V), D, VeT ().

We define now the annihilation operator with domain %:
a(-)=Sa(-)VNS

and its adjoint, the creation operator:
at(-)=SVN(")S.

They obey the following commutation rules:
[a(n), a(&)]=[aT(n), aT(£)]=0,
[a(n), at(O)]=B, &S, n,ée.

The field operator &(-), with domain %,, is defined by
() =Ha(-)+at().

A(-) is essentially selfadjoint on %,. the commutation rules are:

[4(0), (@)= Tm B 6), s S,

I11.3. Components of the field operator

Until now we have associated a field operator #(y) to each state s of the
electromagnetic field. To write down explicitly this state ¢, we have to choose a
representative element ¢". Similarly, for the field operator «4(yr) we must define
its component &, ().

(i) Let us consider the state . We choose the Coulomb representative
element *:

g =(0; ¥*; ¢~; 0). (I11.3)

The components o, () of the field operator (¢ in Lorentz radiation gauge are
defined as:

A, () =(0; A.(¥); A_(); 0), (I11.4)

where of, () acts only on the A-helicity components (¢X)* of a state ® of %,,
® ={d(), day P ---}, Where ¢ey=(dn, ..., dr) belongs to ¥, and ¢, =(0;
(dD)*; (dF)7; 0) to . This £.() may be written as (™).

(if) A particular attention must be paid to ‘zero’ class of #(i.e. the kernel of
B, (H,),). The representative elements of this class are of the type (cf. (IL.16)):

x*=(x0,0,0).

As this class is the kernel of the form (B, the operator «(x): ¥, — #,_, defined by
(IT1.2) is identically zero:.

a(X)lll(n) = B(X’ (ll]_)(ll’z, £ ¢y tpn)EO:
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for every Y,y = (¥, . . ., ¢§,) belonging to ¥,. Thus the annihilation operator a(x)
associated with this class is identically zero.

On the other hand, the operator <(x):%, — ¥,., defined by (III.1) applies the
‘zero’ class of ¥, onto the ‘zero’ class of ¥, . ,:

U(X)ll‘(n) 6 ¢, ll’n) € (H,+1)o,

for every ¢, of ?C’n. The creation operator at(x) commutes with every annihila-
tion operator a(y):

[a(¥), aT(X)]=B(, x)S=0, VyeX.

Under these conditions, the field operator ##(x) reduces to 3at(x) and commutes
with every field operator () associated with any state ¢ of %:

A(x) = 2aT(X)
[(x), 4()]=0, Vyek.

We will say that the field operator &{(x) is classical. The components of the field
operator (x) associated with this particular state are

oA, (x) = (do(x); 0; 0; 0).

o(x) is called the scalar (classical) part (we put the index ‘)’ instead of ¢;” because
this part has no helicity). Note that if we choose the Coulomb representatlve
element 3* =(0; 0; 0; 0), o . (x) is identically zero.

(iii) Let us consider a symmetrlsed element Sy, of S#,. We call it a state
with n photons. The Fock space & is the space of states with an undetermined
number of photons.

The operators a(y) and at(y) are the annihilation and creation operators of
a photon in the state .

The ‘zero’ class of & (which is the direct sum of the ‘zero’ classes of each
subspace S%,) is the state without any photon: we call it the vacuum. It is
represented by the following element of %: n={nq,,0,...} and ng =1c%,.

Remark. In the canonical basis, we can define in the same way the field
operator and its components:

f =LA 1,0, (I11.3 bis)
A () =(A), A, As(f), 0). (ITL.4 bis)

We use a different symbol to distinguish between the canonical and helicity
bases (see $IV.2). But, in the canonical basis, the role played by the scalar
classical component A, (f)=0 is less transparent.

IV. Covariance and gauge invariance

We want to discuss the covariance of the field operator under the action of
the restricted Poincaré group ?. Contrary to section III, we have to consider the
subspace @ of %, which is the domain of the extension of representations W(a, A)
(IT.17). We start with the electromagnetic radiation field alone. Next we will look
at the interaction of this field with matter.
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IV.1. Radiation field (free propagation)

Let us consider the field operator #f(¢) associated with the state {». Both are
given in the Lorentz radiation gauge (III.3, 4). The restricted extension w(a, A)
given by (IL20) leaves invariant the Lorentz radiation gauge: it applies the
Coulomb representative element " of the state ¥ onto the Coulomb representa-
tive element §'* of the state ¢’. The state ¢’ is obtained by the action of the
Poincaré transformation (a, A) on the state . '

It is the same for the field operator:

We recall that the action of any unitary operator % on the field operator is
given by:

UAWY) U™ = A UY).

Thus the action of a Poincaré transformation (a, A) on the field operator #(¢) in
Lorentz radiation gauge, action which preserves this gauge, is given by
the restricted extension @(a, A):

w(a, A)st(P)w ™ (a, A) = A(W(a, M) = ). Iv.1)

By considering (IL.5) and (IL.18), we see that W(a, A) (and also w(a, A)) is
compound of the extension W(a, A) followed by a gauge transformation. But we
have shown that a gauge transformation affects only the scalar component of a
state and leaves invariant the helicity components. For a fixed state, the choice of
a particular gauge corresponds to the choice of a particular representative element
(because a state is an equivalence class). Thus, in this framework, this choice
influences only the scalar component. As the gauge transformations are all in the
same equivalence class, i.e. the ‘zero’ class (D,),, those transformations are
representative elements of this class. In the Fock space %, the direct sum of the
‘zero’ classes S(%,), of each subspace S%, defines the vacuum. Then we can say
that a gauge transformation changes only the representation of the vacuum [6].

On the other hand, the field operator attached to the scalar component is
classical and gauge dependant. We have choosen the Lorentz radiation gauge in
which this operator is identically zero. Thus the radiation field is divided into a
classical and gauge dependant part and a quantum and gauge independant part.
The latter part is described by states of photons and quantum field operators
acting on them. Moreover the action of every Poincaré transformation (a, A) is
mixed with a gauge transformation (which depends on (a, A)) such that the choice
of the Lorentz radiation gauge is left invariant: the classical part of the field is still
Zero.

We insist that this situation is only possible for a radiation field which
propagates freely. We will see now that the situation is different if the radiation
field interacts with matter.

IV.2. Interaction with matter

Let us consider a material system (e.g. an atom) which interacts with an
electromagnetic radiation field. The evolution of this system is governed by a
Schrédinger equation. By virtue of Galilei principle, the field which appears in the
hamiltonian of a massive particle must be a fourvector [8].

Now the action of the Poincaré group given in canonical representation by
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U(a, A) and in helicity representation by W(a, A) and w(a, A) (IL.5, 19, 20) is not
the one which must act on fourvectors. Thus we have to work with U(a, A) and
Wi(a, A) (see (I1.4, 17)). Therefore the choice of the Lorentz radiation gauge is no
more left invariant by the Poincaré group. One possibility would be to abandon
the Lorentz radiation gauge. But, to our knowledge, the experimentalists always
use that particular gauge (without justifying their choice). How to conciliate then
the relativistic covariance of the field and the use of that particular gauge?

We suggest that the choice of the gauge is connected with the direction n of
time, where time is the parameter of the evolution. The space-time symmetry is
broken by this direction n (even if no electromagnetic radiation is present).
Furthermore this direction determines the representation of the fourmomentum
and spin operators of a relativistic particle [11]. The fourpotential appears with
the fourmomentum in the hamiltonian and, from a passive point of view, every
gauge transformation implies a change of the fourmomentum operator. Thus it is
not surprising that this direction n determines the choice of the gauge [14].

Remark. For the forthcoming discussion, we use the canonical representation
again to avoid the local dependance on p.

As the Coulomb condition, which determines the Lorentz radiation gauge, is
a transversality condition, we postulate that the gauge is fixed by the following
relation:

g.n"f" =0, fe¥#, - (IV.2)

where the n*’s are the coordinates of the time-like fourvector n and the f*’s are
the components of a representative element of the state f. (IV.2) appears as a
generalised transversality condition which fixes the representative element.

The Coulomb condition corresponds to the choice of a frame such that n has
the following coordinates:

in*=(0,0,0,1). (IV.3)

Under a Poincaré transformation (a, A), the coordinates n* change as usual for a
fourvector: |

n'* = An" +a*. (Iv.4)

Starting with 7i*, the field operator A(f) is given in the Lorentz radiation gauge.
After a Poincaré transformation (a, A), n has the components given by (IV.4) and
the field operator A(f') is obtained with the help of U(a, A) given by (I1.4):

U(a, AA()U Y(a, A) = A(U(a, Nf)=A(f). (IV.5)

Thus, as U(a, A) does not preserve the Lorentz radiation gauge, the field operator
is no more written in that gauge, but in a gauge fixed by (IV.2), i.e.

guvn’“f’” =0.

This dependance on the components n* suggests to use them as a superselection
rule and to introduce a family of state spaces {¥,.} and a family of Fock spaces
{&,.}; the construction of the previous sections corresponds to ;. and %;.. We
lose in this manner the ambiguity due to the quotient structure: for every state f
of ¥,., the condition (IV.2) fixes unequivocally how to write it (i.e. the gauge is
fixed).



550 G. C. D’Emma H.P.A.

Example. Suppose that for n given by A", we first pick up a representative
element f* of a state f such that (IV.2) is not satisfied. By means of a gauge
transformation (I.5), we may obtain the right representative element f*:

f*(B) = f*(@) + x(B)p*.
The condition (IV.2) gives the function x:
p - F(p)
B>~

which is an already known result (see (1.9)). f* will be written with the index

[T
n*:fi..

g A" (B)=0=> x(B) = —

Remark. In helicity representation, the components of n depend on p. For
example, the components A" become:

LY SNV i 4 .

it (p) =I(p)yn” = (Iﬁl ,0,0,c Ipl). (IV..3 bis)
The condition (IV.2) is written as (cf. (I1.13)):

gL.n* (P (@) = n*@)¢ @)+ n’G) ) —n*@y'(H)=0 (IV.2 bis)

for every p belonging to C,.
The transformation law (IV.4) becomes:

n*(p) = A(p)y () + a(p)*, (IV.4 bis)
where

A(P) =TI(P)AIT*(p)
and

a(@)=II(p)a, aecR*
Finally, the law (IV.5) of the field operator is given by:

W(a, N)A)W(a, A) = A(W(a, N)) = L), (IV.5 bis)
where W(a, A) is defined by (I1.17).
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