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The scattering cross section and its Born
approximation at high energies

by A. Jensen
Département de Physique Théorique, Université de Geneéve, 1211 GENEVE 4, Switzerland

(21. VII. 1980)

Abstract. For H=-A+V in L?(R?) with V(x)=(1+x?)"PW(x), B>1, WeL9(R?), 3=q=0,
we prove

O_'(:\) e 5’1()\)+ O(/\_l_(llz)+4l3q)

as A — o, where &(\) is the total scattering cross section, averaged over all incident directions, and
a,(A) its (first) Born approximation.

I. Introduction

We consider scattering theory in L*(R®) for H=—A+ V with V multiplica-
tion by a real-valued function V(x) satisfying the condition

(1+x*)PV(x)e LY(R? (1.1)

for some B> 1,3 = q=o. For such potentials the total cross section averaged over
all incident directions, &(A), and its (first) Born approximation, &,(A), are known
to exist and be finite for all energies A € (0, «)\e. Here e is a bounded closed set of
measure zero, and in most cases e = 0,(H) N (0, ), o,(H) the point spectrum of
H. See [2, 4] for definition and discussion of &(A) and &4(A).

It is well known that #(A)= O(A™") and ,(A)= O(A™") as A — ». One also
has 6(A\)—&,(A)=0(A"") as A — . This is probably well known, although we
have not been able to find the result in the literature. In any case the proof is
given below. Here we consider the question of how good an approximation &;(A)
is to a(A) as A — . There seems to be no rigorous remainder estimates, even for
Yukawa potentials.

Our result is the following: If V satisfies (1.1) for some g, 3<qg=<c, then

G(A)— @, (L) = O(A30-120) (1.2)

as A — =, In particular, for a Yukawa potential V(x)=c |x|™' exp (—a |x|), a >0,
one has ¢(A)—&,(A) = O(A~%**%) for any 8>0. The proof of (1.2) is based on
the expression for the scattering matrix obtained in Kato—Kuroda scattering
theory, a resolvent estimate due to Agmon, and complex interpolation.
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2. The remainder estimate

Let V satisfy (1.1). Let H,=—A and define H= H,+ V as the quadratic form
sum. Write V(x)=p(x)*W(x), p(x)=(1+x*""? WeLR>. By Holder’s in-
equality Ve L'(R’)NL*?*(R?) for 2=q<2 and VeL? (R )NLY(R’) for 2=q=<
%, s0 all the results in the scattering theory for (H,, H) are well known, and can
be obtained by the Kato-Kuroda method, see e.g. [2,4, 5, 6,9, 10].

Write V=AB with A(x)=px)|W(x)|*? and B(x)=p(x)|W(x)|'*x
sgn (W(x)). Let Ry({) =(H,— )" be the free resolvent. It is given by

exp (ivV{ |x -y
47 |x —y|

Ry(0): , Im&H>0, (2.1)

where T: k(x, y) means that the operator T has the integral kernel k(x, y). The
operator Q({) = BR,({)A, Im ({) # 0, is a Hilbert-Schmidt operator by Sobolev’s
inequality. The boundary values (A >0)

Q.(A\)= li{% Q(A tie)
exist in the Hilbert-Schmidt norm and are given by

exp (:&ix/x lx—yl|)
4 [x —y|

Note that the Hilbert-Schmidt norm of Q_(A) is independent of A. Let us also
mention the Zemach—Klein result [10, 12]

”Q:I:(A)HB(LZ(IP)) —0 as A—oo. (23)

B(L?*(R?)) denotes the bounded operators on L%(R?), and B,(L*R?)) (B,(L*(R?)))
the Hilbert-Schmidt (trace class) operators. L?*(S*) is the space of square
integrable functions on the unit sphere S>. '

The operators T(A; A), T(A; B) are the bounded operators from L*(R’) to
L*(S?) given by

Q.(A) : B(x)

Aly). (2.2)

T(A; A): 2m 22712 A exp (—id 2w - x)A(x), (2.4)

T(A; B) : 2m) 72272\ Y4 exp (—ih o - x)B(x). (2.5)
We have the relation (see [5])

Q.(A)—Q_(A)=2mT(A; B)*T(A; A). ‘ (2.6)

(1+Q.(A))"" exists as a bounded operator for A (0, <)\e, where e is a closed
bounded set of measure zero. We can find A,> 0 such that (0, ®)\e 2 (A,, *), and
in the sequel we always assume A > A,.

The scattering matrix S(A) for (H,, H) is the unitary operator on L?*(S?)
given ‘by

S(A)=1-2mT(A; A)(1+ Q,(A) 'T(A; B)*. (2.7)
One has
SM*=1+2mT(A; A)1+Q_(A\)*T(Ar; B)*. (2.8)
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See [2,4,5,6,9,10], where these results are given (for different classes of V
which together cover the class considered here).

Under assumption (1.1) S(A)—1 is a Hilbert-Schmidt operator. The cross
section averaged over all incident directions is given by

a(A)=— ||S(A) 1[5, w22

See [2,4], from which the result can be obtained for the class of V
considered here. Unitarity of S(A) implies (S(A)—D*S\)—-1)=
2—S(A)—S(A)* e B,(L*(S?) and hence the convenient expression

G(A) = —f tr (S(A)+S(A)*—2). (2.9)

The proof of (1.2) is based on the following Lemma:

Lemma 2.1. Let V satisfy (1.1) for some q,3=q=. Then we have
”Oi()\)“B(Lz(Rﬁ) o)A RED (2.10)
for A=1.

Proof. The proof is by complex interpolation and is similar to the proof of
Theorem 4.1 in [11]. Let us prove the result for Q. (A). First note that the norm
of Q,(A) equals the norm of Q.(A), where

O,(\) : | Wx)[2p(x) 2B (:T”{; ‘_"y| D o) 1w,

peL>R>)NL*(R?®) and WeLiR?, 3=qg=wx, imply p|W|">*eL*(R’) and
Hp |W|"?|| s < c ||W|;/?. Estimating the operator norm by the Hilbert-Schmidt
norm one obtains from Sobolev’s inequality

Q. MlI=cllo [W"Rs=c' [|W]..
A result due to Agmon [1] implies that the operator

Il —
exp (i Alxﬂ)’i) oly)

is bounded on L*(R* and ||K,(A)||=cA™"?, A=1. Agmon states the result
without proof. A complete proof can be found in [6]. Rauch [7] has proved that
the power A~'? cannot be improved.

Assume We L*(R?) with compact support. Fix q, 3=<q =<c. Consider for z
satisfying 0 =Re z=1 the family of operators

K. (A) : p(x)

4ar |x —

F(z) : |[W(x)|%"? p(x) eXp4(iJX bx—y)
7 |x—y|

Let f, ge L*(R?). z — (f, F(z)g) is analytic for 0<Re z<1 and continuous for

p(y) [W(y)|*".
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0=Re z=1. The estimates given above imply
(f, Fliy)g)l =A™ |fll gl

and

|(f, F(A +iy) )l = (| [WI*[|s)* [Ifll I
for all yeR. The three line theorem (see e.g. [8]) implies

(#7(55))

The result now follows for general We L?(R?), 3=g <, by an approx1mat10n
argument. For g =« the result follows directly from the estimate for K,(A) given
above.

= A2 WL |Ifl gl

Theorem 2.2. Let V satisfy (1.1) for some q,5=<q=<c. We then have
a(A)=a,(A)+ O 317120 (2.11)
as A — , where '

_ 11 V(x)V(y)
Gl(’\)_XE” |x—y?

is the (first) Born approximation to (A).

(sin (VA |x — y|))? dx dy (2.12)

Remark 2.3.

(1) It is well known that (2.12) is the first Born approximation to a(A), as
defined in [2].

(i) A change of variables, (sin u)*=%(1—cos(2u)), and the Riemann-
Lebesgue lemma imply

1 [ V@V
A= ” |x—yP?

-1
N 8m dxdy+o(A7")

as A — », and hence

lim Ag(A) = hm Aa, (A) —iﬂ_ J‘ j%—gl

A—>0
(iii) The integrals in (2.12) and (ii) above are non-negative. This is well
known for V a Rollnik potential ([10]) for the integral in (ii), and will
also follow from the proof given below.

dx dy

Proof. The proof is based on the expression (2.9) for ¢(A). (2.7) and (2.8)
imply

S(A)+SA)* -2 =—=2mT(; A)(1+Q.(A\) ' —=(1+Q_(A) HT(A; B)*.

The Born expansion consists in this case of an expansion of (1+ Q.(A))™'. We use
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only the finite form of the expansion, so there are no convergence problems.

(1+Q () '=(1+0_(A)!

=—(Q:(N)— QM)+ O, A1+ Q. (A) "= Q_(A)’(1+0Q_(\) .
Hence we have S(A)+S(A\)*—2=a+B,+B_ with an obvious notation. (2.6)
implies
a=2miT(A; A)Q.(A)— Q_(A)T(A; B)*
=—47>T(A; A)T(A; B)*T(A; A)T(A; B)*.

tra=—4m*tr (T(A; B)*T(\; A))?).

(2.2) and (2.6) imply that T(A; B)*T(A; A) is a Hilbert-Schmidt operator given by

T(A; B)*T(); A) - ﬁj B(x) (I‘/xxj’;f D ay).

Using V= AB one obtains
1 ” V(x)V(y)
4a* |lx—y[?
This gives the term &,(A) in (2.11), and (2.12). The integral in (2.12) is non-
negative, being the trace of a non-negative operator, c.f. Remark 2.3 (iii). One
easily verifies that this term is the first Born approximation as defined in [2].

Let us estimate tr (B.). The estimate for tr (8_) is similar and is omitted. Using
(2.6) we get

tr (B)=—2mi tr (T(A; A)Q,(A)*(1+ Q. (A)""T(A; B)¥)
==2mi tr (T(A; B)*T(A; A)Q.(A)*(1+ Q. (A)™)
=—tr (Q+(A)— Q) Q. (A)* (1 + Q. (M) ™).
ltr (BOl=(Q:M)lls +QM)s) QW[ (1 + Q- (M) s (2.13)

where B = B(L*(R?) and B,= B,(L*(R?)). Lemma 2.1 gives under assumption
(1.1)

||Q+(/\)”B H ”Q—(’\)”B < c\ 2344

As noted above ||Q,(A)||p, is independent of A. (2.3) gives |[(1+ Q. (1) g =c for
A = A,. This gives the remainder estimate in (2.11).

(sin (VA |x — y|)? dx dy.

fra=

Corollary 2.4. Let V satisfy (1.1) with g =3. When then have
a(A)—a (M) =A™

as A — +x,
Proof. This follows from (2.3) and (2.13).

Remark 2.5. The above results can easily be extended to cover potentials of
the form

V(x) = (1+x*) 7P (Vy(x) + Vy(x))
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with B>1, V, e LY(R?), 3= g <x, V,e L*(R?). This follows by Kato’s remark [3;
Remark 1.10] and an easy extension of Lemma 2.1. Thus Theorem 2.2 is valid for
this class of potentials.

Remark 2.6. One can prove the estimate (2.10) for a larger class of poten-
tials. We shall indicate one such extension. Assume

V(x) - (1 + x2)—(a/2)(1—3/2q)w(x) (214)

for «>1, We L9(R®), 3=gq =c. Factorize V= AB as above with p(x) replaced
by (1+x%)7*07329 Let Q.(A) be given by (2.2). Then the estimate (2.10) is
valid for Q.(A). The proof is similar to the proof of Lemma 2.1, if one considers
instead of F(z) the family G(z) defined as follows. Let p(x)=(1+x%)"**. Fix
q,3=<q <, and define

G(z) : |W(x)|**” p(x)'~*

ivA |x—y|

Ty PO T WO,

The condition (2.14) on V is not sufficient to ensure the finiteness of &(A), and
the boundedness of the exceptional set e. But if one imposes further conditions on
V satisfying (2.14), one can prove our result for a slightly larger class of V. For
instance one could assume (2.14) with a >2. |
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Note added in proof: G. Hagedorn (Comm. Math. Phys. 66, 77-94 (1979))
has given a remainder estimate for the Born approximation to the scattering
amplitude.
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