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Dirac operators with several Coulomb singularites

by M. Klaus
Department of Mathematics, University of Virginia, Charlottesville, Va 22903, U.S.A.

(15. IX. 1980)

Abstract. We study the Dirac operator with a many-center Coulomb potential with regard to the
following questions: Self-adjointness, existence of a distinguished self-adjoint extension, stability of
eigenvalues. In particular, we prove that also for many-center Coulomb potentials one can define a
distinguished self-adjoint extension by means of a cut-off procedure. In the case of two centers we
study convergence of the operator as the distance between the centers shrinks to zero.

1. Introduction

This paper deals with the operator H=H,+ V, where H, is the free Dirac
Hamiltonian and V a many-center Coulomb potential. Dirac operators for two
centers have been studied extensively with regard to physical questions which
arose in the field of heavy nuclei collision processes [1]. As is well-known, the
Coulomb potential exhibits some mathematical peculiarities as regards self-
adjointness of H. In the mathematical literature a fair amount of work has been
put into studying potentials whose possible Coulomb singularity occurs at a single
point. Since much less has been done in the many-center case, we felt motivated
to study this case in some detail. We shall touch on the following problems.

In Section 2 we recall some important facts from the one-center case. We
introduce the Birman-Schwinger kernel which will play a key role in the sequel.
An important observation is that the B-S-kernel for the Coulomb potential has
nonempty essential spectrum.

In Section 3 we investigate the spectrum of the operator Ag defined by (3.1).
As a result we find that D(H(n))= D(H,), where H(u)=H,+ u/|x| and |u|<
V/3/2 (atomic number < 118), which is a recent result of Landgren and Rejto [2].
We think it makes sense to rederive this result, for there is a major difference to
[2] in that we exploit the scaling (dilation) invariance of a certain operator related
to Ar (see Appendix). Moreover, we get a fairly complete picture of the
analyticity properties of H(u) as a function of w (Remark 4).

Firstly, Section 4 deals with the extension of the results of the preceding
section to the many-center case. Secondly, if one or more of the centers has
atomic number >118 (but <137) we construct a self-adjoint extension by
removing a cut-off, thus extending Wiist’s approach to several centers. As in the
one center case one can completely characterize this extension by certain domain
properties. Thirdly, in Theorem (4.3) we answer a question which arises naturally
if of two centers one has atomic number <118 and the other >118.
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Section 5 is devoted to the stability, as R— 0, of the eigenvalues of
H(u, R)= Hy+ uwVy where Vi(x) is given by (5.2). We establish norm resolvent
convergence of H(u, R) as R — 0 to the ‘united atom’, however we encounter a
problem with respect to w. There might exist a discrete set of critical coupling
constants for which our proof would break down. They are related to the possible
eigenvalues of an integral kernel. Since this kernel (5.11) is genuinely two-center,
we don’t see how one might go about proving existence or nonexistence of these
eigenvalues.

The last problem we look into concerns w >1/2, so that the united atom has
atomic number >137. As R — 0, the spectrum of H(u, R) behaves remarkably
unstable in a sense made precise in Theorem (5.8). This is a direct consequence of
the spectral properties of the B-S-kernel.

Some results about the R— oo limit will appear in [3].

2. Preliminaries

We summarize some facts about the Dirac operator with a singular potential
whose only singularity is at x =0. In the Hilbert space # =[L*®R>T* let

H,=ap+p (2.1)
and
H=H,+V (2.2)
where
p :=sup |xV(x)|€ (0, 1) (2.3)
x eR?

aq, 0y, a5, 0,=fB are the Dirac matrices satisfying o0 +ogo; =281
(i,k=1,2,3,4). p=—i (8/0x,, 0/0x,, 8/0x3). Then the following is true:

A) H,,.=H | C5R*\{0}) is essentially self-adjoint if pe(0,+/3/2) and in
general not essentially self-adjoint for larger . (Ess. self-adjointness holds if
r=+/3/2 and V(x)= p/|x]).

B) If <1 one can single out a ‘physically distinguished’ self-adjoint exten-
sion (denoted by H) which is uniquely characterized either by the property

D(H) = D(1V]x]) (2.4)
or
D(H) < D(|H,|"?) (2.5)
Then
D(H)=D(H¥,) N D(1/Vx])
= D(H%,) N D(|H,|"?) (2.6)

Moreover o, (H)=o. (H,) =R\(—1, 1). For details we refer to [4] and the
references listed there. We also recall that H is the norm resolvent limit of
Hamiltonians with cut-off potentials [4], [17].
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C) Let

R(E):=(H-E)™", Ry(E)=(H,~E) ", |
Ke=|V|'"? Ry(E)VY*(V'?:=|V|"?sgn V).

Then [4], [13]
R(E)=Ry(E)— Ry(E)V'?(1+ Kg) | V|""? Ry(E) (2.7)

as long as —1 is not in the spectrum of Kg. For instance (2.7) holds for E =0 [4].

D) The Birman-Schwinger principle is valid. It says that E€(—1,1) is an
eigenvalue of H with multiplicity k if and only if —1 is an eigenvalue of Kg with
(geometric) multiplicity k. Since the proof by Simon [14, pp. 80-83] for
Schrodinger operators carries over with little change we omit it here. We only
remark that for the scale spaces we take #.,=D(H,y|*"?) endowed with the
graph norm.

E) It is illuminating and useful later on to know the spectrum of Kg if
V(x)= —pu/lx|, p€(0,1). Let Po(A) denote the projection-valued measure as-
sociated with any self-adjoint operator A. Then:

(i) o(Kg)=—0(K_g)

(ii) o-ess(KE) =[_ L, lu']a Ee (_ ]-5 1)

(i) dim P, .,(Kg)=0 if E€(-1,0]

(vi) 0<dim P(,,(Kg) <« if E€(0, 1).
(v) dim P, ..,(Kg)-> > as E 1 1.

(vi) max[o(Kg)]=wn/V1—E? if E€[0,1).

(i) was proved in [4]. (ii) will be proved in Lemma (5.5). It suffices to consider
E =0 since Kg — K, is compact. (iii) Since K <K, if E € (— 1, 0) [4] we need only
consider E=0. But dim P, .,(K,)>0 would imply (by the Birman-Schwinger
principle) that 0e (H,— {i/|x|) for some i <. This is impossible for one knows
(see remark below) that the lowest eigenvalue of H,— w/|x| is at ¥v1— w? [7]. This
yields (vi) and the first inequality in (iv). (iv) and (v) say that dim Py g,
Hy—p/|x|) > as E 1 1. This is well-known [7].

Remark. In proving (iii) we have tacitly assumed that in the range pe
(+/3/2,1) the phiysically distinguished extension as characterized by (2.4) (2.5) is
identical with the operator considered in quantum mechanics text books, e.g. [7],
which is commonly described in terms of a boundary condition at O (for radial two
component spinors) rather than by its domain. So there arises the question of how
these two approaches are linked together. We content ourselves with the remark
that Weidmann’s results [8] allow us to prove this equivalence.

3. Self-adjointness in the one-center problem

For the study of self-adjointness questions it is useful to have spectral
information about

Ag: =éi(Ho—E)_l, E € p(H,). (3.1)
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In particular one wants to know whether —1 e p(uAg). If this is true for E = <1,
say, it follows as in the Kato—Rellich theorem [9] that H(w) = Hy+ w/|x| | D(H,)
is self-adjoint. Recently the operator A has been analyzed by Landgren and
Rejto [2] whose results we shall rediscover. Although our methods overlap to
some extent with theirs we differ by exploiting the dilation invariance of certain
operators. The ideas of this section carry over to the many-center case. Moreover,
we can say something about H(w) as an analytic family in w (Remark 4).

Lemma (3.1). (i) o(Ag) is contained in the region enclosed by the curve
['={¢,(k)|k eR} defined in (A.6) of the appendix with the exception of possible
isolated eigenvalues of finite multiplicities outside T'.

(i1) If Im E# 0 then Ag has no real eigenvalues

(iii) If E=0, A, has no eigenvalues outside T’

(iv) The spectral radius of A, is equal to & (0)=2/3.

Proof. (i) Set E=0 and A,= A. Write
A=xAx: (1= x)A=x)+x:A(1=x) +(1 - x1)Ax, (3.2)

where x,(x)=1 if |x|<1 and 0 otherwise. The second and the last term on the
r.h.s. of (3.2) are compact since (1—x,) |x|™"' is Hy-compact. On writing x;(x) =
x1(2x) + (x¢1(x) — x1(2x)) the third term is seen to be a sum of a Hilbert—-Schmidt
and a compact operator. The Hilbert—-Schmidt property follows from the x-space
representation of the integral kernel [10]. From Hy'=(ap+B)/(p>+1) and the
p>+ 1-compactness of 1/|x| we see that the only non-compact term is

1 ap
X1 lxl p2+1 Xl (33)

This operator differs from

s 1 « :
Allemp—f X1 (3.4)
by
MV S . - -
1 Ixi pZ(p2+1) 1 1 |x| (p2+1) p2 1 A

Both factors on the r.h.s. of (3.5) are compact. For the second factor this
1 : 1 8 8
follows from the compactness of — x,, i.e. the compactness of x; — x; which is a
p p

well known fact. Thus we are left with A,. Introducing

A=(1-x) =2 (1-x) (3.6)
x| p
and
p=_20 (3.7)
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and noting that

1
X171 | I ap(l Xl)

1s again compact

(11 S CO t)
X1 1s compac
Ipl x| X P

we get
B=A,+A,+compact (3.8)

In the appendix we prove o(B)=T". Since in the unbounded component of the
resolvent of B (i.e. outside I') ||[(B—z)7Y|— 0 as |z|— « we can apply the analytic
Fredholm theorem and conclude that any spectrum of A;+ A, must lie inside I’
with the exception of possible isolated eigenvalues of ﬁnlte mu1t1p11c1t1es outside
I'. But A, and A, have orthogonal invariant subspaces Thus A, and therefore A
has similar spectral properties. Using that Az — A is compact completes the proof
of part (i).

(i1) Suppose Agf=Af where Im E#0, f#0, A#0, AeR. Since
D(Hy) <= D(|x|™') we conclude that (H,— (A |x|)')g=Eg where g=(H,—E)'f, -
contradicting the fact that Hy—(A|x|) ' is symmetric. Since Ker A ={0}, A=0is
not eigenvalue either. This proves part (ii).

(iii) Suppose Aof=Af, InA#0, f#0. Then A(f, |x|f) (f, Hy'f) is real, so
(f, |x|f)=0, i.e. f=0. Thus there are no complex eigenvalues. Suppose now
Im A =0. Then g=(1/V[x)Hg'f obeys (llx/_)Hol(llx/-g')g Ag Hence [Al=1<
£,(0) =2/v/3 using property (vi) of Sect. 2.

(iv) Follows from (iii) noting that |&,(k)|=<£&,(0), keR.

Remarks. 1) Lemma (3.1) implies self-adjointness of H(p) when || <+/3/2.

2) In the many-center case we shall replace Ag by x;Agpxs(8>0) where
xs(x)=1 if [x|<8 and 0 otherwise. Lemma (3.1) is still true with obvious
modifications of the proof.

3) (ii) holds (by the same proof) for general H,-bounded potentials V(x).

4) We invite the reader to draw a picture of I' and of "' ={zeC | 1/z T}.
H(w) is closed for all w outside I'"' and forms a holomorphic family of type A
[9, p. 375]. One observes that the half-line t exp (i@), t (0, 00) intersects [ twice
(respectwely never) if |o|<a, |m—¢|<a, ¢# 0, m, where a is given by tan 2a) =
(respectively |¢|>a, o <|¢|<m—a). The half-lines ¢ =0 or 7 and t>+/3/2 lie
inside T'"!. This leads to the interesting conclusion that no matter how small
e(@#0) is, H(w) is closed for sufficiently large |u|, where p =|u| exp (i¢). The
curve I'"! is, however, not a border line as regards the analyticity of the resolvent
of H(w). Using (2 7) on concludes that H(w) ' can be analytically continued to
the interior of I'"!. Denoting this continuation by H(u)™* one verifies that H(g) is
a_closed extension of H(w) and D(H(w))< D(1/¥|x]) and D(H(w)) = D(|H,|"?).
H(w) ™ is analytic in C\{u | » €R, |x|=1}. This generalizes the result of Kato
[9, p. 308].

5) Using the relationship between solutions of H(w)*f=if and of A¥f=—f
we can show that the interior of I" belongs to the residual spectrum of A,. I itself
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forms the continuous spectrum. Then one also recognizes that I''=
{n |Rev1—u*=1} which is related to the square-integrability of f near 0, since
f=|x["""Y"** pear 0.

4. Self-adjoint extensions in the many-center case

4.1 Self-adjointness

In this section we shall prove

Theorem (4.1). Let w, R, |w|<+v3/2 (i=1-+-N), a, R a,#a; (i#]) be
given. Let
N

V(x)= -
i=1 lx_ail

Then H=(H,+ V) | D(H,) is self-adjoint.
Remarks. 1) If one is willing to settle for essential self-adjointness on
[C5®R?)]* there is an elegant method due to Chernoff [11].

2) The case |w;| <3 has been treated in a remark by Nenciu [12].
3) Theorem (4.1) shows that H is essentially self-adjoint on any core for H,,

8By B cz;(w\ {ig ai}).

Proof. Choose & such that 0<d<3min |a;, —a,;|. Then

i7j
v X(x—a)
V(Hy—E)'=)Y “e—al (H,— E) *xs(x — a;) + compact (4.1)
i=1 4
From Remark 2 to Lemma (3.1) and the assumptions on w; we obtain
(x —a) _
_1€P(Miu(H0_E) IXS(x_ai)) (4.2)
Ix—a
for every i.

Consequently, (4.2) is true with the r.h.s. replaced by the sum over i, for this
sum can be viewed as a direct sum. Assuming Im E# 0 and using Remark 3 to
Lemma (3.1) we conclude that V(H,—E) " has no real eigenvalues. So

—1ep(V(H,—E)™), (4.3)

proving the self-adjointness of H.

4.2 The distinguished extension

In this section let
N

V(x)= — 2 \x%aj 4.4)

where 0<p, <1 (a;# a,, i#j).
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We consider

H=H,+V | C3 ([RP\{Q ai}) (4.5)

and try to construct a self-adjoint extension which is acceptable for physics. In the
author’s opinion, the most convincing way to do this is by means of cut-off
potentials. We shall prove that as n —

H,=H,+V, (4.6)

where V,(x)=max (—n, V(x)), converges in norm resolvent sense to a self-
adjoint operator H and it seems reasonable to consider H as relevant for physics.
As we shall see, H has many other properties which are desirable and which we
accept graciously! ~

In Theorem (4.2) we shall prove that H can indeed be constructed by the
method of cut-off potentials, thereby extending Wiist’s results [6] about the one
center case to several centers. To avoid some technical complications we have
assumed that all g; >0. Of course, only notational changes would be needed to
cover the case where all u; <0, however, if the u; take both signs more work is
necessary (see [17] for one center). In Wiist’s work a critical ingredient is that H,,
has a gap in the spectrum whose width is independent of n. In the course of the
proof of Theorem (4.1) we shall see that this is also true in case of several centers.

A Hamiltonian with potential (4.4) has been constructed previously by
Nenciu [12], using as a criterion the requirement D(H) = D(|H,|"?). We shall see
that our extension is the same. Finally, in Theorem (4.3), we consider a special
case of two centers, namely

H=H,+V+W
where V, W are Coulomb potentials such that H,+ V is not essentially self-
adjoint while Hy+ W is self-adjoint. We shall prove that

H=(H,+ V) +W,
meaning one can get H by adding one center after the other. Moreover, it will

follow that H is not essentially self-adjoint.

Theorem (4.2). (i) H = norm resolvent lim H, (n—> «) exists and is a self-

adjoint extension of H.
(i) D(H)=DH*) ND(V|'?)
(lil) Uess(H ) = O-ess(HO)

The proof of this theorem depends heavily on

Lemma (4.3). Let K., =|V,|"*(H,—E)'|V,|'"?. Then we can find Ee
(—1,1) and a constant C such that for sufficiently large n

I(1-Kg,)Ml<C (4.7)
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Proof. Following an argument of Nenciu [13] we note that 1€ p(Kg,,) for all
E € p(H,) with the possible exception of a discrete set provided we can find one
value of E where this holds. Pick E =is, s €R, and use

-1 O@ptB+ E
(HO E) - p2+ 1— E2 (4-8)
Then
Im (f, Ki; .f) #0 (4.9)

if f#0 and s# 0. This implies that 1 cannot be eigenvalue of K ,. We want to
show that 1 does not belong to the spectrum at all. Let D, = xs(x—a;), D =Y.D,.
Multiply Kg, from both sides by [D+(1— D)] and expand.

Firstly, (1—D)Kg,(1—D) is compact and independent of n (for n large
enough). Secondly, the terms D,Ky,,(1—D) (or D and D, switched) are compact

and have norm limits as n — . To this end write
Xs(x—a) |V,['"? (Hy—E) ' = x5 (x — a)|x —a,|* | V,,|'%)
X (|x—a|™* (Hy—E)™")
(4.10)

and note that the r.h.s. is of the form A,B where A, — A strongly and B is
compact. Hence A, B — AB in norm. Thirdly, DK, D, (i# j) is Hilbert-Schmidt
-and tends to a limit in Hilbert-Schmidt norm (consider the kernel in x-space [10]).
Fourthly, terms of the type D,Kg ,D, are equal to
1 iy
g o= B
1

Xm (Ix = a]"? |V, |’ x5 (x — a,))

(xs (x = @)| V[ |x — a,| )

(4.11)

Now we choose 8 so small that for all i=1 - - - N the factors in parentheses have
norm smaller than 1—8, with some §,>0. This is possible since |w;|<1. Since
llx|~** Hy '|x|"*?||=1 [4], and H, is translation invariant we see that at E =0 the
norm of (4.11) is less than 1— &, uniformly in n. This implies that for E € p(H,)

O-ess(KE,n) = [-_' 14 81; 1 81] (412)

(using that K. ,, — K,,,, is compact) which, along with (4.9), proves that 1€ p(Kg,,)
if E=is, s#0. Thus 1€ p(Kg,) with the possible exception of a discrete set on
(=1, 1).

All these facts hold for the limiting operators (n =) as well. Consequently,
we can pick E€(—1, 1) such that 1€ p(Kg..). Then

Ke.=Kpn+Kg, (4.13)
=Ko+ Kgh—Kon+ K2, (4.14)
KL +B, (4.15)

where K3, is (4.11) summed over all i and K, comprises the rest which is
compact. As n —, K§), — K, and K&, have norm limits. For the latter this has
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been proved above. As to the former note that
K(l) K(l) Eanlllz (HO__E)—1H0—1an|1/2 (4.16)

so that we can apply an argument similar to that in (4.10). Now 1€ p(Kg,,) if and
only if

lep((1-K$&)™B,) (4.17)

by (4.15) and since |[(1—-K{") '|<1/8,. Now (1—-K{)™" has a strong limit
whereas B,, is compact and has a norm limit. Hence the product has a norm limit.
Therefore, knowing (4.17) for n = yields

la-(1-KG) B, <C (4.18)
for some constant C and large enough n. Since
(1-Kg,) '=01-K§) 'B,) '1-Ki)™ (4.19)

(4.7) follows from (4.18) with C = C/s,.

Proof of Theorem (4.2). (i) Let E be as for (4.7). Then, as n—
(H,—E)'=(H,—E)'+(H,— E)"V|V,| 1-Kg,.) WIV.|(H,—E)™" (4.20)

tends in norm to a limiting operator (with V, replaced by V), for (H,— E)"'V|V,|
is compact and normconvergent and (1-Kg n) is strongly convergent. To prove
that the limit of (H, —E)" is the resolvent of a self-adjoint extension of H one
can either follow the method of Nenciu [13] or Wiist [5]. Since we are heading
towards a proof of (ii) it is appropriate to follow Wiist. Note that ||(H, —E)7'||<C
implies |[(H,—E)f|=C||fl, fe D(H,)=D(H,), i.e. there exists for all large
enough n a gap of constant width in the spectrum of H, near E. We can identify
the limit of (H, — E)™" with (H, — E)" where H,denotes the strong graph limit of
H, (cf. Prop. 2 of [5]). H, —H is a self- ad]01nt extension of H proving (i).

(ii) Note that D(H)CD(H*) by general theory and D(H)<D(|V|*?) by
(4.20) and the uniform boundedness of |V|'? (H,—E)|V,|"?, which follows
from |V, |<|V|. Thus D(H)< D(H¥) ND( VI?). To prove the converse we
follow Wiist [6, p. 97,1. Step]. Since there is one important change we give the
argument. Pick u e D(H). Let un e D(H,) be such that u, —u, H, u,,—aHu Let
ul— D(H) obey u® —u,, Hu®— H u, as k — « using “that D(H) is a core for
H,. Pick fe D(H*) ﬁD(lVl”z). Then

(H*f, u)—(f, Hu) = lim lim (f,(V—V,)u'®) (4.21)

n—o0 k—c

By the Schwarz inequality
|(f, (V= V)u) =(f, (V= V)V [ V]2
<[IVI"2(V = VAl | VIY2ui) (4.22)
Now
VI wll =l VI (H, — )" (H, — Du)|
< Cl(H,u+uf)| h23)
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where C =sup |||V|Y* (H, —i)7| is finite by (4.20), noting that

V12 (Ho= V"2 = IIVIY2 (Ho— ) THVIY2 [VITA VL[
<[[IVI"= (Ho =) V|| (4.24)

The last inequality in (4.23) follows from the graph convergence. Since fe
D(VI'), IV (V=V,)fll—0 as n—=. Hence (4.21) is zero, proving that
fe D(H*)= D(H). This completes the proof of part (ii).

(iii) (H—E) '—(H,—E) ' is compact on account of (4.20), proving the
claim.

Remarks. 1) We differ from Wiist’s proof by using (4.20), which immediately
leads to (4.24). _ _

2) (4.20) shows that D(H) < D(|Hy|""?), proving equality of H and Nenciu’s
extension. _

3) As in the one-center case, H is uniquely characterized by demanding
D(H)<=D(|V|'?).

Now we turn to the problem of two centers mentioned at the beginning of this
section.

Let V(x)=—pu/lx|, p€(+/3/2,1) and W(x)=—0/|x—al, o€ (0,+3/2), a#0.
Then we can construct H=(H,+V+W) or (Hy+V) +W (anticipating that
D(W)> D(H,+ V).). We shall prove

Theorem (4.3). (i) (Ho,+V ) +W=H
(i) H=H,+ V+ W ( means closure)

Remark. Since D(H,+V)#D((H,+V).) we see that H (see (4.5)) is not
essentially self-adjoint.
We need

Lemma (4.4). (i) D((H,+ V)*)=D(H™)
(i) D(H)< D(H*)< D(W)
(iii) D((Ho+ V))<= D((H,+ V)*) < D(W)

Proof of Lemma (4.4). (i) Suppose fe D((H,+ V)*). Choose ¢ € C;([R*\{0}),
¢ =1 for |x—a|<|al/2 and ¢ =¢.

Claim: ¢f and (1—¢)fe D(H*).

Pick ge D(H)=[C;R*\{0, a})]* and set ¢ =1—¢. Then

(¢f, Hg) = (f, ¢Hg) = (f, H¢g) — (&f, (ap) ) (4.25)
=(f, (Ho+ V)@g) + (F, Wég) — (gf, (ap)@) (4.26)
= ((Ho+ V)*f, ¢g) +(f, Weg) — (&f, (ap)@) (4.27)
Thus
|(¢f, Hg)|<Cligll (4.28)
for |Wé|l..<, |[(ap) .. <.
Hence

¢f € D(H™) (4.29)
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Likewise,

(of, Hog)| =1(f, (Ho + V)og) ~ (&, (ap)e) — (f, Viog)
<Cg (4.30)

Since D(H) is a core for H, we see that ¢f € D(H,) < D(H) < D(H*)(the second
inclusion is a consequence of Hy-boundedness of V and W). Thus ¢f € D(H™), so
fe D(H*)(by (4.29)), proving D((H,+ V)*)< D(H®).

Conversely, suppose fe D(H*). Then &fe D((Hy+V)*) by combining
(4.25) and (4.26). Now (¢f,(Hy+ W)g)=(f, (Ho+ W)ge)—(fg, (ap)e) =
(f, Hge) —(f, Vgo)—(fg, (ap)¢) showing that ¢f € D(Hy+ W). But D(Hy+ W)=
D(H,), so ¢fe D(Hy)e D(Hy,+ V)*). Thus fe D((Hy,+ V)*), proving (i).

(i) Let fe D(H®). By the above, ¢f e D(H,)< D(W). But ¢f < D(W) for
any f. Hence D(W) > D(H*)> D(H), proving (ii).

(iii) The first inclusion is standard, the second follows immediately from (i)
and (ii).

Proof of Theorem (4.3).

(i) D(H)=D(H*ND(V|"*) nD(W|"?) = D(H*) ND(|V|'?)
=D((Ho+V)y*)ND(IV["*) =D((Ho+ V))
=D((H,+V) +W),

proving (i). The first equality is (ii) of Theorem (4.2). The second follows from
Lemma (4.4)(ii) and D(|W|) < D(|W|"?). Then we use Lemma (4.4)(i), Theorem
(4.2)(ii) and Lemma (4.4)(iii). )

(i) By Lemma (4.4)(iii) W is (H,+ V) -bounded. This implies that Wf, is
Cauchy whenever f, e D(Ho,+ V) is Cauchy (D(H,+ V)=[C;®R*\{0}D]*). Thus
(Ho+ V+ W)f, converges, proving H< H,+V+W. By Lemma (4.4)(ii) W is
H-bounded. Therefore H>H,+ V+ W.

S. Stability of eigenvalues for two centers

5.1 The problem

Consider the Hamiltonian

H(w, R) :=Hy— Vg, pne(0,3) (5.1)
where
Ve=tt—1_ R=(R]0,0) (5.2)
x| |x—R]

For simplicity we restrict ourselves to the case of two equal, negatively charged
nuclei. If R#0 we mean by (5.1) the self-adjoint operator defined on D(H,)(cf.
Sect. 4). If R=0, the correct extension to be taken will be the physically
distinguished one (cf. Sect. 2B). We set H(u, 0)=HQ2p).

The main question we try to answer in this section is about the convergence
of H(u, R) toward H(2w) as R—0. In Theorem (5.7) we shall prove norm
resolvent convergence but, unfortunately, we have to exclude a discrete set of
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w-values. We are able to identify these critical coupling constants via the
eigenvalues of an integral kernel (5.11). It is, however, entirely conceivable to us
that these eigenvalues are absent, but we have been unable to prove this.

For noncritical coupling constants stability of eigenvalues (cf. Kato [9]) is a
direct consequence of norm resolvent convergence.

In the context of heavy nuclei collision processes, perturbation calculations
for the energies have been carried out by Greiner and Miiller [1] for small (and
large) R. This was done in the scheme of the ‘united atom approximation’,
familiar from nonrelativistic problems. We do not attempt to justify the applica-
bility of this method in the Dirac case. However it is instructive to think a bit
about some problems related to this method. Write

(g By =HDpt W, Wil i & (5.3)

x| lx R x+§\.

2

If H, were the Laplacian it would be perfectly possible to estimate

2 1 i

| Wg (x)| <const. “RIS(‘XP-FS + R|1+® + R l+8) (5.4)
e +__
2 "y

where & €(0, 1). In the Dirac case, however, a potential like |x|”**® is certainly
not what we desire. Furthermore, it is not true that |Wx(HQ2u)—i) '|—=0 as
R —0 (assuming 0<<2u <+/3/2 so that D(H(2u)) = D(H,) =« D(Wy)). Since 1€
p((2u/|x|)(Hy—1i)™") it suffices to show that |Wg(H,—i) |+ 0 as R—0. By a
scale transformation (using (4.8)) Wx(H,—1i)™" is unitarily equivalent to Wy (ap +
B|R|+i|R|/p*+2R?) where R=(1,0,0). As R— 0, this operator tends strongly
to Wy (ap/p®) #0. Therefore |Wg(H,—i) ||+ 0, proving our claim.

Next we first prove norm resolvent convergence for w < 1/m (Theorem (5.3))
and subsequently extend this result to larger w. It is in the range [1/m, 1) where
the possibility of critical coupling constants arises.

52 w<l/w

We need two lemmas:

Lemma (5.1). |V VxH,'vVg||<w for all R.

Proof.
IVVeHo 'V VRl < IV Vi | Ho[ ™ VVil| = [ Ho[ ™/ Vi [Ho[ |

1 1

1 1 1
(p2+ DY+ "R(p2+ 1)

(p2 I 1)1/4 rx_l (p2+ 1)1/4

=

=T

using [9, p. 307].
Remark. Only the first step is an inequality. Steps four and five
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are in fact equalities due to a result of Herbst [16], along with a scaling argument.

Lemma (5.2). V’H,'— \/li—l H;' in norm as R— 0.

Proof. By a scale transformation it is equivalent to show that

|R|2 (W( 0 |) (ipl(ap+lR| B))

tends to zero in norm as R — 0, where W(x)= V{*—+2/|x|. The last factor has
norm 1 and W(x)/|p| is bounded, since W(x)=0(x| %) at infinity and the
singularities are less severe than Coulombic.

Theorem (5.3). Suppose 0<w <1/m. Then H(u, R)— H(2u) in norm resol-
vent sense as R — (.

Proof. In (4.20) replace V, by Vr and Kg, by Kg(E)=

uwVe*(H,—E)'V{? Choose E=0 and note that Ki(0)— K,(0) strongly as
R—>0 whereas H,'Vy>— H,'Vy/?, V?*H,'— V)?H,' in norm by Lemma
(5.2). Lemma (5.1) ensures that ((1—Kg(0))'— (1-K,(0))"* strongly, so that we
can use the compactness of VH{?H," to conclude that the second term on the r.h.s.
of (4.20) converges in norm as R —0.

53 lm<p<l

The problem is to find a uniform bound on ||(1 - Kg (E))~ 1“ for R small. That
means we need to know how the spectrum of the Birman—-Schwinges kernel varies
as a function of R. Although, we know everthing when R =0, we are seriously
hampfred by the fact that the Birman—Schwinger kernel only converges strongly
as RJO.

It turns out to be advantageous to study the limit E|—1. However in order
for this limit to exist we need a cut-off defined as

Veo=Vr " Xo (|R| <o) (5.5)

Later on we will jump from E= —1 to E=0 and remove the cut-off. Note
that (5.5) cuts off the superposed potentials. One could also cut off each individual
potential and then superpose them. The difference is a boundary term which
could be handled as well. Our choice here leads to some simplifications. On
setting W= V2 we claim that

Lemma (5.4)
W(H,—E)"'W—>W g—fW+(B—1)W—1—2 %% (5.6)
p

in norm as E|—1.

Proof. Starting off from (4.8) we remark that the second term on the r.h.s. of
(5.6) is the limit, as E}—1, of W[(B+ E)/(p*>+1— E?*]W. Convergence holds in
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norm, since W has compact support and one can easily write down the x-space
kernel of 1/(p>+1—E?). So we need only show that

ap
Wp—+1—E-2 W—>W W (5.7)

in norm as E]—1. We observe that the difference of these two operators is

ap

_ e A —1_F2
Esz(p2+e) W, e:=1-E-, (5.8)
whose norm is bounded by that of
1
eW————-W (5.9)
p(p*+e) -

Now use p?+ & =2|p| v to recognize that the norm of (5.9) is bounded by C - J/e.
This proves Lemma (5.4).

| {4

Lemma (5.5). (i) (r(j(—= ) =[-1,1], O<o=ow,

Q"U

(i1) ()'eSS(V”2 pp 1/20)2[_1, 1], O0<o<oo,

R#0, o>|R|.

ee Xa-- —1 Xc'
e e ) = < g_ .
(iii) crﬁss(\/_H0 \/|_x_|) [—1,1], O0<o=wx
(IV) Oess( » = 61 ’ 112/,?;1-) [ 1: 1], 0<o ‘<‘::7
R+#0, o>|R|.
But

(v) cr( ﬂzgi—’ ”2) =[-2,2]) all R

Proof. (i) Note that any change in o can be compensated for by a suitable
scale transformation. As o — o, the strong limit is the operator studied in the
Appendix, part b). Applying [18, Thm. VIII 24] and (A.12) yields the result.

(ii) Follows from (i) by ‘localisation’ as in Sect. 4.1.

(ili) For every o the operator has norm =<1 [4]. Moreover, the operator is
unitarily equivalent to

Xo/n @D +AB Xonn

Vix| p?+a2 Vx|

where A >0 is arbitrary and o is fixed. Let A | 0 and follow the argument in (i).
(iv) Follows from the preceding result.
(v) By scaling, operators with different R are unitarily equivalent. As R — 0,
the operator converges strongly to twice the operator of (i), thus the essential
spectrum contains [—2,2]. To see that, in fact, the essential spectrum cannot be
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larger than [—2, 2], multiply the operator on both sides by xn+(1—xx) and
expand. The xy - - - xn-term gives rise to essential spectrum [—1, 1] (assuming
N>|R|). The cross terms are compact. However, the term (1—xy) - - (1—xn)
gives rise to essential spectrum [—2,2]. To any given £ >0 we can find N,
such that this term has norm <2+¢ when N =N, using that Vz(x)~2/|x| for
large |x|. The two noncompact terms being orthogonal implies (v).

For any A>0 let (U,f)(x)=A** f(Ax). Denote the r.hs. of (5.6) by
Wgo(Ho+1)"' Wy, where now Wy, = VY2, Let Wy = VE*(o=x). The follow-
ing lemma is crucial.

Lemma (5.6)

P (Ujr\Wg o (Hy+ D! WR,G[)TII‘{O —
a
P (a,%) (Wfi _g WR)
p
in norm as R—0, for any a>?2.

Remark. By Lemma (5.5) and the compactness of the second term on the
r.h.s. of (5.6), the spectral projections in Lemma (5.6) are finite dimensional.

Proof. From (5.6) we obtain

_ «a
Uir|Wro(Ho+1) IWR,C,UT‘;I = Wa oir| p_l; Wa oir|

1
+ |R1(B - 1) Wrz,a/\m ? Wl‘z,c/tm (5-10)

We remark that the first term on the r.h.s. is of the form QAQ where Q is a
projection (multiplication by x,g)) and A = Wy -“—’2’ Ws. Then one knows that dim
p

P (QAQ)<dim P, (A). To see this note that (QAQ),=<QA,Q where the
subscript + refers to the positive spectral part. Now o(QA,.Q)N(a, )=
a(A?QAY*) N (a, =), since BC is isospectral [15] to CB for any two bounded
operators B, C. But A}/?QA}*=<A_ so that by taking spectral projections.we get
the result. Only the first term on the r.h.s. of (5.10) survives the R — 0 limit. It

(44
tends to sz—g Wg. Therefore the spectral projection in Lemma (5.6) converges
p

strongly. Since the vanishing term in (5.10) is negative (8 —1=<0) we can apply

Lemma 1.23 [9, p. 438] and obtain norm convergence, completing the proof of
Lemma (5.6).

The virture of Lemma (5.6) is that it tells us what the limiting points of the
eigenvalues of Wy (Hy+1) "Wy are (as R—0), namely the eigenvalues of

« .
Wx p—f Wg. The x-space kernel of this operator is

11 \aeey (1 1\
(|XI+|x—IQ|) lx—y[? (|X|+|x—§|) | (5.11)
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We suspect that

Conjecture. cr( Wa g%’ Wﬁ) N((—o, —2)U (2, x))=0.

A proof of this conjecture would rule out the occurrence of critical coupling
constants. In fact, let A;=A,= - - - (A, >2) be the (positive) discrete eigenvalues
of the above operator. Then the main theorem of this section is

Theorem (5.7). Suppose p#A;' (i=1--+). Then H(ux, R)— H(2w) in norm
resolvent sense.

Proof. Define 6 = dist [1, a(uWRg—g WR)] >0. Then §<1-2u by Lemma
(5.5)(v). Choose & so large that for all small enough R

w |WrHy ' Wr — Wy (Hy ' Wy || < 8/4 (5.12)

Such a choice is possible, since the norm is bounded by const./Vo independent of
R. By Lemma (5.6) we may further assume that

dist[1, o(uWr o, (Ho+ 1) Wg ,)]=38/4 (5.13)
for sufficiently small R. Now we hop from E= —1 to E =0. The difference

ap  B-1 B
prp*+1) p*> p*+1

Wil (Ho+ 1) = Hy) Wi, = W | LAVRERYS
is compact. This follows from Lemma (5.4), which shows that (5.14) is the norm

limit, as E|—1, of a compact operator. Moreover (5.14) tends in norm to a limit as
R — 0. To this end note that

1 1 :

| Wg.o— W, | <const. |R|? (|x|1/2+8 +|x _R|1/2+a) (5.15)
where & €(0,3). Then use the |p|-boundedness of x,(x) |x|”**"®. Let K, denote
the operator in (5.13) and K% this operator at E =0. Let Dy = K — K. Then we
know that: [1—-38/4, 1+38/4]e p(Kg) (5.13), o(K}) =[—2u, 2] Lemma (5.5(iii)),
Dy is compact. As R—0, K§—Kj in norm, Dy — D, in norm, Ky — K,
strongly. We wish to conclude that 1e p(K$%) for sufficiently small R. In fact, we
claim

(1—§, 1+§)ep(K%) (5.16)
2 2

for all sufficiently small R. This is easily seen to be true if we realize that we are in

a situation similar to the one in (4.13)-(4.19). Note that Ae(1—8/2, 1+ §/2) is

eigenvalue of K% if and only if (A — Kg)™' Dy has eigenvalue 1. This operator is

norm continuous. Since 1 is not eigenvalue for R =0, (5.16) follows from a

perturbation argument. Removing the cut-off ¢ using (5.12) yields

o o
——,1+= o
(1 2’ 1 4)6 p(KR)
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for all sufficiently small R. Recalling (4.20) and proceeding as in the proof of
Theorem (4.2) completes the proof.

Remark. Suppose p=A;"' for some i. Then UlR|WR(H0—E)’1WRUf’;|5:O>
Wg(ap/p*) Wy strongly for any E € p(H,). For E€(—1, 1) this implies the exist-
ence of a sequence of eigenvalues 7, of Wr(H,— E) 'Wg such that 7z — A; as
R —0. Thus w7 — 1 and hence ||(1—Kg(E))™"||— «. Therefore our proof
would break down.

54. p>1

The behavior of the eigenvalues when two centers with u >3 approach each
other is spectacular. This is contained in the next theorem, which expresses the
fact that an infinite number of eigenvalues passes through any point in the gap
(-1,1) as R—0.

Theorem (5.8). Suppose pe(3,1). Let Sg, ={R||R|<r, Eco(H(p, R))}-
Then, for any E€(—1,1) and any r>0, Sg, is an infinite set.

Proof. Pick Ec(—1,1). Let Kg(E)=uVE*(H,—E) 'VZ>. Define g(R)=
dim Py o(Kg(E)). Since 0. (Kg(E))=[~, n], 0ex(Ko(E))=[-2p,2p] where
2u>1 and Ki(E)— K,(E) strongly, we conclude that g(R) — as R — 0 ([18,
Thm. VIII 24]). Consider now a sequence R, =(z,,0,0) (z, <r) such that z,|0
and g(R,.;)>g(R,). Let t(R) (i=1,2,...) denote, in descending order, the
eigenvalues of K (E) which are bigger than w. On each interval [z, z,,,]
consider the function z — t,(R(z)) where R =(z,0,0) and s = g(R,,.1). t,(R(z2)) is
continuous since, by a scale transformation, K (E) is unitarily equivalent to

1/2 ap+ B |R|—E |R|
K p*+R*(1-E?
which is norm continuous in R for R# 0. But ¢ (R,)<1 while t,(R,.,)>1. Thus

t,(R(z¥)=1 at some point z¥€[z,, z,.1]. Then z} e Sg,. Doint this for all n
proves the theorem.

V¥,  R=(1,0,0)
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. 1 ap 1 ap 1
Appendix. The spectra of —— and — — —.
x| p* 7 Vx] p* VIx]
4) 1 ap, The operator admits a complete family of
|x| p*° reducing subspaces, indexed by k ==+1,+2 ...
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On these subspaces we have the representations

0 _d «
ap: dx x (Al)
4a_ K
dx x 0
—d2+K(K+1) 0
dx? x> (A O)
2: = A2
P —d2+K(K—1) 0 B ()
0 dx® x?

on [L*(0, =)
In the following we only consider « >0. The inverses of A and B have
kernels

1 1]

-1, . wk+1 K
AT o +1[mm (x, y)]*""/[max (x, y)] (A.3)
B 71 1_1 [min (x, y)]*/[max (x, y)]<™

K
Hence

1 ap 0 x 7yl (x—y)
e § : A4
|x| p* (x“y"e(y—x) 0 ) @4

where 6(x)=1 resp. 0 if x >1 resp. x <0.
This operator commutes with dilations. By the unitary transformation

U: [L*0, %) — [L*(—», )]
(Uf)(t)=e"fi(e') i=1,2
(A.1) goes over into

0 e—(t—t’)(x+1/2)6(t _ tr)
(e_("_')("_”z)e(t' ~ 1) 0 )
This operator commutes with translations. Performing a Fourier transform gives
0 1
K +3—ik
" 2 keR (A.5)
K —3+ik 0

1
So 0'(-—" 92) is given by the values of the function

x| p®

(k2 =3+k?) =ik 2
gk(k)z[(’(z_%4+k2)2+k2] . keR

(A.6)
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Both branches of the square root have to be taken. The same formula holds for
k <0. §.(k) is reflection symmetric with respect to the real and imaginary axis.
Moreover

L
0)= =+ A7
L0 =25 Sl
and
E(k)=re™® (A.8)
where
1
P e WA
- B rk2 1/2 ~
tan 8 = (1 - rkz) (A.10)
(A.9), (A.10) imply
d(tan B) at(tan B) 9k
= — <
K ok Ak ¢ (A1h)
which shows that the curve & (k) encloses the curve &.(k) when |k'| >|«k|.
1 ap 1
b) —————: 5) i
) 7l p2 V] The analog to (A.5) is
0 1
k—ik (A.12)
1
K +ik 0

The spectrum is the interval [—1/k, 1/k].

Remark. It is tempting to conclude from (A.6) that the spectrum of B =
(1/|x])(ap/p?) is contained in the circle of radius 4/3. However this is not allowed
because we have a direct sum over infinitely many nonself-adjoint operators. To
be able to draw the desired conclusion it suffices to prove that |B.||— 0 as
|| > . Now [IB,|*=[IBEB.[I=[I(lx| " p~?Ix| ). ll. (xI7"p~*|x|™), is a diagonal
(2x?2) matrix operator. Its two entries are the restrictions to angular momentum
I=|k| and I =|k|—1 of the operator |x|™* p~?|x|™" on L*(R?). Using dilations one
shows that on the subspace [ this operator has as its spectrum the whole interval
[-4/(21+ 1), 4/(21+1)?], proving ||B.||— 0 as || — .
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