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Light cone sum rules in nonabelian gauge field theory')

S. Mallik
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(14. VII. 1980)

Abstract. We examine, in the context of nonabelian gauge field theory, the derivation of the light
cone sum rules which were obtained earlier on the assumption of dominance of canonical singularity in
the current commutator on the light cone. The retarded scaling functions appearing in the sum rules
are numbers known in terms of the charges of the quarks and the number of quarks and gluons in the
theory. Possible applications of the sum rules are suggested.

1. Introduction

It is well-known that asymptotic freedom [1] enjoyed by colour gauge theory
of strong interactions [2] modifies the predictions for short distance and light cone
phenomena based on canonical (free field) singularities or parton model at most
by powers of logarithm. To leading order, the sum rules related to conserved or
partially conserved quantities are not modified at all. Yet, for other quantities like
structure functions, the logarithmic deviations can lead to a picture qualitatively
different from that given by the canonical formalism.

In this work we examine the derivation of the light cone sum rules [3, 4] in the
framework of gauge field theory of strong interactions. Besides causality, the only
other input required for the sum rules is the asymptotic behaviour of the retarded
amplitude in the Bjorken limit (called retarded scaling function in the following).
They were obtained earlier on the assumption that the current commutators on
the light cone are dominated by canonical singularities. The predictions of gauge
field theory concern typically the behaviour of moments of structure functions
(absorptive parts of amplitudes), which indicate a rather singular behaviour of the
structure functions themselves. The behaviour of the retarded scaling function in
this theory is therefore not immediately clear.

The method of operator product expansion (OPE) together with the renor-
malization group equation for the Wilson coefficients give the retarded amplitude
formally as an infinite series diverging in the physical region and thus appears a
priori not to be useful for our purpose. On the basis of the shrinking behaviour of
the absorptive part in the scaling variable, we show that the retarded scaling
function can be simply extracted from the fixed mass dispersion relation for the
retarded amplitude. The retarded scaling function is not affected by the question
of subtractions in the dispersion representation. Our analysis provides, in effect, a

1Y Work supported by Schweizerischer Nationalfonds.
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justification for representing the retarded scaling function by the leading term in
the formal series for the retarded amplitudes.

In Section 2 we illustrate our result with the help of a simple model example
of ‘scattering’ of quark densities. It is then easy to write down sum rules for the
practical case of Compton amplitudes involving electromagnetic currents. This is
considered in Section 3. Different aspects of the sum rules and its possible
applications are discussed in Section 4.

2. Retarded scaling function

To illustrate the method of obtaining the retarded scaling function in a simple
context, we consider the forward retarded amplitude for ‘scattering’ of quark
density of momentum q off nucleon target of momentum p,

T(¢%, v) =i j dze *(p| 0(zo)[J(2/2), T(—212)] |p), 2.1)

the matrix element being averaged over the target spin. Here » =p - q. In terms of
the scaling variable x = —q*/2v, the Bjorken limit is given by —q?, v—, while x
is held fixed. Consider further the flavour singlet amplitude,?) so that the OPE of
the retarded commutator for light like distances is

iO(zO)[J(z/2),I(—z/2)]——2)5 Z Y "G (z)0% 0z, z, (2.2)

n=2i=1,2
+terms with operators of higher twist

where O, ; and O, , denote the usual two strings of twist 2 gauge invariant local
operators bilinear in quark and gluon fields respectively [1]. With

(p| O%y " *|p)=0O,;(p* - - - p*~ —traces), (2.3)
we have |
5 = 1
T(q? v) — Z = C,..0..+0l= p (2.4)
where
d \" C..(z?
Coala) = @5 ) | dzern-= o) @.5)
aq” (z)

As T(v,q° is symmetric under crossing (¢v——v), the summation over n in
equation (2.4) runs only over even integers.

The behaviour of the Wilson coefficients are determined by the eigenvalues
of the matrix of anomalous dimensions of O, ; [1]. The eigenvalues are all greater
than zero, except for n =2, for which the smaller of the two eigenvalues is zero,

2)  The reason for considering the flavour singlet rather than the simpler case of flavour octet amplitude
(where only quark bilinear operators contribute) is that we wish to have an example where the
lowest moment of the structure function contributing to T(v, q°) is nonvanishing in the Bjorken
limit.
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the corresponding eigenvector being the energy momentum tensor. In this case,
one has

,.0,, 2 + —q) = >0, (2.6
i:ZLz 2,i 2,L——>2(Q >r O([]Og( q ) )a r an+nf: a ( )

(Q?) being the average of the squared quark charge and n; and n, denoting the
number of quarks (counting flavour and colour) and gluons respectively in the
theory. For n>2, we have

). GiOni—>A,llog (-g*)] “+O(log (¢ ™),  b,>a, 2.7)

i=1,2

where A, depends on n only®) and a,, grows as log n for large n.

The representation (2.4) does not converge inside the physical region of x,
0=<x =<1. Ignoring, for the moment, the problem of convergence, it is tempting to
conclude that the Bjorken limit of T(v, g°) is given by the first term in the series:

T(x, 4%)—>—5 Q% r+ O(flog (-] ), 28

as v, —q°—, with x kept fixed. Here >0 and is given by either the leading
correction to (2.6) or the second term in (2.4), whichever, is smaller. In the
following we justify this result with the help of fixed g* dispersion relation for
T(v, ).

We now follow the usual procedure of extracting the behaviour of moments
of the structure function W(x, g*), defined as

1
W(x, q*) = —Abs T(x, 4%, (2.9)

by comparing (2.4) with a similar expansion obtained from fixed g dispersion
relation for T. Regge asymptotics would suggest T(v, q°) ~ v*?, for v large and
q” fixed, where a(0) is the t = 0 intercept of the Pomeranchuk trajectory, a(t). Let
us, however, allow an arbitrary number m of subtractions in the variable v, so
that we get

© dv*W('?, g?
T(V q ) - J 12m (r2 1 )+ Z a](qZ)VZJ (210)
(@2/2)? (v?—v?)
where the subtraction constants are, at th1s point, unknown functions of q>.
Changing the integration variable v’ to x'=—q?*/2v/,
1 m—y 1 ’2"1 IW 2
T(x,q2)=(—2) ZJ dx’ 5 (x q )+ Z b(qz)( ) (2.11)
X 0 X _x

where b;(q®) are again unknown functions related to a (qz) For large g2 we must,
however exclude any power behaviour of b;(g?) in q since W(q?, x) and
T(q?, x) cannot have such a behaviour in the Bjorken region. Keeping |xl >1, the

*)  The n-dependence of A, is not predicted by the theory. However, the fact that equation (2.4)
has to converge outside |x|<1 does constrain it for large n.
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denominator of (2.11) can be expanded to get

M=% @[+ T (5)2 ] acxr w0, (2.12)

Comparing (2.4) and (2.12) we get for large g2,

1 r 1 .
bo(@)=0(z),  b@)= ¥ CuOset0l), =t m-1,
q i=1,2 q
(2.13a)
ZJ dxx¥ 'W(x, q*) = ) C2”02”+O( ) ji=m (2.13b)

i=1,2

Equation (2.13b) can be continued analytically to hold for all j. We then get a
rough picture of the behaviour of the structure function itself [1]: At any point
x(0<x=1) the structure function vanishes faster than any power of log(—q°),
provided log (—q°) is large enough. We can then terminate the upper limit of the
integral in (2.11) by €, 0 <e <x, neglecting terms vanishing faster than any power
of log (—q®). The denominator can then be expanded again to obtain (2.12) with
the upper limit of the integral being replaced by e, the variable x now being in the
physical region. Then the series for x>T(x, g*) converges uniformly in g* at fixed
X, since

1Ni—1lre 2G-1) 1 €\2G—-1D
(——2) J dx'x"* T W(x', q2)<( ) J dx'x' W(x', ¢*) = (—) (Q%r,
X o X
(2.14)

thereby proving the validity of the limit given by (2.8). Note that the number of
subtractions does not play any role in the argument: the limit is reproduced either
by one of the subtraction terms or by the leading integral in (2.12), depending on
the number of subtractions.

The limit (2.8) for T(x, g*) is obtained in the physical region of deep inelastic
scattering. But, since, unlike the absorptive part W, the retarded amplitude T is
an analytic function of v with x held fixed, the limit is, in fact, valid in all
directions of the complex plane of the variable ». (This argument of course
excludes an exponential growth for T.)

We are now in a position to write down the light cone dispersion relation for
T, which follow from the observation [2] that, since causality requires the
commutator in (2.1) to be non-zero only for z®=z5—z>=0, 6(z,) may be
replaced by 6(nz) where n, is a lightlike vector, n> = 0. The path of integration in
the dispersion integral is a straight line given by q*=—2xv+y, where x is the
scaling variable (x# 0) and y is a constant. Knowledge of the Bjorken limit settles
the question of subtractions. With one subtraction at infinity, the light cone
dispersion relation for T reads

(;22> - r’" dv'

—00

T(v, q*=2xv+y)=

Abs T, q* =-2xv'+vy). (2.15)

In this model example, we do not have any superconvergence type sum rule.
Below we derive such sum rules for the interesting practical case of inclusive
electroproduction.
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3. Sum rule

The standard decomposition of the forward, spin-averaged nucleon Compton
scattering into invariant amplitudes is

i j dze' p| 6(zo)[T(2/2), I (= 2/2)] |p)

4.9, 1 P-q P-q
= (_gu.v+ ;2 )T]_(V, q2)+P(pu. _qu. qz )(pv—qv q2 )TZ(V5 q2)> (3'1)
where . a, b are flavour symmetry (SU(N)) indices and m is the mass of the
nucleon. The dispersion relations®) for T, , give
i 1
Ti(x, )= ) (l) 2_[ dx'x"2x'Wy(x', 4°),
0

i=2.4,... ‘X

. (3.2)
1 11 (! ,
Logd= ¥ (1) 2] dexrewic, ¢,

Viezg,. . X 0
where the structure functions W, are again related to the absorptive part of T; as
in equation (2.9).

The large q*> behaviour of the (j—2)th moments of xW, and vW, are
governed by the anomalous dimensions of the operators of spin j (the number of
symmetric Lorentz indices) appearing in the OPE of the retarded commutator in
(3.1). The symmetry property of T, under flavour transformation determines the
singlet or non-singlet nature of the contributing operator.

The amplitudes T;, T, have kinematical zeroes at ¢°=0. An alternative
causal set T;, T,, free from these zeroes and thus possessing better asymptotic
behaviour for the purpose of writing down sum rules, are related to the former set
by

1 1 , 1

gt ) Beph @3
As explained earlier, the retarded scaling functions are given by the first term

of the formally divergent series (3.2); it is the contribution of operator(s) of lowest

spin in OPE allowed by crossing and flavours symmetry of T; (i = 1, 2). The values

of the lowest contributing moments of the structure functions are [1],

1 ’
J' dxxWiN(x, %) —{(Q>r,
0

T;

1 (3.4
J dxvWsN(x, g*)—2m*(Q>r,
giving the Bjorken limit of the retarded amplitudes T3, T; as
eN, 2 eN, 2m2 2
v (x, v)—0, v TN (x, v)— = (Q>r. (3.5)

%) We have assumed no subtractions for T}, though, according to standard Regge asymptotics, this
is not true for T;. But, as already discussed, the question of subtractions is irrelevant for our
purpose.
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Here N stands for neutron or proton. In each case the next non-leading term in
the limit behaves as (log g*)™%, a>0.

Clearly none of the light cone dispersion relations require subtractions. In
addition, we get the following sum rules,

oo
J‘ dvW:S (v, g* = 2xv+y)=0 (3.6)
and
+o0 2m2
j dvvWiN(v, q* = —2xv+y)= 2 (QPr. 3.7)

Convergence of the integrals in (3.6-7) is assured, since vWj, v*W}, vanish
faster than any power of (log v) as the two limits of integration are approached. In
the canonical case [2], however, the integrals converge only on symmetrical
integration. Note that for the octet combination (ep—en), the righthand side of
(3.7) is zero.

What distinguishes basically these light cone sum rules (3.6-7) from the
lowest moment sum rules (3.4) is that while in the former case g* varies with
integration over v, it is held fixed (at a sufficiently large value) in the latter case.
Similar sum rules can also be written down for charged current (neutrino)
processes, the only complication being that T, may not be free from kinematic
singularities at g°=v =0 and one must isolate it before writing the dispersion
relations [5, 2].

4. Discussion

The retarded scaling function entering these sum rules are known numbers.
This is in contrast to the canonical case where the scaling function as well as the
retarded scaling functions are not known in its details. This simplicity in the case
of asymptotically free theory is deceptive, however. While in the canonical case, it
is easy to fnd causal interpolations of the scaling function, no one, to our
knowledge has so far been able to find such scaling functions in an analytic form
satisfying the moment conditions for it in the asumptotically free theory.’) Had we
been able to do so, we could have written down finite energy form [6] of these
sum rules also in asymptotically free theory, thereby greatly enchancing the
practical usefulness of these sum rules.

The behaviour of the structure functions near x =0 is not known with
certainty. On the basis of certain analyticity considerations in the Mellin trans-
form variable of the moments of the structure functions, it has been argued [7]
that the structure functions grow faster than any power of log v for large v,
compared to that given by the simple Regge pole model. This behaviour also
contradicts the prediction of Regge on field theory [8], which predicts a growth
given by a finite power of log v. Settling this question, we can subtract out the

%) Such scaling functions in the form of integral representations has been worked out by J. Gasser
(unpublished). They are, however, not simple enough to deal with in practical applications. I
thank him for informative discussions on this point.
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Figure 1
The shaded regions correspond to physical domains of deep inelastic scattermg and one particle

inclusive e*e” annihilation. Lines like A, B along which the integrals in the sum rules may be
integrated meet unphysical regions.

Regge piece in equation (2.11) and evaluate the limit x—0 to know about the
nature of the fixed poles, where present, in the amplitudes.

An attempt to evaluate the dispersion integrals in the sum rules, as such, is
fraught with difficulties of estimating the absorptive parts in the unphysical region.
This may be seen from Fig. 1, where the physical region of the amplitude
corresponding to scattering as well as that for one particle inclusive e e
annihilation are shown. It would be interesting to evaluate a smeared version [3]
of the sum rules which emphasises the physical regions in the dispersion integrals.

These sum rules can have an important application to determine the mass
ratio of up(down) and strange quarks. Earlier, working in the canonical formal-
ism, Leutwyler et al. [9] applied these sum rules to K, decay, where, for zero
momentum transfer, they could evaluate the dispersion integral in terms of the
commutator of the axial divergence and strangeness changing charge. However,
because of the nonforward matrix element (between vacuum and K-meson state)
encountered here, the OPE is complicated by the presence of external derivatives
of operators. Thus the present evaluation of the retarded scaling function does not
apply immediately. This problem is being investigated.
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