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A simple model for irreversible dynamics
from unitary time evolution

by Peter Pfeifer
Laboratorium fiir Physikalische Chemie, ETH Ziirich, CH-8092 Ziirich, Switzerland

(4. VIIL. 1980)

Abstract. A Stark-type Hamiltonian describing the motion of a neutral spin-; particle in a linear
static magnetic field, is shown to give rise to a time evolution which, for every initial state of the total
system and as time goes to o, drives the spin subsystem into a statistical state p(cc) with the following
properties: (a) p(«c) has pure components corresponding to spin-up and spin-down states (with respect
to the field direction). (b) p(e) depends only on the initial state p(0) of the spin subsystem. It is shown
that this result is a consequence of a Stern—Gerlach-type quantum measurement process effected by
the time evolution on suitable algebras of observables, and that irreversibility is due to the fact that the
time evolution maps these algebras of observables onto a very small subalgebra in the infinite-time
limit.

In an attempt to resolve what has become known as the ‘problem of shape of
molecules’ [1], and in particular the ‘paradox of optical isomers’ [2], the following
mechanism of blocking certain distinguished states of a system has been proposed
[3]: Consider a two-level system which interacts with an external medium, called
probe, in such a way that the time evolution of the combined system takes an
initial product state (3;_., c,x,)® ¢ (with distinguished orthogonal states x., € C?,
arbitrary coefficients c,; €C, and probe state ¢ in some Hilbert space #) into a
final state Y _ ., ¢,;xs ® ¢, where ¢, €  are orthogonal. Since this final state leads
to a reduced density operator for the two-level system that is diagonal in the basis
(Xs)s==1» it 1s concluded that the interaction with the probe forces the two-level
system always to be eventually in either one of the states x,; (in [3] they
correspond to left/right-handed states of a molecule).

Although this conclusion is not without difficulty [4] (see also below), it is the
purpose of this note to present a simple, yet physically rather suggestive Hamilto-
nian which effects such a ‘reduction of the state vector’ for all (normal) initial
states of the total system if infinite time is allowed to elapse, and to analyze the
mechanism responsible for this result:

Theorem 1. Consider o = ((1) _(1)

(selfadjoint) position and momentum operators acting in L*(R). Define the Hamilto-
nian (acting in C*® L*(R)) by

) as operator acting in C>. Let Q, P be the

H=wo®1+1®-?%P2+Acr®Q (1)
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with constants w, m, A €R (m, A#0). Then, for each density operator D on C*®
L?*(R), the reduced density operator

p(t) = trp @) (e De ™) (teR)

satisfies
tllim p(t)=% Z (1+50)p(0)(1+s0). (2)
L s==x1

Proof. An easy consequence of the trace-class condition shows that it suffices
to prove (2) for D’s representing pure states. So let D be the orthogonal projector

(1)), X-1= ((1)), and arbitrary ¢., € L*R)

satisfying |l@4|[>+|lo_1|* = 1. If follows that, for all teR,
Y0 -l

where the Baker-Campbell-Hausdorff formula leads to
,Y(t)ei(zwt+)\2t3/m)

onto the vector Y,_.; x;® ¢, with x; = (

—2intQ , —iAt2P/m
¢ 1>

={¢_, ' € €
= L e Mg (x)* @ (x — At*/m) dx. (3)

To prove lim,_... y(t) =0, suppose first that ¢_; has compact support and consider
the bounded linear operator T from L*[R) to the space C(R) of bounded
continuous functions on R (with supremum norm) such that, for every ¢, € L*(R)
and all teR, (Te,)(t) is given by the right-hand side of (3). If ¢, has compact
support, too, then To,; trivially is in the closed subspace of C(R)-functions
vanishing at +o. By the boundedness of T, this extends to all ¢, € L*(R). Keeping
now ¢, € L*(R) fixed and repeating the argument for the ¢_;-dependence of y(-),
we obtain lim,_,.. y(t)=0 for all ¢.,€ L*[R). q.e.d.

Remarks. 1) In an obvious interpretation of Hamiltonian (1), Theorem 1 says
that, no matter what the initial state of the particle, all spin measurements
performed after infinite time can be interpreted in terms of the proposition that
the spin is exclusively in either one of the up/down states x., (with respective
probabilities tre2(p(0)(1+0)/2)). And the proof gives the appealing detail that this
‘state reduction’ occurs already in finite time if the particle is initially localized in
a finite region of space.

2) The irreversibility of the spin subdynamics as implied by Theorem 1, i.e.
the absence of recurrence cycles and the approach of p(t) to a persistent state
p(=) for every initial state, is in perfect formal analogy to that featured by
Bloch-type semigroup evolutions (compare equation (2) vs. [5]). Equation (2) also
entails that p(«) is more mixed (in the sense of Uhlmann —see e.g. [6]) than p(0),
so the entropy of p(«) is not less than that of p(0).

3) Theorem 1 holds for still simpler, although hardly physical Hamiltonians
obtained, for instance, by replacing P? in (1) by P or a function of Q. The latter
variant is essentially the model analyzed along similar lines in [7].

Now for arbitrary ¢,,eC (r=1,2,...;s==+1) such that oot I
(x; | p(®)x.) (s, s'==£1), the statistical state p() may be decomposed into pure
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states given by the (unnormalized) vectors },_.; ¢ xs (r=1,2,...). Le. ‘the
knowledge of a non-pure statistical state does not imply the knowledge of the
kind of ensemble to which it refers’ [8] (the ensemble alluded to in Remark 1 is
singled out, of course, in that it applies simultaneously to all states p(e) as given
by Theorem 1%)). This is the major reason why Theorem 1, as it stands, falls short
of fully mimicking a quantum measurement process. In fact, any successful theory
of measurement [7], [10] requires specification of a suitable algebra of observa-
bles which implies, at least for some non-pure states, a unique decomposition into
pure states (corresponding to different ‘pointer readings’). To be sure, such
‘pointer positions’ cannot be obtained from local position or momentum measure-
ments of the particle:

Proposition 2. Adopt the notations of Theorem 1 and of the proof thereof. Let
©:1€ L*R) and define ¢.,(t)e L*([R) by

e Y Qe = Y x.®q,) (4)

s==1 s==1

(teR). Furthermore, let the C*-algebra of quasilocal observables, sf, be the norm
closure of

U {1.(Q)Bf.(Q)| BeBL°R)}

where B(L*[R)) is the set of all bounded linear operators on L*(R), and f, is the
characteristic function of the interval [-n,n] (n=1,2,...). Then

lim (¢, (t) | Ae (1))=0  (s,8'==%1) (5)

Il —»00

for all A e . The same holds if Q is replaced by P in the definition of .

Proof. By a simple continuity argument, we need to prove (5) only for all
A =1,(Q)Bf.(Q) with BeRB(L*R)) and n=1,2,.... For any such A and
¢, € L*R)NLY(R) it follows that

Kes () | Ape (M <|IBI - llesl - lIf. (@), (D]
If (@)@ (Dl =If,. (Q)e ™M e HFHEmeTiM0g, |

B L2
2 i L, P\2: \* T 2m
2 172
—isAty dx}

i
@, (y)| dy
ltl L

@s(y) dy

*)  Recall also the following characterizations of the decomposition of a statistical state into
orthogonal vector states: (i) The underlying elementary events correspond to mutually compati-
ble propositions. (ii) The resulting probability distribution is least mixed in the sense of Uhlmann

(cf. [9]).
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(teR), whence (5). The extension to arbitrary ¢, € L*(R) proceeds similarly as in
the proof of Theorem 1. The truncated-momentum version of (5) follows from
If. (P)e, (Dl =|If, (P)e ™ || =|If, (P — sAt)g,[| >0 as [t|—> for each ¢, L*(R).
g.e.d.

Clearly it is the spreading of the wave packet and the uniform acceleration of
the particle, respectively, which cause the spatial parts of every vector state of the
particle to evolve so as to give asymptotically vanishing expectation values (and
interference terms) for both classes of observables described in Proposition 2. So
it is not surprising that we need macroscopic measuring devices like two semi-
infinite screens, in order to detect whether the particle is deflected in the + or —
direction, i.e. to get the desired ‘pointer positions’:

Proposition 3. Assume the hypotheses of Proposition 2, and let f be the
characteristic function of the interval [0, «[. Then, for u = +oo,

Iim< Y xR (|A Y xs®¢s(t)>=lim Y (xR (1) | Alx: Qe (1))

t—=u \g==+1 s==1 —U g=1

(6)

for all A € B(C*)@{f(Q)Y" (where " denotes the double commutant, and where the
limits in (6) exist). The same holds with f(Q) replaced by f(P).

Proof. The claim is obvious if we can prove the more detailed statements

lim (e, (1) | @A)y =8, llel, (72)
}l_r)I:o (q’s (t) | f(Q)‘Ps (t)> 6s,s' 83,—-sig(m)\) “(Psl 2’ (7b)
hm <(Ps(t) | .f(P)(Ps’(t)) = 8s,s’as,:l:sig()t) "(Ps“z (70)

t—>=kco

(s,s'==x1) where ¢.;=¢.,(0) (recall (4)). (7a) is essentially the content of
Theorem 1. To see (7b), note first that

(.01 f( @ = (o, | eremf{ @ - AL )eriamg,)

2

% e=FisM2le +2isAtQ , —itP2/(2m)

K. (1) | f(Q)p_ (1)) =

€ € (p:Fs
<@ 2L ) em, |- ol
then prove
. itP2/(2m) sAt? —itP>/(2m)
w— llllm e f Q _m € = 83,—sig(mh.)1 (8)
tl—co
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by verifying the required matrix-element relations for the (total) set of functions
R>x+— e > " (aeR); and finally use that (8) implies
s— lim f(Q—|At*/(2m)|) exp (—itP?/(2m)) =0.

|t|—ee

Similarly, equation (7c) follows from

(@ (1) | f(P) s (1)) =@, | f(P—sAD) @),
Koo (1) | f{(P)p_o (N = KF(PF sAt) @y, | €™/ me ™M ),

and
$— lim f(P_ SA.t) = 53,:Fsig()t)1' q.e.d.

t—>too

Proposition 3 shows that, for every (pure) initial state Y._., x.® ¢, of the
particle, the time-evolved state (4) for t—o induces a (mixed) state on

B(C*)@{f(Q)}’ with unique decomposition into pure components corresponding
to the alternatives

(spin . )®(particle at +0)
down

(see [7] for a detailed discussion of this type of quantum measurement process). In
addition, it exemplifies the typical situation where one and the same quantity
(here the spin) can be measured by different classical measuring instruments (here
represented by {f(Q)}" and {f(P)}") which are non-commutative among each
other.

The often-asserted relationship between state reduction and irreversibility
(cf. also Remarks 1 and 2), becomes now manifest from the following corollary of
Proposition 3:

Theorem 4. Keep notations as before. Then, for every A € B(C*)R{f(Q)}, the
limits
a (A)=w— lim e™Ae ™

t—>+co

exist and are in {c@1}" (the mappings a.(-) are endomorphisms if and only if
restricted to the domain {o}"@{f(Q)}"). The same holds if f(Q) is replaced by f(P).

Proof. This is a straightforward result of (4), (6), (7) for all ¢, € L*(R). Note
that the weak limits in question can actually be computed very explicitly. q.e.d.

Indeed, for state reduction it is crucial that «.(-) maps the algebra of
observables, B(C?) ®{f(Q)}", onto a commutative subalgebra, {o® 1}"; while for
irreversibility it is essential that «_(-) is not invertible, i.e. that o, () maps the
algebra of observables onto a sufficiently small subalgebra. But in the present
model, the latter property is clearly a consequence of the former.
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