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Projectile fragmentation and stripping to unbound states:
an important reaction mechanism for
peripheral nucleus—nucleus collisions

by G. Baur, R. Shyam')
Institut fiir Kernphysik der KFA Jiilich D-5170 Jiilich, West Germany

F. Rosel and D. Trautmann
Institut fiir Physik der Universitat Basel CH-4056 Basel, Switzerland

(27. X. 1980)

Abstract. In this paper we apply the theory of elastic and inelastic fragmentation to study the
properties of the light projectile fragmentation in the energy range from 10 to 40 MeV/A. It is shown
that the inelastic fragmentation contains the mechanism for stripping to unbound states (resonances).
The continuous transition from bound to unbound state stripping is shown to follow naturally from the
formulation. The detailed calculation for the probability of fragmentation for deuteron, *He and
a-particles are presented. These probabilities are strongly localized around the grazing angular
momentum of the collision and depend in a simple way on the gross properties of the target and
projectile nuclei and the energy of the projectile. The simple parametrization introduced for the
fragmentation probability leads to the total break-up cross section showing the factorization property
observed in the heavy ion fragmentation.

1. Introduction

Many different reaction modes can be distinguished in the collision of nuclei
with nuclei. They reach from the very slow compound (fusion) reaction over the
pre-equilibrium (deep inelastic) collisions to the direct reactions which take place
in a very short time scale. For grazing collisions, the main effects are associated
with these direct (fast, one-step) processes which are rather well understood by

‘now [1]. However, in addition to the commonly studied direct processes leading
to bound final states (two-body final states: stripping to bound states, inelastic
scattering, pick-up) there are many more direct processes with three- (or more)
body final states. These processes give rise to continuum spectra. The direct
mechanism (knock-out) that leads into the continuum of inelastically scattered
projectiles (like p, d or a-particles) has recently been studied theoretically [2]. It
is generally agreed that one-step processes are not sufficient to explain the
experimentally observed cross-sections, yet they form a substantial part of it.

') Present address: Science Research Council, Daresbury Laboratory, Daresbury, U.K.



Vol. 53, 1980 Projectile fragmentation and stripping to unbound states 507

It is the purpose of this paper to study the fragmentation process, where
projectile a disintegrates into particle b and the rest x(a=b+x). We are
especially interested in the calculation of inclusive spectra; if only particle b is
observed we have to integrate over all the possible channels which the system
(A +x) can have, where A is the target nucleus. The inclusive spectra of particle b
are found to be characterized experimentally by a peak at the energy E, =
(my/m,)E,, where E, is the energy of the incident particle. The theory to be
described in this paper corresponds to the spectator mechanism: Particle b passes
the target nucleus essentially undisturbed, thus keeping its initial velocity, which
consists of the beam velocity smeared out by its Fermi motion in the projectile a.
This will essentially account for the width of the break-up peak. Particle x, on the
other hand, will interact in all possible ways with the target nucleus. It must be
mentioned at this point that there is also another simple mechanism which can
contribute to the inclusive spectra: Particle a is inelastically scattered to some
excited state above the particle threshold, this state will then decay (say into b +x)
after the projectile nucleus has left the region of interaction with the target
nucleus (see e.g. Refs. 3, 4). The theoretical description of such a mechanism will
involve rather detailed nuclear structure properties, like collective excitation
strength and particle decay properties of those states [3].

In Chapter 2 we recall the theory of elastic [5] and inelastic break-up [3, 6, 7]
modes. Then it will be shown explicitly how the inelastic mode accounts for the
continuous transition from the stripping to bound states to the unbound region.

In order to study completely the effect of the break-up channel back to the
elastic one, it would be necessary to set up a coupled channel theory. In principle,
this is possible, but we want to treat here only a simpler problem: We study the
absorption due to break-up on the elastic channel. This becomes possible in our
first order theory by the use of unitarity. This is done in Chapter 3. We study the
probability for break-up as a function of the l-value of the incoming particle,
which is directly related to the semiclassical concept of the impact parameter. In
our numerical studies we find simple laws like scaling and factorization properties
for the break-up probability. Thus the situation at our rather low energies,
typically 10-40 MeV/A, is very much reminiscent of the surprisingly simple
concepts that emerged from the heavy ion fragmentation process at relativistic
energies (for a review see e.g. Ref. 8). We present results for (d, p), (d, n),
(*He, d), CHe, p), (e, t) and (a, >He) processes at various incident energies for a
variety of target masses ranging from A =27 to 197. Our conclusions are
summarized in Chapter 4.

2. Review of the theory

(a) Qualitative introduction

Direct reactions are fast one-step processes, therefore, theories have been
formulated mainly within a first order approach (DWBA). Higher order effects
are considered only as far as they are included in the optical model wave function
in the entrance and exit channels. The interaction which causes these transitions is
treated in first order. Under special conditions also higher order effects can
become important. This can occur when first order transitions are weak (hindered)
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due to some kind of nuclear structure effect. Then second order effects become
important; however, such calculations are difficult because the choice of inter-
mediate states is generally not obvious and it is hard to include very many states.
We are dealing here with a different situation: As we shall see, the break-up
channel will exhaust up to about 30% of the possible total reaction cross section
for grazing partial waves. In such a situation coupling effects can become
important. The influence of the break-up channels on the elastic channel was
studied e.g. in Ref. 9. Similar coupled channel equations could be set up in our
present formulation, yet the long range nature of the coupling potential would
make the solution of such a system, e.g. by discretization methods, rather
cumbersome.

(b) Theory of elastic and inelastic break-up
Let us first consider the reaction
A+a—> A+b+x, (1)

where the projectile a disintegrates into the constituents b and x (a = b +x) in the
Coulomb and nuclear fields of the target nucleus A. Both particles b and x are
supposed to be detected; because nucleus A stays in the ground state we call this
mode the elastic break-up. We assume that the system is described by a Hamilto-
nian

H=T+V, +V, +V,,, (2)

where T denotes the kinetic energy, the interaction between the 3 particles of the
system is denoted by V,,, V,, and V,,, respectively. The interactions V,, and
V., are supposed to be given by phenomenological (complex) optical model
potentials. The (real) potential V,, is responsible for the bound state of the
projectile a = b+ x. It is our aim to calculate, in a good approximation, the triple
differential (coincidence) cross section for the reaction (1). We introduce two
decompositions of the total Hamiltonian (equation (2)), corresponding to the
initial and final channel. For the initial channel we introduce the phenomenologi-
cal optical model potential V,, which describes the c.m. motion of projectile a in
the field of the target A.

H’.:T+VAa+Vbx: W:H_H=VM+VAb_VAa' (33)
For the final channel we use
H=T+Vs+Vs, V=V, (3b)

Then we write the T-matrix element for process (equation (1)) in the post-
interaction form of the DWBA as (for details see Ref. 5)

Tﬂa—’%qx = J' ‘|’d3rbxd3RaX§)_)(RbA)*Xi—)(rx)* Vbx (rbx)'-pbx (rbx)Xa (Ra.)’ (4)

where q,, q, and q, denote the momenta of a, b and x in the initial and final
state. The internal ground state wave function of projectile a is denoted by s,
the x’s denote the scattering wave functions of a, b and x generated by the
appropriate optical potentials. The vector between b and x is denoted by r,,, R,
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denotes the vector between the centers of mass of A and a. In order to write
down the final state as a product wave function, we assume that the mass of A is
much larger than that of a. Then we neglect the difference between R,, and
r, = R,_., and separate the final state as is done in equation (4). (Obviously, such
an approximation should be symmetric with the interchange of b and x.) It is
~ important to note that a different decomposition of Hamiltonian (3b) for the final
state is appropriate if the break-up proceeds via the excitation of a resonant state
a® which decays subsequently into b + x. Then it is appropriate to use for the final
state again the decomposition (3a). In our choice the physics is different. The
break-up occurs in a ‘spectator mechanism’, part of the projectile, either b or x,
interact strongly with the target and cause the break-up. The final state interac-
tion V,, is supposed to be negligible. Of course, in a complete 3-body theory all
the processes mentioned here would be taken into account automatically, yet such
a theory seems not to be feasible at present. Therefore, we have to
rely on some kind of approximations which are physically reasonable.

For light particle induced reactions we evaluate expression (4) in the zero-
range approximation, introducing the usual zero range constant D, appropriate
for the vertex a — b+ x. Examples for the calculation of such coincidence cross
sections and comparison with experiment can be found in Refs. 5, 10 and 11. Up
to now our theoretical development has been symmetrical with respect to particles
b and x. Now we want to treat that kind of cross section where only particle b is
detected (‘inclusive cross section’). In this case the interaction of x with A can be
of any kind, elastic or inelastic. It will be seen below that it is important to treat
all these inelastic processes. It would be a hopeless task to try to calculate all
kinds of inelastic processes individually and sum them up. However, by using
unitarity we can calculate very simply all these inelastic processes, as will be seen
below.

First, the contribution of the elastic break-up to the inclusive (a, b) cross
section can be obtained by an integration over the angle of the unobserved
particle x. In order to do this analytically, we introduce a partial wave expansion
in the matrix element equation (4). (We use the zero range approximation with
the ‘standard’ LEA (local energy approximation) corrections for the finite range
effects throughout, see e.g. Ref. 11.)

A

Tq,, g, = (47)2D, Z i'“+[b+!xei(a‘a+('!b'+alx)la L

LLL
[l
(5 R, E o= mdom, [ L)Y, 18, 0) Y (61 ), 5)
my
where 0; denote the Coulomb phases. The radial integral R, ;, is defined by
1 L‘” dr
Ry, = — x1. (% X, (@ DX, (G 1), (6)
Lok YR . Xi.\9a> T) X1, \Ges 1) X0 \q

where the radial part of the optical model wave function is denoted by x;(g, r). By
virtue of the orthogonality of the spherical harmonics the integration over the
angle of the unobserved particle x leads to the following expression for the elastic
part of the double differential cross section

d’o(el)  m,mm, g,q,

dQ, dE, = M7 q Z | Ty (6,), (7)

a lLm,
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where we have introduced a ‘reduced’ T-matrix [6] T, which is quite analogous
to the usual T-matrix for bound state stripping. Note that the sum over the partial
waves [, has become incoherent.

To the inclusive spectrum, also all those processes will contribute where the
interaction of particle x with the target nucleus is inelastic. This is called inelastic
break-up. Within rather well fulfilled approximations the inelastic break-up cross
section can be calculated with the matrix elements already needed for the elastic
break-up.

The starting point of our formulation for the inelastic breakup process is the
DWBA expression for the break-up reaction A+a— b+c, where ¢ is some
specific two-body final state of the system B = A +x. It is given by [12, 13]

Ta,bc =<¢§31)X§)_) |Vbx‘ ¢AX£¢+) s (8)

where ¢, denotes the ground state wave function of nucleus A. ¢§. denotes a
complete scattering state of the system B with the boundary condition ¢. The
transition amplitude (8) is evaluated by first integrating over the internal coordi-
nates £, of ¢,. This leads to a generalization of the radial form factor (‘wave
function of the transferred particle’) to inelastic processes:

[ desdsmon =am T 600 Y i Vi@ ©

Lim,

In principle, it would be possible to calculate this form factor with the help of a
model wave function for ¢$;. However, this would be very difficult and impractic-
able if there are many open channels. But, fortunately, there is an approximation
procedure which allows us to make use of the unitarity of the S-matrix (for the
system B = A + x). This simplifies the whole calculation enormously. We note (see
Ref. 11) that the main contribution to the DWBA integral comes from the region
outside the nuclear interaction r > R,. There we can express the radial form factor
xi entirely in terms of the scattering matrix element S, ., which connects the
elastic channel [, and the inelastic channel c:

X0 =800 (@0 + 2 K(S, ~ 5, DR @r) (> Ro) (10)

(e (&

It is worth noticing that in equation (10), q,r appears as argument of the Hankel
function and not some wave number q., which would correspond to channel c.
That part of the wave function vanishes because of the orthogonality of the
ground state ¢, of the target nucleus with the excited state. In complete analogy
to the situation for the elastic break-up we can carry out the integration over the
angle of q. in order to obtain from the triple differential cross section a double
differential cross section for the (a, b) reaction. With the help of the form factor
equation (10) we can introduce a ‘reduced’ T-matrix (where the integration over
4. has already been taken into account) for the process a+ A — b+c:

T’L".ﬁc=\/qux Sl Doj d*rxe,®)*[x, (@ N =i, (@N]Y L Pxe @ (1)

m.q. Slx,lx =1

Somehow arbitrarily we have extended the form factor x; also into the interior
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region r<R,. As this region contributes only very little to the whole DWBA
integral, this is not expected to be a serious approximation. The entire depen-
dence on the channel index ¢ rests now in the S-matrix element S; .. This
tremendous simplification allows us to sum over all ¢ # [,. With the unitarity of the
S-matrix we obtain

I NEES E (12)
cFl,
With the usual definitions of the elastic and total reaction cross section oy and
o°*"°" we can write the inelastic break-up cross section in the following rather
compact form [6, 7].

d’o(inel)  m,mym, guq, © 7" ”

de dEb 4(1Th2)3 qa l;x Ulex] |T[xm.,c ’I‘EWLXI ’ (13)
where the T-matrix has been split into two parts according to equation (11).
For the (a, b) double differential cross section, the elastic and inelastic contribu-
tions, equations (7) and (13) have to be added up. Our approach shows some
similarities to the work of Lipperheide [14]. In this approach, a total ‘off-shell
reaction cross section’ appears, whereas in our equation (13) only on-shell x — A
cross sections occur. The reason lies in the different assumption: Whereas
Lipperheide uses a plane wave theory, we make use of a suppression of contribu-
tions from the interior to the DWBA matrix element. The reason for this
suppression is Coulomb repulsion and strong absorption. In the plane wave
approaches, the relation of the break-up cross section to the momentum wave
function of projectile a can be directly exhibited, see e.g. Refs. 15 and 16.

(c) The continuous transition from stripping to bound states to unbound states

A brief account of this paragraph has already been given in Refs. 17 and 18.
At the high energy end of the (a, b) spectrum, the transitions to the discrete low
lying levels of the residual nucleus (A + x) are observed. As the excitation energy
goes up, or in other words, the energy E, of the emitted particle b goes down, the
level density in the residual nucleus will increase. It may be neither of any more
interest nor possible to resolve those levels any more. This region was called
‘continuum’ in Ref. 19, yet these levels can still be discrete bound states. (If there
are no other decay channels than the emission of particle x, the width of these
states is only due to electromagnetic decays.) Above the threshold for the
emission of particle x, there will be a population of isolated resonances. It is seen
experimentally that the transition from the bound to the unbound region is
continuous, this experimental fact should emerge in a natural way from our
theory. In Ref. 20 a somewhat idealized situation was treated. The depth of the
(real) potential well, which binds the transferred particle x to the target was
decreased, so that this state becomes unbound. It was found that in this pure
single particle situation the stripping cross section for the bound state joins
smoothly to that for the resonant state. (We define the stripping cross section to
the resonance as the energy integral of the double differential cross section over
the resonance region.) This property was established by means of the relation

2
L, =——N2, (14)

m,q,
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Here, I'; , denotes the width of the single particle resonance and N, , denotes the
asymptotic normalization of the single particle (Gamow) state. The stripping cross
section to the unbound state is proportional to I, the corresponding stripping
cross section to the bound state is proportional to N2, ; with the help of equation
(14) we can relate both of these cross sections to each other in the limit E, — 0,
as is shown in detail in Ref. 20. This pure single particle description is, of course,
generally rather unrealistic at the excitation energies of the nuclei at the corres-
ponding particle threshold.

Let us now deal with the more realistic situation, where the single particle
strength is spread out over very many (compound) states (see e.g. Ref. 21). We
deal now with a specific partial wave [j of the transferred particle (we omit the
index j in the following). Then we can define an energy averaged double
differential cross section for stripping to the bound states by

d20'1 1 m,m, qb
dQ, dE, "2 2nwh?) q,

Dzs ng Z|T (15)

where 1/D denotes the number of levels per energy interval (of the given [-value),
S denotes the average spectroscopic factor of these states. The matrix element
wm 18 defined by

j EryO @ O i) Y (DX ), (16)

where « is related to the binding energy E,,., of particle x in the nucleus (A +x)
by a =vV2mE,;. /h>. Here, we treat for simplicity of presentation only the
transfer of a neutron. The generalizations necessary for the transfer of a charged
particle are given in Appendix A.

Let us now establish the connection of equation (15) with the unbound
region. The inclusive cross sections consist of the sum of the elastic and inelastic
modes. Because of the phase space factor, the elastic break-up cross section tends
to zero at the threshold, therefore, we will only have to consider the inelastic
break-up. It tends to a limit different from zero in the presence of absorption in
the neutron channel at zero energy [6]. We introduce now the well-known
relation between the energy averaged total neutron cross section {(o;) and the
strength function (I'/D),, in the low energy region:

(ay) = griesction = ; @1+ 1)%) 1’ (17)

With the help of equation (17) we can rewrite the inelastic breakup cross section
in the following way

d’ey 1 mim, q ., qm[T
D} ==~ ol 18
dQ, dE, 2 (2mh?)? q, D#? ;lﬂm| KLE
With the help of relation (14) the continuous transition to the bound region (see

equation 15) is immediately established. Hereby we have introduced a natural
definition [22] of a spectroscopic factor for resonant states

r=s-r,, (19)
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It is gratifying to see how the apparently unrelated formulations of stripping to
bound and unbound states do have indeed a common origin. This should be the
case, the experimental results demanding such a relation. ,

In this paragraph we have dealt with a situation which is novel in the study of
direct reactions. We are not interested in the cross section for the population of a
specific level but in the average cross section for transfer reactions to states
(resonances) which contain some fraction of single particle strength.

3. Results

(a) Numerical results for stripping to unbound states

In this section we study the region corresponding to the transition from
stripping to the bound levels to the unbound levels (resonances). The quantity
that governs the cross section in this region is the strength function (I'/D). If one
is mainly interested in gross features one can use the optical model to determine
this quantity (cf. equation (17)). The optical potential parameters are usually
phenomenologically fitted to the elastic scattering. For the low energies, relevant
in our present context, the low partial waves (especially s-waves) determine the
cross section. Due to the [-enhancement, discussed e.g. in Ref. 20, different
partial waves enter into the double differential cross section. Thus, in this kind of
experiment, oné is sensitive to a quantity which is different from what is usually
determined from elastic scattering. This point is illustrated in Fig. 1. In the upper
part of this figure we show the total elastic and reaction cross section of neutron
scattering on ®2Ni, calculated with two different sets of potential parameters. We
use the optical model potentials given by Becchetti and Greenlees [23] and by
Wilmore and Hodgson [24] (excluding the spin orbit term). It is seen that these
cross sections are rather similar for the two different potentials. However, the
situation changes dramatically when one looks at the corresponding (e, *He)
reaction on °’Ni in the bottom part of Fig. 1. There we can see a factor of about
two difference for both potential sets. The reason is that mainly the [ =4 neutron
partial wave determines the cross section, which is not determined by the low
energy scattering of neutrons on nuclei. Thus, the transfer reaction is a means to
overcome the centrifugal barrier. Similarly, possibly even more dramatic effects
can be expected for charged particle transfer.

An even simpler estimate of the strength function (I'/D) can be made with
the black nucleus model (see e.g. Ref. 25). We found that these black nucleus
estimates are in qualitative agreement with the optical model results, in which the
‘geometry’ of the nucleus (finite surface) is treated in a more realistic way. In the
optical model description, specific nuclear structure effects, like particle-phonon-
coupling, are still not taken into account. These effects may become important in
future detailed studies and they are expected to vary strongly from nucleus to
nucleus.

Concluding this paragraph, transfer reactions into the continuum are a
unique tool to study strength functions, which cannot for example, be studied by
elastic scattering. A careful experimental and theoretical study may reveal the
longsought ‘giant resonance structure’ [21], which has up to now withstood its
verification.



514

12.0
10.0
c 80
(@]
a
- 6.0
Cc
K]
T 4
g B .0
B o
(e 20
=
—
o
re
i3,
n o
e 8
° 00
120
[ =
oY
=
Elo
> 8.0
L
oo
(oY)
L0
N
Figure 1

G. Baur, R. Shyam, F. Résel and D. Trautmann

%2Ni+n
Total Reaction Cross -Section

----- Becchetti Greenlees
—— Wilmore Hodgson

B4j (a,BHe)
E,=172.5MeV

0.5 100 1.5

E, (MeV)

HPA.

Calculation of $2Ni+n elastic and reaction cross section (top part) as compared to the *>Ni (a, >*He)
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(b) Numerical results for the impact parameter dependence of the break-up proba-

bility. Scaling laws and factorization properties

Whereas coincidence cross sections calculated from our break-up theory can
be rather sensitive to special details of optical model parameters [10] we have
found rather simple, geometry dependent universal properties of the integrated
break-up cross sections.

We define the probability of break-up T **“* by

Oroun(a, b)= J' dQ, dE,———— _—7-75 Y 1, +1) Towe@n

d’o(a, b)
dQ, dE, gq; "

(20)
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d*a(a, b) . : . ) .
——  1s the double differential inclusive cross section, calculated
dQ, dE,

according to equations (7) and (13). We relate the angular momentum [, of the
incoming projectile to the impact parameter b by b=(l, +3)/q,. The break-up
probability defined in equation (20) is only a partial probability for break-up into
a specific fragment b. For the total break-up probability all possible decay modes
would have to be added up. Since we use a partial wave expansion of the
break-up T-matrix, we can perform the integration over (), analytically by means
of the orthogonality of the spherical harmonics. The integration over the energy
E, of the emitted particle b is performed numerically.

Now we shall present our numerical results for deuteron, *He and «a-induced
break-up. We find that a rather simple parametrization can reproduce the
numerical results. This is discussed along with some properties of this parametri-
zation at the end of this chapter.

where

(i) Deuteron break-up probabilities

In this paragraph we calculate deuteron break-up probabilities for E; =
25MeV and E; =80 MeV. The optical model parameter sets used are described

(d,p) Reaction

E4 = 25.5MeV

b.up (d.p)

. Figure 2
Deuteron break-up probabilities for a range of target nuclei as a function of the deuteron angular
momentum.
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in Refs. 6 and 26, respectively. The deuteron serves as a good testing ground for
the other particles, where very much the same phenomena are found. In Fig. 2 we
show the (d, p) break-up probabilities for E; =25.5 MeV deuterons incident on a

range of target nuclei from A =27 to 181. Despite the still rather large wave
length of the incident particle, there is a definite localization of the break-up
probability in the surface region.

With increasing projectile energies, the wave length becomes smaller and the
surface localization becomes even more pronounced. This is shown in Fig. 3 for
E,; =80MeV incident deuterons on *>Nb and '°’ Au, respectively. The transmis-
sion coefficient as calculated from the deuteron-nucleus optical model potential is
also shown, it shows the expected smooth cut-off behaviour for small [-values,
the break-up probability becomes rather small, for grazing partial waves it is an
appreciable part of the total absorption.

In order to stress the geometrical nature of the break-up process we
introduce the impact parameter b=(l, +3)/q,. In Fig. 4 we show the total
break-up cross section 2wbT? 4P 35 a function of the impact parameter. We can

see that in both cases, E; =25 and 80 MeV, the break-up probability is localized
around the surface. With increasing deuteron energy, we also note an increase in
the break-up probability.

The surface nature of the break-up process, which we find in our numerical
investigation, implies a rather simple dependence of the total break-up cross

section on the mass number A of the target nucleus. It is proportional to the
length of a ring with radius R =r,(A"?+ a'”?). The total (d, p) break-up cross
section as a function of the mass number is shown in Fig. 5. We can see that the

93 197
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Deuteron break-up probabilities for E; = 80 MeV induced deuteron break-up (continuous line). The
dashed line denotes the transmission coefficient calculated with the usual optical potential.

H.P.A.
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Figure 4
Partial break-up cross section 27wbT®"P(4-P) a5 a function of the impact parameter for E; =25 and
80 MeV deuteron incident on >Nb. The area under the curves gives the total (d, p) break-up cross
section. The impact parameter b, denotes the grazing impact parameter.

expected propertionality to (A3+a'®) shown by the continuous line, is rather
well fulfilled. Even for the simplest kind of projectile with which the break-up
process can be studied, the deuteron, there are more modes of fragmentation than
we have studied up to now: it is also possible that the neutron interacts
inelastically with the target nucleus. This cross section can also be calculated quite
analogously to the (d, p) case. If we would now add up both the (d, p) and (d, n)
inclusive cross sections in order to obtain the total deuteron break-up probability,
we would count the elastic part twice. Therefore, we have to define the total
break-up probability as follows:

Tl[:)—up,d _ T?—up(d,pn)(el) f T}’—up(d’p)(inel)
+ TPurdn)(jpel). (21)
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Figure 5
Total (d, p) break-up probabilities as a function of target mass A. The continuous lines are
proportional to (A3 +al/3).

As an example we show in Fig. 6 the deuteron break-up of E; =25.5MeV on
'®1Ta. On the left hand side we show the break-up probabilities and on the right
hand side the (partial) break-up cross section. We can see that the (d, p) and (d, n)
break-up probabilities are similar in shape and absolute magnitude. The elastic
(d, pn) break-up probability is much smaller and shows also a different behaviour
as a function of the impact parameter. It is responsible for the long range part of
the absorption. This is due to the long range Coulomb force. In this mode, there is
no excitation of the target nucleus involved. It is interesting to compare the
situation to the corresponding one for high energy fragmentation: for peripheral
collisions, inelastic modes dominate strongly, for even more distant collisions
Coulomb dissociation is the reaction mechanism, the target is not excited
(monopole-multipole interaction is dominant), i.e. those fragmentations are of the
elastic type.

To prove that it is really the Coulomb force which is responsible for the long
range part of the break-up probability, we have performed model calculations,
where we switched off the Coulomb force between the deuteron and the proton
with the target nucleus. This is shown in Fig. 7. The dashed line shows the
calculation where the nuclear interactions of the d,p and n with the target
nucleus is switched off. The dashed—dotted line shows calculations where the
Coulomb interactions are switched off, the full curve shows the case where all
interactions are switched on. We can see now explicitly that the Coulomb force
determines the break-up probability for the high partial waves. The analogous
situation is shown for *’Al as a target in Fig. 8. In this case, of course, the
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Figure 7

(d, p) break-up probability for 25.5 MeV deuterons on ¥'Ta. For this model calculation we do not
perform the integration over the proton energy spectrum, but take a representative proton energy,

E, =16 MeV in the peak region. For the continuous line, all interactions are included, for the dashed

line, the nuclear interactions of d, p and n with the target are switched off, for the dashed-dotted line,
the corresponding Coulomb forces are switched off.

Coulomb effect is very small. Even there we can see the long-range character of
the Coulomb force, as expected.

In Fig. 9 we show a model calculation where only the neutron target
interaction is switched off. We can see that it is responsible for a large part of the
break-up probability in the peak region, as it is expected. It becomes unimportant
for the very high partial waves, where the Coulomb forces dominate.

(ii) Break-up of the *He particle

Although the deuteron break-up is the classical testing ground, we can
extend our theory to the break-up of any projectile. Let us now study the
break-up of the next, more complicated nuclear particle, the *He. In this case one
can study (*He, d), (®*He, p), and (*He, n) inclusive spectra. The simplest one is
the (*He, d) spectrum, in this case the only possible mechanism is the transfer of a
proton. For the (*He, p) spectrum, more possibilities can occur: again we have a
*He — p + d break-up, where the deuteron can interact elastically or inelastically.
Our calculations are based on this mechanism. There are also other modes, which
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The same as in Fig. 7 but with 27Al as a target.

we have not taken into account here: neutron transfer with subsequent decay of
the diproton system into 2 protons, or a proton transfer with the formation of
unbound n —p pairs also.

In Fig. 10 we show the break-up probabilities for *He, p) and (*He, d) on Ni.
The optical potentials for *He-Ni interaction are taken from Ref. 27 and those for
deuteron and the proton channels are taken from the compilation of Perey and
Perey [28].

(iii) Break-up of the a-particle

Let us treat now the a-particle break-up, where experimental results have
recently become available [7, 29]. Of course, with more complex particles more
complicated decay modes may occur. For instance, a given projectile may
disintegrate into two parts, where one (or both) are unbound and will decay
subsequently. We cannot solve the problem in its general form here.

Let us now deal with the (a, *He) process, where such complications are not
present. In these calculations the optical model potential parameters for the a-Ni
interaction have been taken from Refs. 7 and 10 for the a-energy of 172.5 MeV,
and those for 140 and 100 MeV have been taken from Refs. 30 and 31,
respectively. The *He-potential has been taken from Chant et al. (e.g. see Ref.
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The same as in Fig. 7, for the dashed line, however, only the nucleon-target interaction in the final
state is switched off.

10) and from Goldberg and Smith [32]. We use standard Becchetti-Greenlees
potentials for the neutron target interaction.

In Fig. 11 we show our results for the (a, *He) break-up on Ni for two
different a-energies. The optical model transmission coefficients show the ex-
pected smooth cut-off behaviour; the break-up probability is peaked around
grazing [-values, which will increase with increasing energy.

In Fig. 12 we show the A-dependence of the (a, *He) break-up reaction at
E, =140 MeV. Quite similar to the situation for the deuteron break-up, the peak
moves to higher [-values just as the grazing angular momentum increases with the
nuclear radius.

In Fig. 13 we show the impact parameter dependence of the elastic and
inelastic (a, >He) break-up modes. Contrary to our previous example of the
deuteron break-up, Coulomb effects play a minor role here. Thus, we do not see
in our calculation a long range elastic component. It can also be seen that the
elastic mode has a much smaller absolute magnitude than the inelastic one, as we
already know.
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(®*He, d) and (®*He, p) break-up probabilities.

(iv) Gross properties

From the numerical calculations presented above, we can now try to extract
some ‘gross properties’ of the break-up reaction. These calculations suggest a
simple parametrization of the break-up process. We introduce the parametriza-
tion (see also Ref. 33)

(1—1,)? (b—b,)®
(Aly (AR)

where b =1/q,, by=1,/q, and AR = Al/q,. The factor 8 describes the strength of
the break-up process, which is expected to show a saturation for sufficiently high
incident energies (limiting fragmentation [8]) and should vanish for incident
energies comparable to the binding energy of projectile a. We relate b, to the size

Ter@b) = g(E.) exp— (22)

= B(E,) exp—
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Break-up probabilities and transmission coefficients for « particle incident on Ni isotopes at E, =100
and 172.5 MeV.

of the target and projectile by by = ro(AY?+a'). The value for r, is of the order
of 1.2fm and it is remarkably independent of A and E, (see Ref. 33). The
quantity AR depends only on the projectile a and the fragment b.

These break-up probabilities, calculated in the framework of modern direct
reaction theories, correspond very closely to those which one expects from the old
classic and intuitively very appealing model of Serber [34]. It can roughly be
explained as follows: consider the nucleus as a completely black (absorbing)
sphere with radius R. If a projectile with the dimension of the order of AR hits
the nucleus too closely (b <R —AR) it gets completely absorbed (no break-up). If
the impact parameter or the collision is too large (b>R+AR) there is no
break-up either (disregarding Coulomb-effects [35, 36]). In peripheral collisions,
however, there is a chance that part of the projectile hits the nucleus and gets
absorbed, whereas the remaining part continues to fly by practically undisturbed
with the velocity it had before. This velocity consists of the beam velocity of the
projectile and the Fermi motion. This old Serber [34] model is also very much in
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(e, *He) break-up probability for E =140 MeV and two different target nuclei, >*N and °°Zr.

agreement with the recently discovered fragmentation processes in relativistic
heavy ion collisions [8].

With the simple parametrized form of TP**? equation (22) we can directly
calculate the total (a, b) break-up probability

(b - bo)2
(AR)?

This formula has a close analogy to the formula given by Serber [34]. It also
shows the factorization property found in heavy ion fragmentations [8]. The total
cross section factorizes into a part AR, which depends only on the projectile and
fragment, and ‘target factor’ b, =r,(AY?*+a"?) with r,=1.2 fm, which is directly
related to the size of the colliding systems.

oo (a, b) = ZwBL dbb exp— =27>?Bb, AR. (23)

4. Conclusions

In this paper we have studied fragmentation, one of the most important
reaction mechanisms for peripheral collisions of nuclei on nuclei. Especially
important is the inelastic fragmentation mode. It accounts for the continuous
transitions from bound to unbound state stripping.

In our numerical calculations we have found a simple parametrization of
break-up cross sections, which seems to be of universal validity. However, it
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Elastic and inelastic («, *He) break- -up probability for E, =172.5MeV on %2Ni. For the *He particle
we choose a representative energy in the peak region E =125.0 MeV. The dashed line represents

the elastic break-up, a dashed—dotted line the inelastic break-up and the full line represents the total
inclusive cross section.

remains to be seen how the empirically found properties can be derived directly
from our theory.

Our results show that the break-up is a dominant source of absorption in the
surface region. Thus it is especially important to consider break-up effects in the
theoretical calculation of optical model potentials.

Appendix A. Threshold behaviour of the break-up cross section for the charged
particle transfer

Here, we shall specialize our discussion for the case of the proton transfer.
However, the formulation can be carried over to any other charged particle.

Starting from equation (x. 42) of Ref. (37) it is easy to show that the phase
shift for the scattering of the proton from a target has the following form in the
limit E, — 0,

q(k,,R )L+ (A.1)

1
8, 55— 2, +17°C2 ql"

+h
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where
I'(l,+1+in)
(21, +1)!

with i being the Coulomb parameter. R, in equation (A.1) represents the range
of the nuclear potential and § is defined as

Cl = lee —1f2am
(4

(A.2)

dk

where u, (k) is the wave function for the proton.

In equatlon (7) for the elastic break-up cross sections the quantmes depend-
ing on the proton energy are the form factor occurring in the T-matrix and the
wave vector for the proton occurring in the phase space factor. The asymptotic
form of the form factor is

. (K du, (K)) (A.3)
k=k,R,

Ao By ) VB ) K™D HE ) (A4)

where H; =G, +iF, with F; and G, being the regular and irregular Coulomb
wave functlons respectively.

With the help of the threshold property (E, — 0) of the Coulomb wave
functions and equation (A.1) one can show that the modulus square of the form
factor (equation (A.4)) is

21 -2
B P, = BERE() (A5
where
— l—lp—c'i 21 +1
B, =L+ G, e )Rz (A.6)

It is easy to show with equations (A.6) and (A.1) that the elastic break-up cross
section near the threshold behaves as

d?o(el)
dQ dE
which is zero at E, =0, even for S-waves.

To investigate the threshold behaviour of the inelastic break-up cross section,
we rewrite the equation (13)for the inelastic break-up cross sections as

d?o (inel)
dQ dE

where the T-matrix T7,, contains H; as the form factor. Using equation (A.1) it
can be shown that

oc k2!p+1

= p(phase-space) Z (1- |Szpl,,|2) \Ti:m,, X (A.7)

Lm,

- |slp!p|2 4(21;; o+ 1)2C2R21 +1 Im (1 q lp lp )kglpfl (AS)

With the help of the threshold property of the Coulomb functions Hj,
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and the additional k,-term present in the phase factor one gets

d2a-(inel) - (1 j lp _Q)R%l""’l
dQ dE q+1,
The right hand side of equation (A.9) is in general a finite quantity at the

threshold, hence the inelastic cross section, unlike the elastic one, does not vanish
at the threshold.

(A.9)
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