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Generating functions of canonical maps

by J.-P. Amiet and P. Huguenin
Institute of Physics, University of Neuchatel, Rue A.-L. Breguet 1, CH-2000 Neuchatel (Switzerland)

(17. VII. 1980)

Abstract. There are many possible descriptions of a canonical map of a symplectic manifold
(phase space) by means of generating functions. These possibilities form a continuous set which we
investigate in a very general way. The generalized form of the Hamilton-Jacobi equation for
generating functions of time dependent canonical maps is established. The composition law of
generating functions is studied. Important sub-groups of canonical maps are treated as illustrations.

1. Introduction

Generating functions of canonical maps play a well known role in classical
mechanics as solutions of the Hamilton-Jacobi equation. They appear also in
quantum mechanics in the WKB method and more generally as exponents in the
matrix elements of time evolution operators. It is not an exaggeration to say that
generating functions play a key role as a link between classical and quantum
mechanics.

As a consequence, it is important to try to understand geometrically the
meaning of the different kinds of generating functions. At first glance, the
different possibilities for choosing the variables are rather confusing.

The present paper makes use of a remark due to Abraham [1] that the graph of
a canonical map is a Lagrangian manifold in the product space of the phase space
with itself. The sometimes strange choice of variables in the theory is necessitated
by the parametrization of this Lagrangian manifold. We give a general method for
obtaining all possible generating functions of a given canonical map. We study
more carefully a new possibility proposed by Marinov. This kind of generating
function also appears as an exponent in the Wigner-function of unitary operators,
but the present paper deals only with classical properties.

2. Generating functions of canonical maps

Let E be a 2n dimensional real symplectic manifold, ! its nondegenerate
closed 2-form, and let @ be a canonical map of E

®:Esx—xeE. (2.1)

The condition of canonicity, requiring the invariance of the action integral, can
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also be written

Jl(@(x) | ®'(x) dxy, @'(x) dx,) = I I(x | dxy, dx,). ‘ (2.2)
The graph ¥ of @,

V' ={u|x,x'=®(x)e E} < E XE, (2.3)
in the product space

ExE={u|lu=(xx);x,x'e E} (2.4)

is a 2n-dimensional submanifold of EXE having a characteristic geometry.
Introducing into E X E a symplectic structure by means of the 2-form

L(u | du,, du,)=Il(x i dx,, dx,)—I(x' | dx?; dxi) (2.5)
which, like [, is nondegenerate and closed

L(u | duy, duy) =0V du, = du, =0, (2.6)

d¥=0, (2:7)

we see that the condition (2.2) can be written
J £=0, 99, (2.8)
<}

for any simply connected compact 2-dimensional domain & of ¥. In other words,
V' is a Lagrangian sub-manifold of the symplectic manifold

E=(EXE;%). (2.9

Conversely, if a Lagrangian sub-manifold of € is the graph of a map, it defines a
canonical map of E. To give explicitly a canonical map of E is thus essentially a
problem of finding a convenient parametrization of a Lagrangian sub-manifold of
€.

The property (2.7) implies that &£ is locally the skew derivative of a 1-form

k4

£ =ddA. (2.10)

Further, the condition (2.8) means that the restriction %,- of &£ to the manifold ¥
is a vanishing 2-form,

0=%, =dsA,. (2.11)
In consequence, the restriction s is locally the total derivative
Ay =dA (2.12)

of a differentiable function A defined on Y.

The potentials & and A are not unique. If & is any differentiable function on
%, then

A

A=A+dF (2.13)

is another ‘potential’; £ = dA. Correspondingly, one has for the restrictions
Aoy = Aoy + dF, = dA (2.14)
A=A+, (2.15)

The potentials s/ and A are moreover only defined up to an additive constant.
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In order to make tractable the fundamental equation (2.12) of ¥, the three
following tools have to be conveniently chosen. (1) A chart of &, (2) a ‘potential’
A, (3) a pair M, M° of reference Lagrangian sub-manifolds of &, complementary
to each other: &€ = (M x4 ; £). Then by adapting the chart to this new reduction
of € into a product

E€=(EXE;®)a(x,x) o (a, B)eMXxM ; L)=F

in a way that (a, 0)e M, (0, B) e M°, the equation (2.12) will lead to the simple
result (see Fig. 1)

V' 3(a, B) > Bla)=VA(a).

For the first tool, it is obviously convenient to choose a canonical chart of E. The
coefficients of | are then constants,

I(x | dx,, dx,) = dx, - L dx,. (2.16)
The constant matrix L will only be supposed to have the properties
L=-L, L?=-1,, detL=1, (2.17)

its precise form being irrelevant. This choice yields a canonical chart of &, in
which £ reads

L(u | du,, du,) = du, - £ du,, du; = (dx;, dx!), (2.18)
where
L 0
= . 2.1
< (0 —L) (2.19)

Figure 1
Schematic view in & of the graph %" of a canonical map. The points u€ ¥ are located relative to the
reference manifold (.
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To choose the second tool, we remark that a 1-form &/ can always be written
A(u|du)=a(u) - du=2(a*(u) | du); (2.20)

the dual a* of the field a is well defined because £ is non-degenerate (2.6). In a
given canonical chart of &, the simplest choice for a* is a linear function. With

a*(u)=3u (2.21)
one has
A(u|du)=3u-Ldu=%xLdx—x"-Ldx) (2.22)

and the correct form (2.18) for &£.

This expression is invariant under symplectic changes of chart. In order to
preserve the linearity in u, subsequent changes of chart should obviously be
limited to linear ones. For the third tool, we remark that in a given canonical
chart, the simplest Lagrangian sub-manifolds are linear. They are given using an
arbitrary anticanonical involution,

Igr1=-2¥, I=-1,,. (2.23)
The polarization projectors
P,.=31+D), (2.24)
having the properties
P>=P., P.,P.=0, P.¥P.=0, P.2=2P., (2.25)
decompose the tangent spaces into the sum of two isotropic subspaces,
du=du,+du_, (2.26)
du, =P, du, (2.27)
a*(u)=P,a*(u)+P_a™*(u)=3u, +3u_. (2.28)
The two manifolds
M={u|u_=0} (2.29)
and
M={u|u, =0} (2.30)

are complementary and Lagrangian. (Note that # does not define I completely
because &£ is skew symmetric. Knowledge of #M° is required to fix L) If, in
addition, #° is transverse to ¥, the points of ¥ can be located relative to the
reference manifold # as shown in Fig. 1. The ‘potential’ & is decomposed into a
sum

Au | du) = A(u | du)—id(u - LIu) (2.31)
in which the gauge transformed
Au|du)=P_u)- £P, du=u_- £ du, (2.32)

have vanishing restrictions to both # and .#°. Eventually, by adapting the



Vol. 53, 1980 Generating functions of canonical maps 381

coordinates to # and #° with a linear change of chart

u=(x,x)—>th=(a, B)= Uy, (2.33)
such that
1 0
U lIU= T=( 2n ) 2.34
- 0 -1
U,<£U=I‘=( 2") 2.35
L. 0 (2.35)
a 0 ;
one has u_= U(O) eM, u,= U(B) e M. This leads to
Au | du)=B - da (2.36)
Au|du)y=B-da—3d (B-a)=%B - da—a - dB). (2.37)
The canonicity condition (2.21) is equivalent to
Aoy =dA (2.38)
or, explicitly
Bla)=VA(a)=V(A(a) +3a - B(a)). (2.39)

In summary: Given a reference Lagrangian sub-manifold # of € and a potential
A, a canonical map ® of E is defined by the points u=(x, X) of its graph ¥
expressed in the following parametric form

x(a)= U« + Ui.B(a)

_ (2.40)
X(a)=Uya+ U,,B(a)
The 2n-dimensional square matrices U are sub-matrices of U (2.33),
= (U“ U”) : (2.41)
U21 U22

The convenient reference manifolds defined in (2.29-30) form a continuous set.")
A limited discrete subset only is exploited in the literature (Section 3). The
potential A is commonly called the generating function of the canonical transfor-
mation ®. It is clear that for each choice I one has to select an appropriate A; in
order to describe the same map ®. The relation between these generating
functions is easily established by remarking that the potential A itself does not
depend on I. We thus have for two equivalent pairs (I, A) and (I', A")

A=A(a")-1a' -VA'(a") = A(a)—ia - VA(a). (2.42)

The coordinates ¢ and ' labelling the same point of %" in the two descriptions-
are connected by the linear relation

u=Uy=U"Y, (2.43)
where U and U’ put I and I' respectively into the standard form T (2.34).

1 The set of all U’s (2.35) modulo those which leave I invariant.
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However, (2.43) does not give a linear relation between a and o' if B or B’ is a
non-linear function of respectively a or o'.

The description of a canonical map by means of a pair (I, A) usually has a
local validity only. The picture may break down for two reasons. First, the map ®
may be defined on a subset E' of E only. If E’ is made of disconnected open
subsets E{ of E, the graph V" of ® has as many branches ¥}, and, for each of them,
a distinct generating function A, is needed. In the case where the subsets E! have
common boundaries, and an ./ttc transverse to the ¥}’s exists, the A’s may be
equal to the different values of one multiply valued function A (see Section 6,
Example 2). Secondly, even if ® is a diffeomorphism of E, a reference manifold Jtt
with a complementary #° everywhere transverse to 7" does not always exist. As
long as M° is transverse to ¥, the relations (2.40) are bijective and the Jacobians

3 FA ’A X
da da da Jda da Ja

take a finite, non-zero value. Indeed, tangent vectors to 7" and to #° can be
respectively expressed as

du = (dx, 2(x) dx) (2.45)
and
du’=(U,, dB, U,, dB), (2.46)
where
Ox% A A\ !
309 = (22) = (U + Unn o )(Un+ Unnseae) €Sp(TE); (2.47)

the matrices U, are sub-matrices of U (2.41). The lack of transversality means
that at least one tangent vector of TV, is co-linear to a tangent vector of TA(":

du' = A du, AeR. (2.48)
Eliminating dx from this relation, one obtains

(U, —2(x)Uy,) dB = 0. (2.49)
Therefore, whenever

det (U, —2(x)U,,) #0 (2.50)

the solution is trivial, dB =0, and #° is transverse to ¥ in (x, X(x)). On the other
hand, one deduces from (2.40) and (2.46) the equation

(Usz—2Ux)U)Q=2(x) Uy, — Uy, (2.51)
which relates 2(x(«)) to the matrix
A
Q)= (—aa-‘* aa“) (2.52)

of second derivatives of A. When the transversality condition (2.50) holds, one
has

Q=(U22—2U12)_1(2U11“ U,,) (2.53)
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or
2= (U21 + U, )(Uy,; + Uuﬂ)_l- (2.54)

Points at which (2.50) fails to hold are singular points of A.
To conclude this point, we show that there exists no #° everywhere trans-
verse to ¥ if the set '

S'={3(x)| xe E}=Sp 2n, R) (2.55)

contains a closed path C={3(x(t))|teR} which is not homotopic to zero.
Considering the generic case det U,, # 0 for simplicity, we rewrite (2.50) as

det (1+2,2(x(1)) #0. (2.56)
By virtue of (2.35), the matrix
20 =—-Uj, U;Tél 257

is symplectic. For any 2,€Sp (2n, R) the path y' =2,y is homotopic to y because
Sp (2n, R) is connected. If y is not homotopic to zero, neither is y" and at least
one eigenvalue o, (1) of 2,2(x(t)) is equal to —1 for some #,. Since

det (1+2,2(x(1) = ﬁ (1+0,(1))

this function vanishes in x(t,), and (2.56) is not fulfilled.

We remark that the existence of an #° transverse to ¥ is not excluded when
® is only locally one-to-one. The above discussion remains valid in this case.

A reference manifold # may or may not be appropriate for the discussion of
canonical maps lying in the vicinity of the map identity ®,:x+~>x. The graph
V,={u|x=x} of ®, is given, using an arbitrary 4, by a generating function A,
which, according to (2.40), fulfills the relation

(Uyy = Upa =(Uy,,— Up)VA, (a). (2.58)

‘The most convenient choice is naturally #= 7, ; in this case, A,=0and U, =
U,, (case (e), Section 3). Otherwise, A, is a quadratic function

A (a)=1a Q« (2.59)

with ), given by (2.53) with 2 =1. If #° is not transverse to ¥, (2.51) has no
solution and A, does not exist in this description. (See, for example, cases (a) and
(b), Table 1.)

3. Four well-known and one recent descriptions of canonical maps

Four well-known descriptions of canonical maps [2] by means of generating
functions are nearly always used. They are listed in Table 1. The choices (a) and
(b) are not adequate to describe the map identity ®,. The fifth description, case
(e) of Table 1, makes use of the graph ¥, of ®, as reference manifold. This was
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Table 1
V) 4 dA A=A+ a A,
oW
az(qaq’) Pza—(q,CT)
(a) 6€V dW=p-dq—p-dg W=A+4q-p—G-p) No
B=({p,—-p) P S (q.9)
q
; oG, _
a=(p,p’) q=---(p.p)
(b) aGP dG=-q-dp+q-dp G=A+X-p-q+p-d No
B=(-4.9) q=-(;(p,ﬁ)
p
, S
a=(q,p) p=5-(q,p)
() . dS=p-dq+q-dp S=A+iq-p+d-p) F-q
B=(pq) d=—(q,p)
ap
aF
a=(p,q) q=—a—(p,fi)
(d) 4 dF=—q-dp-p-dj F=A-}q-p+d-p) -p-q
B={—4.—p) ﬁ=—a—c_;(p,¢7) ‘
a=3(x+x) L(E-x)_
C S - =vg(x;”‘) dg=-3%-x)-L(di+dx) g=A-3(F-q—q4-p) 0
M={u(a, B)e¥|p =0} Conventions: u(x, x')e&
M ={u(a, )& | a =0} u(x, x) ev

first published by Marinov [3] who looked for a symplectic invariant description.
We happened upon it independently in connection with projective representations
of the symplectic group [4, 5]. Choosing for the complementary manifold #M° =
¥V _., the graph of the parity ®_, : x+>—x, the involution (2.23) is

0 1
I =( 2") 3t
0 12n 0 ( )
and the linear change of coordinates (2.33)
12n —%A) -
I O N |
o=\1, 1A A=L (3.2)
The parametric equations (2.40) defining V" become
x=a—3AB(a)
AP 5 ) = vg(a. (33)

X=a+iAB(a)
The potential A associated with (=%, has been here conventionally called g as
in Table 1. This generating function defines X = ®(x) implicitly by

f-x:/wg(’E ;") (3.4)

This picture will be referred to as the standard one in what follows.
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Figure 2

The canonical map ® maps x onto ¥ and leaves x, fixed. In the canonical chart, the point « is the
middle point of the side z =x —x.

In the canonical chart (tool number 1) chosen for the description, the
quantity

a=3(x+x) 3.5)
can be visualized as the middle point between x and x, and

z=Xx—x=AVB(a) (3.6)
as their ‘difference’. The differential

dg="-da=-I(z, da) (3.7)

represents an element of symplectic area, or equivalently the action integral
computed along the boundary (Fig. 2). Assuming that the map ® generated by g
has a fixed point x,: ®P(x,) = x,, Or Xq= X, = a and z, = 0, the function g(a) can be
normalized in a natural way by integrating dg starting from x,. Then g(a) is equal
to the action relative to the ‘triangle’ (x,, x, X). The form of one of the ‘sides’ xyx
Or Xxy,X 1is irrelevant.

This normalization convention makes sense in more general cases where the
fixed points of ® form a connected sub-manifold:

Foy, Dy)=y.

The reason is that g is constant on ¥ since Vg(y)=0. The argument fails if two
fixed points are isolated or contained in two disconnected parts of Z.

4. Time dependent generating functions

Let ®, be a time dependent canonical map

D, :x—x,(x), (4.1)
solution of the Hamilton equation
%, =AVh (4.2)

with initial conditions
Xo(x) = Py(x). (4.3)
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Figure 3
Schematic view in & of the graphs of canonical maps at two different times ¢ and t'.

The Hamilton function h may be time dependent, and the initial map @, is not
necessarily the identity &,.

The graph ¥, of @, is a Lagrangian manifold, moving in & as a function of ¢
(see Fig. 3). Applying the results of Section 2 with a time independent reference
manifold #, one has at any time

P = (x,?x)) - U(vA?Ea,))’ 4

where A, is the time dependent generating function of ®,. The coordinates a, also
depend on ¢ since the initial points x are fixed (Fig. 3). In order to get an equation
of evolution for A, we differentiate (4.4) with respect to t:

:)=ul . )=
== . A =u,. 4.5
()= U0t e 9. Aay) = )
On the other hand, tangent vectors of ¥, read explicitly
0
(@) da ;
(41 (4
d r = = U( a ) 4.6
“ (de - V)V, A (@) (4.6)

ax
a_(; (ar) - da

Now, the, value of £(du,, u,) computed with coordinates u=(x, x") or ¢ =(a, B)
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must be the same. This leads successively, using (4.5-6), to

£(du, u,) = —l(a—x' - da, AVh(xt)) =—da - - h(x,(a,), t)

oo o,
. A
= (day (dat - Va>VaA=<“r”F(va @A, +é, vaAt))
z—da . a (atA[(at))'
«,

These equalities hold for all da and «,. Dropping the subscript t of «, and
integrating with respect to a, one obtains

2 A(@) = h(x(e), 0+ x(1), @7

where x(t) is the integration constant in « for each t. This differential equation for
the time dependent generating function is a generalized form of the Hamilton—
Jacobi equation. This equation is usually expressed with respect to one of the four
reference manifolds (a) to (d) mentioned in Table 1. The initial condition at t=0
is

A,|,-o= A, = generating function of @, (4.8)
A more explicit form is obtained by the insertion of (4.4) into (4.7):
atAt(a)z h(Uy o+ UIZVA:(a)a t)+ x (). 4.7

The solution of equations (4.7-8) is unique, but it may describe only part of ®, if
this map is not diffeomorphic. This is evident from the discussion of Section 2
when @, itself is not a diffeomorphism. On the other hand, when ®,=®,, for
instance, it may happen that ®, induces trajectories x,(x,) in E which go to
infinity within a finite time t,(x,). Then, the graphs ¥, have more than one branch
for any finite but arbitrarily small t. Other solutions of (4.8), singular in ¢ at 1 =0,
are needed to describe the branches of ¥, that ‘fade out’ at t =0 (see Section 6,
Example (b)).

In the case of particle submitted to velocity independent potentials, one
traditionally takes advantage of the special form of h by choosing the descriptions
(a) or (c). Equation (4.7) is then a partial differential equation in n variables only.
Practically, this is a big advantage, but the full geometrical meaning of the theory
is obscured. Changing the reference manifold allows one to distinguish a physical
catastrophy from a coordinate singularity produced by a perspective effect.

For small times, one has to first order

A la)=Aya)+At(h(Upa+ U, VA(a), 0)+ x(0)). 4.9)

If the initial map is the identity, A, is the quadratic function A, (2.59). The
standard description is then particularly convenient since A, = 0. Calling A, = g, as
in Section 3 and putting x =0:

d,g(a)=h(a+3AVg(a)),  gla)=0, (4.10)
and

at=%(xt+x)7 B,tx,—szg,(a,). (4.11)
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For small ¢
8a:(@) = h(a, 0)At, (4.12)
The linear map induced by @, in tangent space ((2.47-52-54)),

_ (3% _14+3A0,(x)
= (ax) T1-1A0,(x)

is now the inverse Cayley transform of the matrix ;A(), which belongs to the
Lie-algebra sp (2n, R) of Sp (2n, R).

When h does not depend on time, the family {®, | teR} is an Abelian
semi-group, ®,od,=d,,,, and the relation between its generator h and the
generating functions g, is

h(a)zatgt(a)|t=0' (4.14)

Owing to the additional variable ¢, the transversality of #° to ¥, has to be studied
on the basis of the new set

S"={S!|teR}

where S/ is defined by (2.55). The statement of Section 2 remains valid here with
S” replacing S'.

Time depending reference manifolds #, and #; can be included in the
present formalism. This subject lying somewhat outside the scope of this paper,
we only mention here the simple case of the interaction picture. For a Hamiltonian
of the form '

h(x, )= h(x)+hD(x, 1)

where h@ is a second degree polynomial associated with ‘free’ motion and h‘” a
‘perturbation’, it is practical to use a time dependent #, = ¥, the graph of ®*
generated by h'”. This amounts to setting

x, =2(t)y, + v,

eSp (TE,), (4.13)

(see Section 6(a)) and proceeding as above with the interaction Hamiltonian
hI(y, t) = h(O)(E(t)y + Ut: t)

in place of h.

5. Composition law of generating functions

Let &, i=1,2, be two canonical maps, and Ai their generating functions
relative to the same reference manifold #. The product
D,y =P,oP, (5.1)

has a generating function A, which can be expressed as a composition of the first
two,

A=A, TA,. (5.2)
The law T naturally depends on the choice of I (2.23).
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By the definition of ®;, any initial point x of E and its images X, X must form
a ‘triangle’ with edges

X, x =®,(x), X =@,(x) = D;(x). (5.3)
Points of the graphs ¥}, i=1, 2, 3, are respectively
u1=(xa f)a u2:(x> f)a u3:(x3 f) | (5'4)

and tangent vectors to ¥; are

u; = (dx, dx) = (dx, ®}(x) dx), du, = (dx, dx), du, = (dx, dx). (5.5)

It can be verified that the ‘potential’ & (2.22) taken at these points of TE is
additive,

A(us | dus) = ol (uy | duy) +(u, | du,). (5.6)
By splitting & with respect to 4 as in (2.31), the equality (5.6) becomes

sly(us | dus)—3d(u; - LTug)= Y, [ | du)—1d(u; - LTw)] (5.7)
i=1,2
or, in coordinates ¢’ = (a'?, 3) = U 'y, adapted to M,
B - da®—1d(B® - a®) = ¥ [BY- da®—1d(B? - a)]. (5.8)
i=1,2

Taking the canonicity of &, and @, into account, 3=V A, it follows from (5.8)
that B is also the gradlent of an A,. The integration of (5.8) is straightforward
and yields, putting the integration constant equal to zero,

A (a®)=1a® . 8O+ Z [A(aP)—1a® - D], (5.9)
i=1,2 ‘ '

This equation defines A, implicitly and consequently the product (5.2). (We call
the operation T a product rather than a sum because it is non-commutative.) A
useful geometrical picture of the situation is obtained in the product space
(Ex)®={(us, u,, us)} parametrized by the variables & =(a”, a®, «®) and B =
(BY, B@, B?). The definitions (5.4) regarded as constraints in this space can be
rewritten

Bp=Ca (5.10)
with
Uzz _U12 0 ‘_U21 U11 0
B= 0 Uy, —Upxp L= 0 U, Uy |
—Uy, 0 U12 Uiy 0 Uy
The canonicity of @, and ®, is expressed by the two additional constraints
B aP)=VA,(a?), i=1,2. (5.11)

The relations (5.10) and (5.11) define implicitly a 2n-dimensional sub-manifold of
(Ex)® on which equation (5.9) is identically satisfied. By choosing the set a® as
independent variables and letting ad’(a®), i=1,2, BJ(a®), j=1,2,3 be the
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solutions of (5.10) and (5.11), one obtains immediately from (5.9):

As(@?)=3a¥ - BPa®)+ L [A(ad (@) +3af(@®) - BP(a)] (5.12)

i=1,2
Noting that the matrices B and C as well as the sub-matrices U; may be irregular,
we first set down a procedure for the calculation of the unknowns

ay(a?), Bo(a®) valid in all cases. Using the property (2.35) of U, one can rewrite
(5.10) as

B® = Loy LU {0 — of Wyt Ty LU, B — Uy LU, B (5.13)
a® = Uy, LUy 0" = Up LUy a® + Up, LU(BV = B) (.14}
0=U 10V —U,;;a®+ U,, 8% - U;.B8%, (5.15)

or, taking (5.11) into account,
3(3) = 021LU21(0‘(2) - a(l)) + [721LU22VA2(04(2)) - GnLUuVAl(a(l)) (5-16)

ffuLUlla(l)_ UZZLU21a(2)+ ﬁlzLUlz(VAl(a(l))_VAz(a(z))) —a®) 15173
Uzla(l)+ UZQVAl(a(l)) —_ Ulla(Z)_ UIZVAZ(a(Z)) — 0 ' )

For fixed a® the solution of the system (5.17) yields the desired a§’(a") and
a(a®). The remaining ones, BY’(a'®), are obtained by inserting the arguments
ai(a®) into (5.11) and (5.16).

The generating function of the inverse of a canonical map can be calculated
following a similar procedure. One has in this case ®,=®7', =D, i.e. x=X.
Consequently, equation (5.6) becomes

0=st,(u, | dus) + A, (u, | duy) (5.18)
and equation (5.9) reads
Az(a(Z))—%B(Z) ca® = —Al(a(”)-i—%B(” caW. (5.19)
The constraints (5.10) and (5.11) are now
(1 @
(o wlao)= (0 1) () 520
BY=VA,(a™). (5.21)

The remaining calculation is similar to the previous one.

If the manifold ¢ is not transverse to ¥, the system (5.17) has no solution.
If 4 is transverse to ¥, this same system may have more than one solution. This
is the case for instance when ®; is not a diffeomorphism of E; the various
solutions are necessary to give @, within corresponding domains of E, in which it
is well defined (see Section 6, example (b)). These difficulties reflect the local
character of the theory.

The above general treatment contains many expressions which are much
simpler when A is one of the reference manifolds of Table 1. As an illustration,
we take the case M = ¥V, the graph of the identity. With U = U, (3.2) the matrices
B and C are regular and (5.10) admits the simple solution

BO=2L(a¥—a®) (5.22)
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where ijk are even permutations of 123. The system (5.17) becomes
VA,(a®)+2La=-VA (a®)+2La® =2La®. (5.23)
Replacing the B®’s in equation (5.9) by their values (5.22), one has

As — ‘P(a“), a(z)’ a(3’)
= A, (@) + A(a®)-2(aP—a®) - L(a®—a?). (5.24)

The function Y7, B -« can be expressed using the invariant | only. The
equations (5.23) are just the stationary conditions for W with respect to arbltrary
variations of a” and «®. In summary, the generating function A;(a) of ®,o®, is
given by (5.24) for values a{”(a) and a?(a) such that

v v

aa(i)(a(l) (2)’a) - = (a(l)

a®, a)=0. (5.25)

The expression of the inverse @, =®;' of ®, is obtained from (3.3) by permuting
x and X. One has obviously a’¥=a®, g =—8; in other words

Ay(@)=—A(a). (5.26)

The T-product law (5.24-25) has a simple geometrical mterpretatlon when @,

=1, 2,3 have a single fixed point each. These points are located in x, = o (see
Sectlon 3). Therefore, (5.24-25) prescribes that the value of A, at the ﬁxed point
X() is equal to the sum of the values of A,, i =1, 2, at the fixed points x;;, plus half
the action associated with the triangle (x, X, X). By iteration for a triple product of
maps, one shows easily that the T-product is associative if each factor A; has a
single critical point.

6. Examples

(a) Generating functions of one-parameter sub-groups of symplectic maps

For simplicity, we assume that E is an affine symplectic manifold,
homeomorphic to R*", The coordinates x =(x’, ..., x>") are assumed to be linear
and to belong to a canonical chart in which the coefficients of L are given by the
usual matrix

0 -1
L= ( 1 0). (6.1)
Let h be a second degree function that may be written in two convenient forms
h(x)=3x - Qx+A - x+hy=31(x, Mx)+1(x, a)+ h, (6.2)
where
Q=LM=Q, A=La (6.3)

The solutions of the equations of motion
—AVh=Mx +a (6.4)
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define a 1-parameter sub-group of canonical maps

D, : x> x,(x,) (6.5)
which belongs to the inhomogeneous symplectic group I Sp (E). Explicitly:

x,(x0) = 2(t)xo+ v(1) (6.6)
where

2(t)=e™ (6.7)
and

v(t)=2(1) J t a2 '(tha= J r dt'’2(t")a. (6.8)

0 0

2(t) belongs to the symplectic group Sp (E) and M = AQ to its Lie-algebra sp (E).
We choose the reference manifold #= v, and define accordingly the new
variables

o, =5(x, + %) =3[ (2(1) + 1)xo+ v(1)]

(6.9)
B, = L(x,— xp) = (2(1) —1)xo+ v(2).
The elimination of x, between the two right hand sides yields
B.(a,)=2Lc(t)a, + L(1—c(t))v(t), (6.10)
where
c(t)=§§311=th%M 6.11)

is the Cayley transform of 2(t). Because c(t)esp (E), Lc is symmetric and B,(a,) is
the gradient

Bi(a) =Vg(a) (6.12)
of the generating function
g (a) = (e, c()a) + (e, (1= c(®)v(t)) +v(1). (6.13)

This function must be a solution of the standard Hamilton-Jacobi equation (4.10).
In order to fix the arbitrary function y(t) we require that g, be solution of (4.10)
with introducing g, into this equation and using the key relation

2L¢ =(1+8)Q(1+ &)
one obtains
g:(a) =l(a—3v(1), c()(a—30(1)) + (e, v(1)) +31(a, w(t)) + hot (6.14)

where v(t) is the vector defined in (6.8) and
w(t)zj dt'z_l(t’)v(t')zj dt’j dt"Z (" e (6.15)
0 0 0

Critical points b of h,
Vh(b)=0=L(Mb+a) (6.16)
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are fixed points of &, for any time and, consequently, critical points of g,
(B, =Vg, =0 if ®(b)=0>). There exist three possible cases:

(i) h has no critical point.

This happens when det M=0 and a has non-vanishing components in the
sub-space cancelled by M.

(ii) h has a unique critical point.

This is the case whenever det M#0; b=—M 'a. Using b to parametrize the
Hamiltonian,

h(x) =31(x— b, M(x — b)) + h,, h, = ho—31(b, Mb), ‘ (6.17)
one obtains the simple form for g, (6.14)
g(a)=la—b, c(t)(a— b))+ hyt. (6.18)

(iii) h has a continuous manifold of critical points.
In this case, the vector a must be of the form a = Mz and M must be non-regular;
det M =0. The critical manifold is the set of points

b=—z+y, with y such that My =0. (6.19)

The forms (6.17) for h and (6.18) for g, are applicable and do not depend on the
choice of y.

The graphs ¥, of ®,, t R, are linear manifolds of &. The sets S/ (2.55) reduce to
the single points

o (1) (6.20)
0x

and
S"={3(t) | teR}. (6.21)

If M (6.2) has a purely imaginary eigenvalue m,, S” is not homotopic to zero and
a universal #° does not exist for all t’s. With the present choice (2, (2.57) equals
to —1), this fact is apparent in (6.11). For t, =((2k +1)/m,)m, ke Z,, 3(t,) has an
eigenvalue equal to —1 and c(t,) is no longer defined.

(b) Canonical maps leaving the configuration space invariant

In a given canonical chart of E in which the matrix L is given by (6.1), we
distinguish two sub-sets of coordinates x = (g, p) denoting q a position and p a
momentum. The manifolds

Koy =0 4= Sl . 622)
My, ={(q, P) | p = po fixed}
are complementary Lagrangian sub-manifolds of E. The equivalence class

E‘-] =E/ MQ():O
is the usual configuration space and
Ep = E/J‘tpu:()

the momentum space.
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Writing a — (¢, 1), the relation (3.3) reads more explicitly

19g 1og
= —— = +___
“ 291 B= 29¢
(6.23)
1= +—1—~a-§ n = _la_g
20 P M 25
or
(Gg+q)=¢ Aptp=nq (6.24)
] — =—-a--g N — -—__a.__g.
q-q aq(f,'n), p—p ag(g,n). (6.25)

There are two (local) subgroups of canonical maps, ¢ and ¢”, which map E_ and
E, into themselves respectively. The invariance condition is clearly

q = function of q only (6.26)
in the first case, and
p = function of p only - (6.27)

in the second one. The canonical map q+— p, p— —q connects the two cases; we
need only discuss the first one, i.e. canonical maps of E induced by arbitrary maps
of E,. It is clear from (6.25) that (6.26) holds if and only if (8g/an)(, n) no longer
depends on 7. Locally, the more general generating function of a ¢ is thus

g(& m)=f(&)+n - b(&), (6.28)

where f is an arbitrary C? function and b any C? vector field on E,. The relations
(6.25) then read

g+
q-q9= b(—q > q), (6.29)
defining g(q) implicity, and
_ o\ 1-p 5 5_
blg, p)==(1+p) Vi +1T2p= —3A+R Y[R 'p (6.30)
Here, the function f, the matrix p
1 (ab’) _R-1
(puc) =7 23q") “R+1 (6.31)
and the Jacobi matrix
] +
(-1 ~
q —p

only depend on q through the variable £&=3(g(q)+ q).
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The composition (5.24-25) of two functions g;, i = 1, 2, of type (6.28) yields a
function of the same type since the product also fulfills (6.26). Explicitly

g3(&35 m3) = g1(&1, M) + 22(&2, m2)
+2[(€— &) - (= m3) — (M1 —M3) * (£ 85)]
= fi(€) + f2(&) +[b, —2(&— &)] -
+[b,—2(6—&)] - M+ 2(&— &0 - s,

where n;(&;5, n3), &(&3), i =1, 2, are solution of (5.25). This last equation reads for
& |

3b1(&)— &+ & =3by(&) + £, — £ =0. (6.33)
The factors of m; in g; are thus zero and one finally has
. g5(&3, m3) = f3(&) + M3 - ba(&3)

f3(§3) =f1(§1(§3))+f2(§2(§3)) (6.34)
bs(£&5) = by(&:1(£5)) + by(&:(&5)),

where £(&;) satisfy

%bz(fz) Fafy = _%b1(§1) = £, (6.35)

The generator h of a one-parameter sub-group {¢?|t€R} has the same form
(6.28) as g, by virtue of (4.12),

h(q, p)=9,£(q)+p - 3,b.(q)|.=0 = ho(q)+p - v(q). (6.36)

To illustrate the possibly local character of the theory, we consider a specific
canonical map @, which is not automorphic. For one degree of freedom (n=1),
the Hamiltonian

h(q, p)=q°p (6.37)
generates the map
. q
— =—
R q:(q) 1—qt’ (6.38)
p—>pi(g, p) = (1—qt)°p.
For fixed >0 this map is well defined in the domains

@]

9,:peR, q<%
(6.39)

1
Di:peR, q> e

The graph v, of @] goes to +x as q—1/tF0. With respect to the axis &=
2(G+q), V, has one branch above and one below (Fig. 4). This implies that two
generating functions, one for each branch, are needed. Indeed, writing (6.24-25)
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Figure 4

Section at p =p =0 of the graph ¥, of ®9, at a time t>0. ¥, has two branches ¥*. The ¢-axis is the
section of the reference manifold ¥, and the n-axis that of M=V

oy —

and solving for g, one finds

g(g M) = nf (&) (6.40)

FO =222 VTH @Y =, {4/ . (6.41)

Both g!* are solutions of the standard Hamilton—Jacobi equation (4.10); g~
satisfies the initial condition g$” =0, but g!* becomes singular at t=0. g~
generates @7 in the domain %, which covers E completely at t=0, and gi"
generates @7 in ¥; which vanishes at t=0. The standard picture never breaks
down in this case because M =V_, ={(x,%X)|g=—q, p=—p} is, for each ¢t

everywhere transverse to both branches of V..

(¢) Examples of products T

The product T is in general not unique. The rule (5.24-25) yields as many
results as the number of critical values of ¥, a fixed. But in the following cases,
the product is well defined and associative even if the critical points are not
unique. (Pig through critical variety, for example [6].)
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For A, A’ real constants and g(x) a real function on E,

ATE(x)=A+g(x) (6.42)
(ApT g)(x) = Ap+g(q—3A, p) (6.43)
(8T Ap)(x) = Ap+g(q+3A, p) (6.44)
(Aq T g)(x)=Aq+g(q, p+3A) (6.45)
(8TAQ)(x)=Aq+g(q, p—3A) (6.46)

ApTA'p=(A+A)p (6.47)
AgTA'gq=(A+A)q (6.48)
ADTA'q=Ap+A'qg—3AN (6.49)
NGTAp=Aq+Ap+3AN (6.50)
APTA'GQTA'p=Ap+A'q+A"p+3IN (A" —A). (6.51)
For differentiable functions, infinitesimal transformations are also well defined.
(ehT2)(x)=g(x)+eh(x—3AVg(x))+ O(e?) (6.52)
(g7 eh)(x)=g(x)+ eh(x +3AVg(x))+ O(e?) (6.53)
(eh T g T (—eh)(x) = g(x) + e[h(x —1AVg(x)) - h(x +3AVg(x))]+ O(e?) (6.54)
egTe'hT(—eg)T(—&'h)=—sge'{g h}+ O(ge)+ O(e'e>). (6.55)

The Poisson-bracket is the Lie-product for the composition law of ‘infinitesimal’
functions.
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