Zeitschrift: Helvetica Physica Acta

Band: 53 (1980)

Heft: 2

Artikel: Bound states in dipole fields and continuity properties of electronic
spectra

Autor: Hunziker, W. / Gunther, C.

DOI: https://doi.org/10.5169/seals-115118

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-115118
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta, Vol. 53 (1980), Birkhiuser Verlag, Basel

Bound states in dipole fields and continuity properties
of electronic spectra

by W. Hunziker and C. Giinther
Institut fiir Theoretische Physik ETZ Ziirich (Switzerland)

(30. TV. 1980)

Abstract. We discuss some known binding/no-binding criteria for a charged particle moving in
the field of a neutral system of N fixed point charges. As an application, we derive a uniform Lipschitz
property (with respect to nuclear configurations) of the discrete spectrum of electronic Hamiltonians.

1. Introduction

This note was inspired by a recent review article [1] on the ‘minimum dipole
moment required to bind an electron’, where the history of the subject is traced
back to Fermi’s notebooks. Our remarks (i)-(iv) below are intended to sum-
marize, to simplify and to correct some of the original arguments (see [1] for a
more extensive bibliography).

(i) The critical dipole moment a, is defined as the maximum value of a = [a|
such that

Hy=—-A+r3@,x)=0, (1)
where r = x|. As a result of numerical work (see e.g. [2]),
a, = 1.278630.

The qualitative aspects of this problem are briefly reviewed in Section 2,
where we also derive simple upper and lower bounds for a, with an
accuracy of the order of 1%.

(i1) A variational argument of Simon [3] shows that the field of any neutral
system of N fixed point charges produces infinitely many bound states if
its dipole moment a exceeds a, (Section 3).

(iii) Tt is incorrect [1, 2, 4] that the converse (no binding for a <a,) follows
from the scaling property (10) of the eigenvalue problem: (10) holds for
arbitrary N, but for N =3 there is no ‘minimum dipole moment required
to bind an electron’ (section 4).

(iv) That no binding occurs for N =2 and a < a, can be seen from a different
law of corresponding states, particular to 2-point dipoles and simply
expressed in terms of elliptic coordinates. From this one can derive
(sufficient) no-binding conditions for N =3 (Section 5).
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In the last part of this paper we consider the Hamiltonian H(y) of n electrons
moving in the field of N arbitrary point charges fixed in the configuration
y =(y; - - - yn) € R*". Using the no-binding theorem for 2-point dipoles we derive
a uniform Lipschitz property of the discrete spectrum of H(y) as a function of y.

2. The particle in a pure dipole field

The Hamiltonian (1) can be written as

A=L%*+r(a,x),

where L? is the square of the angular momentum. Since (a, x)/r is bounded, A is a
self-adjoint operator on L*)) (Q=unit sphere). In the subspaces #.,,
(m=0,1,2,...) of states with angular momentum +m along the axis a it acts as
the operator

A, (a)= —Z% (1-2z?) Zl%-l- m3(1-z% '+az

on L?*(—1,+1), where z=(a,x)/ar. A,, has a complete orthonormal system of
eigenfunctions

A-mfml = Amlfmi! (l =m,m + 1a LR )a (2)

where A, (a) is the eigenvalue converging to [(I+ 1) as a— 0. Since in this process
the eigenvalues cannot cross, | always labels the A,,;(a) in ascending order. It
follows from the operator inequalities

A, (a)=A, (a) (for m=n)
and
An(a)=A,(0)—a
that A, ..« (a) increases with m for fixed k and that
Aa(@)=1(1+1)—a. (3)

In particular, A, is always the lowest eigenvalue of A and the only candidate for a
negative eigenvalue as long as a <2. In order to find simple estimates for Ayy(a)
we transform (f, A,f) by partial integration into

+1 a . a2 i
G A= | dzi-2 (|r+5 1] -2 1712,
i 2 4
where f' = df/dz. This gives the lower bound
Aoo(a) 2 _a2/4, (4)

improving (3) for a<4, and it suggests the choice f~exp(—az/2) (i.e.
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f'+af/2=0) to obtain the upper bound
Aoo(@) <(f, Aof) =3(1—a/Th a). (5)

Hence Ayo(a) is indeed negative for a>0 and strictly decreasing to —oo as
a— +%, since

Aoo(a) = (foos zfoo) < Agola)/a.

Let (r, 6, ¢) be polar coordinates with respect to the axis a. The subspaces # ...,
of the states

ru(r)f,u(cos 8)e*™®  (ue L*0, )

are invariant under H,, which acts on u as the operator
2

d
h(An) = _;1";5"" )\ml"_2

on L?*(0, »). We shall use this operator only on the domain Cg(0, %) of infinitely
differentiable functions u(r) vanishing outside some finite, strictly positive inter-
val. (To define the dynamics of a particle in a pure dipole field we should choose,
in each #,,,, a selfadjoint or possibly non-selfadjoint [5] extension of h(A,,).
This is not necessary in the present context.) It is well known (see e.g. [3]) that
h(A)=0 if and only if A <—1/4, i.e.

sup (u, r2uw)(u’,u) =4, (6)

0#ueCy(0,)

where u’ = du/dr. Consequently, H,=0 on Ci(R>\{0}) if and only if Ay(a)=—3.
This is equivalent to a<a,, where a, is uniquely defined by Aqo(ao)=—3. The
upper bound

a,<1.288

is obtained from (5) as the positive solution of Th a =2a/3. (4) gives the lower
bound a,>1. This can be improved using Temple’s inequality [6]:

Moo= (f; Aof) = [(f, AGH) — (f, Aof)*IMho1 — (£, Ao DT

with f(z)~exp (—az/2) and with the estimate (3) for A,;. The resulting lower
bound

ay>1.245
is the positive solution of Th a = (4a*+5a)(4a*+6a+1)"".

3. Binding in dipole fields

Let e=(e;---en), 2. e =0, be N point charges in a fixed configuration
y=(y1°""¥n), and a=) ey; their dipole moment. It follows from a result of
Simon [3] that

H(e,y)=—A+ i e lx—y,| '=—A+ V(x) (7)

i=1
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has infinitely many bound states if a > a,. We restate Simon’s estimate in a form
which directly applies to this case.

Lemma 1 (Simon). Assume that for some R>0, V(x) is a real, locally
integrable function for R <|x| <o satisfying
Vx)— (@, x)r><cr?,

with ¢ arbitrary and 2<p. If a>a,, there exists an infinite sequence of C™-
functions 4, with compact, disjoint supports in R <|x| <% such that

(¥, (~A+ V)¥,)<0.

Remark. Since H(e, y) is selfadjoint on the domain of the Laplacian and has
essential spectrum [0, ), Simon’s lemma proves the existence of an infinite
sequence of negative eigenvalues of H(e, y) converging to zero if a > a, [6].

Proof. Let ¢ =r""u(r)foo (cos 8), with f,, given by (2), and h=h(A), A =
Aoo(a) < —3. According to (6) we can find ue C5(0,) such that (u, u)=1 and
(u, hu)<0. The unitary scaling operator

U(s) : ¢(x) = ¢, (x) = s> (sx) (8)

(0 <s <) acts on the radial wave function u as

1/2

u(r)—u,(r)=s"“u(sr).

For s sufficiently small we have u, € C;(R, ) and also

(s, (A + V)) < (us, hug) + c(ug, rPuy)
= s2(u, hu)+ cs?(u, r_"u)
<0.

Since u has compact support not containing 0, we can choose a sequence
s=s(n)—0 (n=1,2,...) such that the scaled functions u,, have pairwise
disjoint supports.

4. The scaling argument

H(e, y) has the scaling property

U(s)H(e, y)U '(s)=s’H(s e, sy) )
with respect to the transformation (8). Hence H(e, y){ = Eys is equivalent to
H(s e, sy)y, = s >Ey, (10)

Since the scaling (e, y)— (s 'e, sy) does not affect the dipole moment, the scaled
potential converges (for x # 0) to the pure dipole potential as s—0. On the basis
of (10) it has been argued [1, 2, 4] that the 2-point dipole (N = 2) has no bound
states if a <a,. For example: If E <0, then s ’E— —» as s—0. Conclusion:
a > a,, since the resulting pure dipole will have states of ‘infinitely large negative
energy’.

While this conclusion is correct for N = 2, the argument must be false since it
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applies equally well to arbitrary N. But for N =3 there are obvious counterexam-
ples with a =0 where binding occurs: place two charges +1 a distance R apart
and a third charge —2 at middistance. For large R there will be slightly perturbed
hydrogen-like bound states around the negative charge.

The scaling argument fails since the scaled eigenfunctions ¢4, do not converge
to a corresponding state in the pure dipole field (¢, — 0 weakly as s—0). For fixed
¥ e Co(R3*\{0} it is true that

lim (4, H (s e, sy)¥) = (s, HoW).
Hence if H(e, y)=0, then H(s e, sy)=0 by (9) and it follows that H,=0. Thus
the scaling argument proves binding for a > a, (as we have already seen in Section
3), but it fails to prove the converse.

S. No-binding criteria

A simple example is H= H,+ V(x), where H, is given by (1). Suppose
that (roughly speaking) V is nonnegative and sufficiently repulsive to make H
bounded below and that V(x)—0 faster than |x| > as x—oc. Then it follows from
the results of Sections 1 and 2 that H has no negative energy bound states if
a <a, and infinitely many if a >a, [2].

It is remarkable that exactly the same distinction holds for the 2-point dipole:

Theorem 1 (Fermi, Teller [7]). For N =2 the Hamiltonian (7) has no negative
energy bound states if a <a, and infinitely many if a > a,.

Proof. In [7] this result (together with the value a,=1.278) is mentioned
without proof. A proof (based on counting the number of nodes of the explicit
zero-energy solution in elliptic coordinates) was indicated by Wightman [8] and
presented in more detail by Crawford [9].

Since binding for a>a, follows from Lemma 1 we need only show that
H(e, y)=0 if N=2 and a <a,. This is seen by inspection from the expression of
(¢, H(e, y)) in elliptic coordinates:

Let ,=|x—y)| (i=1,2), 2R=|y,—y,| and a =2Re,. Then the coordinates

r=3(r+r)-R,
z=(r,—1r)/2R,
¢ = angle around the dipole axis,
have the range
K:0sr<owx; —1=<z=<+1; ¢ €unit circle;

which is independent of R, and

(¢, H(e, y)¢) = j drdz do {(r2+2Rr) ay|?
' K or
- gl‘: T+ 27+ R+ 2R %' “raz W}.
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For fixed a and R=0 this reduces to the expression of (¢, Hyy) in polar
coordinates (z =cos #). If this is nonnegative for all € C5(K), the same is
evidently true for R >0.

Remarks. (i) Comparing this proof with the scaling argument (Section 4) we
note the following difference: while the Hamiltonian is scaled in the same way,
the transformation of states is now defined by changing R and keeping y(r, z, ¢)
fixed. As a function of x, ¢ then changes with R and has a well-defined limit as
R—0. In distinction to (10), this ‘elliptic law of corresponding states’ is not
unitary and does not map eigenfunctions into eigenfunctions.

(i) Any Hamiltonian of the type (7) can be written in the form

H(e, y)=-A+) Vi (x) (11)

where each V,(x) is a 2-point dipole potential (Example: split e = (1, -2, 1) into
(1,-1,0)+(0, -1, 1)). Let a, be the absolute value of the dipole moment of V,
and a =) a,. Then

H(e,y)=) a 'a,(-A+aa;'V,)=0 (12)
k

if a <a,, since each term in this sum corresponds to a 2-point dipole with dipole
moment a. Therefore no binding occurs if the sum of the absolute values of the
2-point dipole moments does not exceed a,.

6. Application to electronic spectra

Let

N
V,x)= 2, elx—yl"
i=1
be the potential produced by N arbitrary point charges e - - - ey (‘nuclei’) with the
configuration y = (y, - - - yn), and

n e
H(y)= kz [-A+ V,(x )]+ Z | — x|
=1 i<k

the Hamiltonian of n ‘electrons’ moving in this field. The y-dependence of the
discrete spectrum of H(y) (if any) is basic for the theory of molecules. Continuity
in y is the only general local property known so far [10] (Differentiability has
been proved in important special cases: for N=2[10] and for nondegenerate
eigenvalues in the case of arbitrary N[11]). The link between this problem and our
subject is provided by the remark that V,—V, is a sum of N 2-point dipole
potentials with dipole moments a; = |e;(y, — z;)|. It follows from (11) (12) that

H(y)—H(z)= —|ly - z| Ho (13)

where H,= —Y7_, A, is the kinetic energy of the electrons and ||| a norm in the
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configuration space of the nuclei defined by
N
Iyll=as* X leyil.
i=1
From (13) we can derive estimates for the spectrum of H(y) using the minimax
principle in the following form [12]: For m=1,2,3-- - let

E,(y)= inf sup (¢, H(y)¢), (14)

dimM=m geM,[ll|=1

where M ranges over the finite-dimensional subspaces of D(H(y)). Then
lim E,,(y)=Y (y) (15)

is the minimum value in the essential spectrum of H(y) and the subsequence
{E,.(y)<Y (y)} is the sequence of eigenvalues of H(y) below Y (y) in ascending
order.

Theorem. There exists a constant 3 independent of m, y, z such that
|E, (y)— E.(2)|<Blly—z| (16)

and
\Z (y)— 2 (2)

for all m, vy, z.

<Bly-z| (17)

Proof. We first recall some properties of H(y) [6]: H(y) is self-adjoint with
domain D(H,) and has essential spectrum [} (y),*) with } (y)=<0. There exist
constants «, 8 >0 independent of y such that

(W, Hod) < a(t, H(y)¥) + B, ¢) (18)
for all y and all leD(HO).

Secondly, we remark that for fixed y the trial subspaces M in (14) may be
restricted by the condition that

s HW) = (X ()¢ ) w) < e 0)

for all ¢y € M, with arbitrarily small € >0. By (18), a weaker and y-independent
restriction is

(¢, Hop) <(ae + B) (Y, ).
Imposing this it follows from (13) (14) that

E,(y)—E,(z)=—(ae+8) |y —z||

Letting € —0 and interchanging y with z we obtain (16), from which (17) follows
in the limit m — .

Remarks. (i) Let G be any euclidean transformation of R> and Gy=
(Gy; - - - Gyy). Since H(Gy) is unitarily equivalent to H(y) we can replace |y — z||
in (16) and (17) by ming |Gy — z||.
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(if) Theorem 2 also holds for the restriction of H(y) to any symmetry sector
with respect to permutations of electrons, since (13) is invariant under permuta-
tions.

(i) We expect, of course, that the discrete eigenvalues of H(y) can be
represented by smooth functions of y. But even in this case the increasingly
ordered eigenvalues will only be Lipschitz in points y where smooth eigenvalues
CrOSS.

(iv) The Lipschitz constant 8 appearing in Theorem 2 is defined by (18) and
can be estimated in terms of the parameters n, N, e, - - - ey. It gives an upper
bound for the electronic contribution to the binding forces in a molecule and thus
a lower bound for the internuclear distances (in the clamped nuclei approxima-
tion).

REFERENCES

[1] J. E. TurNER, Am. J. Phys. 45, 758 (1977).
[2] W. Byers BRowN and R. E. RoBerTs J. Chem. Phys. 46, 2006 (1967).
[3] B. SimoN, Helv. Phys. Acta 43, 607 (1970).
[4] J. M. LEvy-LEBLOND, Phys. Rev. 153, 1 (1967).
[5] E. NELsoN, J. Math. Phys. 5, 332 (1964).
[6] M. Reep and B. SIMON, Methods of Modern Mathematical Physics IV: Analysis of Operators,
Academic Press, New York 1978.
[7] E. Fermi and E. TELLER, Phys. Rev. 72, 399 (1947).
[8] A. S. WIGHTMAN Phys. Rev. 77, 521 (1950).
[9] O. H. CrawFORD, Proc. Phys. Soc. 91, 279 (1967).
[10] P. AvenTtint and R. SEnLER, Commun. math. Phys. 41, 119 (1975).
[11] J. M. ComeEes and R. SEILER, Int. J. Quantum Chemistry 14, 213 (1978).
[12] D. RUELLE, Statistical Mechanics, Benjamin, New York 1969,



	Bound states in dipole fields and continuity properties of electronic spectra

