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A relativistic two-body model for hydrogen-like and
positronium-like systems I

by F. Reuse’)
Institute of Physics,?) University of Neuchétel, 2000 Neuchatel, Switzerland

(20. VIII. 1980)

Abstract. A new theory for the description of relativistic particles is applied to a two-body model
for hydrogen-like and positronium-like systems. In this paper, we consider a simplified- approach
where the interactions due to the spins are not taken into account. It is shown that the spectrum
predicted by this model is in agreement with the one obtained from the Klein—-Gordon equation with
the mass replaced by the reduced mass.

Introduction

The present paper is devoted to a study of a relativistic two-body model for
the hydrogen atom, considered as two interacting spin 1 particles of opposite
electric charges. The model is based on a relativistic theory of spin 3 particles
previously developed [1] and already successfully applied in a single particle
approach to the hydrogen atom (i.e. to a charged spin 3 particle in an external
electromagnetic Coulomb potential) [2]. Our model is constructed in the
framework of a relativistic dynamics developed first by L. P. Horwitz and C. Piron
[3], and for which a survey has been given in [4]. Briefly, these authors suggest a
(many particl ) relativistic canonical formalism based on the following ideas:
Particles are not identified with trajectories in space-time, as is usual, but with
points (events) in space-time. In order to describe the ‘true’ evolution of the
system, one further postulates the existence of another time parameter 7, called
the ‘historical time’. Such a parameter T has been introduced by several authors to
develop a relativistically invariant classical mechanics. Recently, in this way, D.
Dominici, J. Gomis, G. Longhi have proposed a Lagrangian formalism applied to
two interacting relativistic particles [5], [6]. We also refer to the relativistically
invariant classical Hamiltonian mechanics presented by P. M. Pearle [7].

The state of each particle is then characterized by eight independent numbers

q*=(q",4% 4>, 9)=@,1)
the position in space-time and
P = (1, P2s P3» Po) = (P, —E)
the momentum-energy of the particle.
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2) Present address: Department of Theoretical Physics, University of Geneva, 1211 Geneva 4,
Switzerland.
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The evolution itself is governed by the canonical equations

dql; oK .
q6 _ and FPou_ 9K
d’T ap(i)“_ dT aqf:)

(1)

where K depends on the state of each particle (i). The covariance is guaranteed if
K transforms like a scalar field under the action of the Poincaré group, the
historical time 7 being invariant by assumption. The metric tensor is given by
g.., =(1,1,1,—c?), where ¢ denotes the velocity of light in vacuum.

For example if we neglect the radiation phenomena, the evolution of a charged
particle in_an external electromagnetic field corresponding to a 4-vector potential
A, (x)= (A(x), —V(x)), can be obtained from the following function K:

1
K=5 8" (. —eA.(@)(p, —eA,(q) (2)

where e denotes the electric charge and M the mass of the particle. In this
formalism, M is a dynamical constant characteristic of the particle. In this
example, the canonical equations (1) read

dq* _p"—eA*(@) . dp._ p"—eA¥(q)
dr M and dr —¢ M 9uA(@)
where d,A, denotes the partial derivative of A, with respect to x*.
Hence
dg" dq” 2K
Suw dr dr M

and since K is a constant of the motion, the proper time takes the same values as
the historical time for K = —Mc?2.

8" (p. —eA,(a))(p, —eA.(q)) = —M?c? (3)

is satisfied for any T.

The above relativistic formalism sketched for classical particles can be
quantized in a way that avoids the usual difficulties associated with the Klein—
Gordon equation and a new relativistic model of quantum spinless particle has
then been obtained. We refer to [3] for further details. For the spin 3 particle, a
model has then been developed [1] that is based on the following physical
interpretation of the spin 1 in Relativity: Let us consider the Stern—-Gerlach
apparatus that measures the spin orientation and more precisely, let us consider
the symmetry of the present magnetic field. Such a field is characterized by a
strong gradient. However, the latter defines not only a direction for the spin but
also a unique time-like direction, the direction of the time in the frame where the
electromagnetic field is purely magnetic. Then the spin state of the particle is
characterized by a direction in space (the spin) and a time- hke 4-vector n* with
n*>0 and which we choose to be normalized to n,n* = —c>. This 4-vector n* 1s
by assumptlon a superselection rule [8]. Accordmgly, the state space of the spin 3
particle is given by a family of Hilbert spaces H, indexed by n*. More precisely,
to every time-like unit 4-vector n*, we associate a Hilbert space Hn isomorphic to
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C2® L*(R*, d*x) supplied with the scalar product
2
Wo)= | dix T wrwe = | derem
R* =] R4

In other words, each spin 5 particle state is characterized by a 4-vector n*
and a vector e H,,.

As regards to the observables, the position (in space-time) corresponds to the .
self-adjoint operators:

(@*¢)(x)=x"P(x),  $eH, (4)
and the momentum-energy to the self-adjoint operators:
(pu¥)(x)=—iho,p(x), eH, &)

whose commutation relations are given by

ilp., q"]1=1 6},

The spin observable corresponds in each H, to a set of four matrices W},. For
n* =nt=(0,0,0, 1) these matrices are given by

Wi =30, i=1,2,3 and W, =0
where o' are the Pauli matrices. For an arbitrary n*, one sets

Wi =L(n)y W, . - (6)

where L(n) are Lorentz boosts satisfying L(n)“ng=n".
This definition is justified by the following considerations: if we consider a
space-like 4-vector s* with

| o —
s.s*=1 and n,s"=0

and the observable defined by the operator s, W}, then the corresponding two
eigenstates associated with a measurement of the spin with a Stern-Gerlach
apparatus are such that

(1) the time direction is given by n*
(i1) the direction of the magnetic field gradient is given by s*, i.e. (5, 0) =
L '(n)*s” in the reference frame of the apparatus.

This follows immediately from the relation

s, Wh=s,L(n)sW =35,6

From the definition (6) follows immediately the relation
Win, =0

the commutation relations

[Wnu,a an] = igp.vp)twflnh > (7)
where ¢,,,, denotes the totally antisymmetric tensor with gy53,=1,
and the anticommutation relations

{W,.. Wot=5(g,, +n,n,/c?
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What concerns the covariance, the Lorentz group acts on the state space by
means of operators U(A) in the following way

(U(A)d)an(x) = D(L(An) AL ()¢, (A7 x) (8)

where D denotes the usual spin 3 unitary ray representation of the rotation group.
A Lorentz transformation A thus maps the Hilbert space H, onto H,,,.
Furthermore, one easily verifies the covariance of the observables, that is

UA)'q*U(A) = Akq”

UA) 'p UN) =A}p, 9)
UA)'WRU(A) = AL W,

As in the classical case, the evolution of the particle is parametrized by the

historical time 7. As we are in a Schrodinger picture this evolution is governed by
a Schrodinger-like equation:

iy, =K, (10)
dr

In addition, because of the existence of the superselection rule n*, this
equation 1s connected with a second equation of the form

dn

“f”(nﬂ i) (11)

where the f* fulfil the condition n,f*(n, ¢)=0. Obviously, in (10), K, is a
self-adjoint operator, scalar, covariant under the action of the Poincaré group.

It is important to note at this point that the dependence on ¢, in (11) may
involve irreversible processes. On the other hand the comparison of this model
with the one by Dirac [1] suggests that the evolution is such that n* tends to be
parallel to (p*),, the mean value of the momentum-energy observable and in
many cases both directions can simply be assumed to be parallel.

Finally, it is important for what follows to remember the explicit form of the
operator K, that corresponds to a spin 3 particle in an external electromagnetic
field described by the 4-vector potential A, (x)= (A(x), —V(x)) When radiation
phenomena are neglected, the operator K, is that of the spin 0 case, modified by
terms due to the interaction of the spin with the electromagnetic field in
particular, we have proposed in [1] the following operator

1 -
K.=541 g (p, —eA,.(q))(p, —eA,(q)) - g”LO 2 (p* —eA*(q))F,..(qQ) W,
821 v o_83lo & W

where e denotes the electric charge of the particle, M its mass, w,=eh/2M is the
Bohr magneton, g,, g,, g; are dimensionless phenomenological constants and
2

Fuv(x) = H% su,vaF )L(x)

is the dual tensor of the electromagnetic field tensor F,, =4,A, —9,A,.
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This expression for K, has been applied, in particular it can be seen that, in
the semi-classical approximation, it leads to the BMT equation [9].

1. The system of two relativistic spin 3 particles

~ In the framework of quantum mechanics the states of a system of two
particles are generally assumed to be described by rays in the tensor product of
both Hilbert spaces corresponding to these particles. Characteristics of such a
description are the quantum correlations between both particles.

In the above context, in accordance with our interpretation of the spin, the
states of two distinguishable particles (1) and (2) having quantum correlations, are
assumed to correspond to common 4-vectors n' = nf;) = n{; for the superselec-
tion rules of both particles and to be given by the rays of the Hilbert spaces
H,®H,: i.e. by a 4-vector n* and a four-component wave function in C*® C*®
LRy xRy, d*x 1y d*x(5)) supplied with the scalar product:

(W, @)= d4x(1) d4x(2)¢r+(x(1), x(z))(P(xu), x(z)) (13)

4 4
Ry xRz

On this state space, the Lorentz group acts by means of operators U(A), in
the following way:

(U(A)ll‘)An (x(1), x(z)) =(D(n, A)®D(n, A), (A_lx(l)a A—lx(z)) (14)

where the D(n, A) denote the same 2 X2 matrices D(L(An) *AL(n)) as in (8).

The observables position in space-time, momentum-energy and spin for the
particles (1) and (2), respectively, correspond to the following families of self-
adjoint operators

qa)llf(xu); x(z)) = xﬁ)‘l’(xu), x(2))= yeH,®QH,
Pt (Xay X@) = —ih 8 (X, X))
Wﬁ) = W::@ 1|C2
and (15)

A (xay, X)) = xG (X1, X2)
P (Xays X)) = —1h 87 W(x1), X(2))
W#z) = 1]Cz® W,‘:

where 8 and 9% denote partial derivative with respect to x{, and x{,, respec-
tively. It is straightforward to verify that these operators have transformation
properties analogous to those indicated in (9) for one particle.

The evolution of such a system is again parametrized by the ‘historical time’ 7
and is governed by a Schrodinger-like equation

d
ih— i, = K 16
l d'T '“b'r n.,lllfr ( )
which is (generally) connected with an evolution equation for n*. Again K, is

assumed to be a self-adjoint operator, scalar, covariant under the action of the
Poincaré group.
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2. A two body model of hydrogen-like system: a first approach without
spin interaction

Our aim is now to propose and to discuss a model for two interacting
particles of opposite electric charges where the interactions due to the spins are
first neglected. More precisely we are interested in the bound states of such a
system, i.e., roughly speaking, in those states where both particles ‘move together’
in space time in a ‘stable’ way. That is, in view of 1, and of the above remark
concerning the evolution of the superselection rule n*, we restrict ourselves (the
consistency of this assumption will become clear later on) to the case n{},=nf,) =

n*, for which we propose the following self-adjoint operator:

g"
Ki=—r— (P(nu - A(l)eA(l)p,(q»(p(l)v —ApeAqy, (q)

2My,

L 8"
2 M (P —A2eAeu (@) Pe), —A2eAw).(q)) (17)

)

where g* stands for q{,—qti), Ay and A, are dimensionless constants and
' e n,/c?

A =—A.. (—x)= B 18
@u(X) u(—X) 4reg d(n, x) (18)

with
d(n, x) =vVx x* +(nx*)?/c?

In these expressions e, M(;, and —e, M,, respectively denote the charges and
the masses of the particles (1) and (2) and g, is the vacuum dielectric constant.

The 4-vector fields Ay, (x) (A, (—x)) in (18) are simply the Liénard-
Wiechert 4-potentials corresponding to a charge e (—e) whose motion is uniform
and in the direction nfj,=n* (nfy,=n*"). In addition A, (x)= verifies

JALX)=0, i=1,2 (19)

and also fulfil the Coulomb gauge condition relatively to n*.

Hence in this model each particle interacts with the other one via a 4-vector
potential that looks by assumption like in the external approximation, except for
the dimensionless constants A, and A.,. The role of these constants is to balance
with respect to the masses the ‘potential momentum-energy’ due to the elec-
tromagnetic interaction. These constants are assumed to depend only on the
masses and their values will be discussed later on. The introduction of such
constants in the problem of two interacting particles has already been suggested
~ by L. Brillouin and applied by L. de Broghe in the Galilean case [10] for
interactions described by potentials. ,

It is convenient to introduce at this point the following observables:

(i) total momentum-energy

P, =payu T Py 7 (20)
(if) ‘center of mass’ position

M, M,
Q- =—L g + 1\/(12) Aizy  M=Mgu+Mpy | (21)

M
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(ii1) relative momentum-energy

M, . Mg, Mo ,

M @ M (Dp

Correspondingly, we change the coordinates as follows:

M(l) M,
Xty t—=
M M

The states are then described by functions ¢(X, x) in
C*RC*RL*Rx xXR2, d*X d*x)

with the scalar product

By = (22)

X" =

L xt, and  x* = x4 —xb (23)

o= [ dx a6 ) (24)
% IR,
Furthermore, we now have

P.y(X, x)=—ih

8X“ P(X, x)
Q*"Y(X, x) = X"P(X, x)
P (X, x)=

q“ (X, x) = x"P(X, x)
These operators satisfy the commutation relations
i[P,, Q"]=h16;, and i[p,,q"]=h18} (26)

Together with the explicit form (18) of the potentials, the operators K, then
read

(25)

1 2 2 2 2
Kn:*—”g‘”’(P iy Tl )(P o )

2M 47re, d(n, q) 4me, d(n, q)
1 ( e’ n,lc? )( e’ n/cz)
+—g""{p. +A +A - 27
2m £ \Pu 4me, d(n, q) 4me, d(n, q) @7
where m denotes the ‘reduced mass’
m= M(l)M(Z) (28)
M(1)+M(2)
and
M, Aoy — M A
A=Ay + Ao, \ = 2w @MW) (29)
e My, + M)
Since K, does not depend on Q%, we have
K, P,]=0 (30)

i.e. the total momentum-energy operator corresponds to a constant of the motion.
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Hence for the eigenvalue-equation

Knd’K (X9 x) = Kd’K (X JC), K = R (31)
we first consider solutions of the form:
i (X, x) = exp (iP, X"/ h) by p(x) (32)

where P, now denotes a real 4-vector.

Since we are interested in bound states that satisfy the evolution condition
that (p{;,) and (p{,,) are along n* for any 7, we now consider solutions of (31) of
the form (32) satisfying the condition

P, =Wn,/c? (33)

which fix n, from a given P,. In this relation W denotes the energy of the system
‘at rest’. It also follows that, because of (30), n* is constant in 7. The relative
wave function ¢y p(x) in (32) is then a solution of the following equation, which is
the restriction of (31) to the spectral subspace of P, corresponding to (33).

-1 ( e’ 1 )2 1 ( e n,/c? )
W+A “\p.+ -
{ZMC2 dme, d(n, q) 8™ \Put A 4mreq d(n, q)

2

n,/c?
4me, d(n, q)

For convenience and without loss of generality we can choose n" =n{=
(0,0,0,1). In this case d(n, x)=|X|=r and, obviously, nip*=-—iha/ox*
commutes with d(no, q). Hence, [np,., K, ]1=0 since n§p, also commutes with
P Moreover the relative angular momentum operators L =§Ap commute with

, P, and ngp.. As a consequence, we can now find solutions of (31) for

n“‘ = ng satisfying (32) where ¢g p(x) (in spherical coordinates r, 6, ¢) is of the
form

bxp(x) = o exp (—iwx*/H) YT'(6, $)R(r) (35)

Here ¢, denotes an element of C*, Y"(6, ¢) are the spherical harmonics,
R(r) is a radial wave function and —w is the eigenvalue of the equation

noPuPx.p (x)= —W(bK,P(x): weR (36)

The corresponding radial equation for R(r) is obtained from (34) and is given
by

{ ! (W+ e? A)2 1 ( " e’ )\)2
2 - 2
2Mc* dareg 1 2mc? daegr

W 1d zi+ U+ 1)

2mridr dr

Collecting similar terms, this radial equation, formally looks like the non-
relativistic one. Indeed we have

{ W1 d ii_+_fi2_'y(y+1)
m Pdr O 2m o’

% (p.+2 Moce(0=Keel) 39

Ir(=KR() (37

—xa’me? %Q}R(r) =¢eR(r) (38)
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with

y(iy+1) =1+ 1)—@(% A2+A2)

W w
A e )
1 ( w?2 wz)
= (T — 4
€72 Mc?  mc?

Here a = e”/4meyfic is the fine structure constant and a,=#f/amc the Bohr
radius (involving the reduced mass).

The solutions ¢x p..(x) susceptible of describing bound states of the two
particles, i.e. states where, in particular, both particles remain spatially close to
each other, necessarily correspond to the discrete part of the spectrum in (38).
From the analogy of (38) with the radial equation in the non-relativistic Coulomb
interaction, such solutions do exist in L*([R,, r* dr) (we assume y > —3) if and only
if x>0 and

2.2

1 , QX

= —zsmc°- ——— 4
= b (y+n')? (40)

where n' takes all positive integer values. The conditions (40) imply from (39) that
AW/M+ Aw/m >0 and

K—-——l{W2+w2 +'ozzmc2 ( W+}\ w )2}
2 WMc? me* (y+n)?

Mc?* ~ mc?
with
=—z+ \/(l+%)2—a2%1\2+/\2)_

We denote R, (r) the corresponding solutions of (38) in L*R.,r*dr) and
¢35 i(x) the corresponding relative wave function in (35) (remember that K in
(41) depends on P, w, n’ and 1).

For bound states, both particles remain not only ‘spatially close to each other’
but also they are assumed to move ‘together’ in space-time. Let us thus consider
the ‘relative velocity’ operators given, for n* = nf}, by:

e? nb/c? )

41eq d(ny, q)

(41)

_ ] 1 ,
i =21K,, q*]=— (p* +A 2)

m

and ‘relative’ states ®F,. (x) obtained from a set of functions ¢g,, . (x) having
fixed quantum numbers n', |, m, fixed P and which are sharply defined in w.

i) = [ dwo(0)0a(2) @3)

Such states are susceptible of describing bound states only if (4*)s =0. For
symmetry reasons, we however necessarily have that {g)e = 0. The last condition
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(4" =0 implies

(PHo=—A g < : > =—/\a2m< o > (44)
® Tdmeoc® \d(no, q)/ o d(ng, q)/ o
Observing that (see e.g. [11])
TR (R dr=—X 45
L - |R, )| r* dr T tra (45)

for normalized R, (r), we have (assuming an appropriate normalization of the
functions ¢g.,, . (x))

aO — 4 29 m 2.
(d(no, Q)>® L4 d”x r |cI)P,n ,[(x)l

_ , x(w) 1 |44
- jdw o)l (y+n'? (y+n')? (

where w = [dww |o(w)|>. In addition
{pHo=w/c? 47)

and consequently equation (44) implies

A “’2) (46)
mc

W Aa*m ( w W )
—=— +A 48
c? (y+n)* ' Mc? mc? (48)
giving the following value for w:
_ A 2 2
P AAa“mc W (49)

(y+n')?+A%a? Mc?
It follows from this last equation that

_ W (y+n')?
M (y+n)?+A2%?

when w=w. Hence, the condition y >0 in (40) is satisfied whenever W>0
(assuming A>0).
Finally, the states

v (X, x), = Jd“P jdw«;r(P, WP o (X, x) exp (—iK7/h) (50)

built up from
lwblr::w,n',l(X’ x) = exp (iPuXu/h)(blT:w,n',l(x) (5 1)

for a fixed set of quantum numbers n’, I, m, and sharply defined in w around w
and in P* around Wn/c?, describe particles moving together in space-time, the
system globally moving like a free particle. Moreover, such states fulfil the
conditions that {p{;,) and {p{,) are parallel to nf§ since (p)=0.
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Considering now the operators

i [Km Q(l)] M (P(l) 7\(1)“3AEL1)(Q))
(0
and

— (pty t AeAl)(q))

h 1
==K, g%]=
q(2) : [ n Q(z)] M(z}

and noting that the expectation values for g,,44,4¢, and g,.4¢5,4¢, are around

, and that
M M,
K, = 2(1) 8.4+~ > guvfI(z)Q(z) (53)

we have to consider values of K around —Mc?/2. From (41) and taking (49) into
account we find that for w=w
1w ( Lam N )

b (st +——
2 Mc? M (y+n')?+ A%

(54)

The values of W such that the right-hand side of (54) is equal to —Mc?>/2 are now
interpreted as the energy spectrum. They are given by

: AZq? -1/2
W = Mc?> [Hﬂ(wn')z e 2] (55)

(only the positive root is compatible with the condition xy >0 in (40) whenever
A>0).

In order to discuss the results, let us consider the power expansion of (55)
with respect to «®. From (55) and from the expression of y given in (41) we
obtain the following expansion

2 Aa* i n m A\ 3m A
W= Mc?*- 2{ e 4 ( (—+—)———— )+O 6} 56
LS P S T tviyl eyl Las o 55)

where n =1+n’ denotes the principal quantum number.
Comparing this result with the non-relativistic one we assume that A=1.
To choose A, and A, we have to consider the fine structure contribution
due to the term,

4 2
_eme n (ﬂ+ Az)
2n l+§ M
in (56). When one of both masses is larger than the other, the previous expression
is expected to be similar to the corresponding one from the Klein—Gordon
spectrum expansion [12]. In other words, we expect that AZ=1.
Furthermore, there is also theoretical evidence from the Breit equation [11],

[13] and experimental support from the fine structure measurements for the
positronium [14] to assume more generally that

%4_)\2: 1 (57)
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for any mass ratio. Then, up to a term mc?, with m the reduced mass, the fine
structure term is in every case the same as in the Klein-Gordon expansion. Let us
recall the expansion of the Klein—-Gordon energy spectrum for the hydrogen atom
(i.e. in the external Coulomb field approximation):

W=mc2{1— o T ( L ——2)4-0(016)}

2n? 2n*\l+3 4
The resulting fine structure term of order a* is:
__a’mc?
2n3(1+3)
The above assumptions
A=1 and A’=1-m/M (58)
lead, from (56), to the following expansion for the spectrum of our model
2 4
W=Mcz—mc2{2anz~+—2o;4 (li%—1+%)+ O(aé)} (59)

Finally, because of the definitions (29), the values of A(;, and A, according to
(58) are:

Aoy = Ml —A and Ay = N(Iz}+)\ (60)
with
A=Ev1—-m/M

We can decide to choose the sign of A in such a way that A, — 1 (and then
Aay—0) if M,y,— =, i.e. the external field approximation. Consequently A >0
whenever M, = M,).
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