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On a systematic search for integrals of
the motion *)

by J. A. Kobussen
Institut fir Theoretische Physik der Universitat Zirich, Schonberggasse 9, 8001 Ziirich, Switzerland

(1. IV. 1980; rev. 23. V. 1980)

Abstract. Noether’s theorem stripped of the usual unnecessary complications of explicit transfor-
mations of the independent coordinates is proved in a constructive way. This constructive proof makes
" Noether’s theorem more accessible for applications. Integrals of the motion or local conservation
equations, also those corresponding to non-manifest symmetries, can be found easily.

As an application, without explicitly using the Galilei symmetry group, the 10 linearly indepen-
dent Eulerian integrals for a system of N particles with central two-body interaction are derived.
Without explicitly using the so-called Jacobi-Schrodinger group, the 12 linearly independent integrals
of the motion are found for the special case that the interaction potentials are inversely proportional to
the squares of the particle distances.

In an analogous way the n-dimensional isotropic harmonic oscillator is discussed and for the
n-dimensional Kepler problem, the conservation of the Runge-Lenz vector is derived.

1. Noether’s theorem simplified

In recent years, a lot of publications are devoted to symmetry transforma-
tions and integrals of the motion. A great deal of them are based on Noether’s
theorem (Noether, 1918), which is clearly represented by Hill (1951). Most
treatments are unnecessarily complicated. The reason is that mostly infinitesimal
transformations (variations) of the independent variables as well as variations of
the field variables are considered. It can be shown (Steudel, 1966) that as far as
the conservation equations resulting from Noether’s theorem are concerned, such
infinitesimal transformations are equivalent to variations of the field variables
alone.

Let a physical system be fully described by say

@;(x), i=1,2,3,...m

where

X = {an x]a x2: » o iy xn—l},
and

x[) =t

represents the time.

*)  Work supported by the Swiss National Science Foundation.
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Further, we assume the system to have a Lagrangian density £ which is a
function of x, the m-tuple ¢ ={¢,, ¢,, ..., ¢,,}, the mn-tuple

o ={¢ia|a=0,1,...,n—1;i=1,2,...,m},
the mn*-tuple

xx ={0ias |, B=0,1,...,n—1;i=1,2,..., m}, etc.
Here ¢;, stands for d¢;/dx,, etc. We write

"—g:‘g(x’ P Oxs Prxs - - ') (11)

The action or action functional then is
A= J’o?i(x, @5 Oxr Prxs -+ -) A", (1.2)

where the integration is done over some fixed region G, in the n-dimensional
x-space. The equations of motion now follow from Hamilton’s principle or the
action principle

8A =0, (1.3)
and can be written as

0¥ o0& oL

i), Se—=arit t]_ilg cee =0, (1.4)

de¢; Qi o Qi o

where a summation over repeated Greek indices from 0 through n—1 is implied
and d, denotes differentiation with respect to x, at constant x; (a# 8) and
varying ¢(x).

Here and in the rest of this paper, the weak identity = is used to indicate
identities which only hold for solutions ¢;(x) of the equations of motion.

In the study of Noether’s theorem, one usually considers infinitesimal trans-
formations (variations) of the independent variables x and of the field variables

@i (x):
x, = x,=x,+8%x, (1.5)
@i(x) = ol(x') = ¢;(x) + 8% @ (x) - (1.6)

and investigates the variation of the action under these infinitesimal transforma-
tions. If this variation 8A is identical zero or can be written in the form

A = J d"xd,y,, : (1.7)
Noether’s theorem yields an equation
d.x. =0. (1.8)

which has the form of a continuity equation. Here the x,’s are functions of x, ¢,
@ @y €tc. The quantity x, is called the density, the quantities x, (a=
1,2,...,n—1) constitute the components of the flux-vector or current-density
vector.



Vol. 53, 1980  Systematic search for integrals of the motion 185

Integrating (1.8) over some region G,_; in the subspace spanned by the
variables x,, ..., x,_;, one obtains

=1
dfdt J O *j Z dx,d" 'x. (1.9)
a=1

With Green’s first theorem one can transform the right-hand side of (1.9) into an
integral over the boundary of G,_,. With suitable boundary conditions imposed
on ¢, the right-hand side of (1.9) will vanish and one obtains

d/dtj Xod" 'x=0. (1.10)

Then [ xo d" 'x is called an integral of the motion or first integral of the system
(1.4). In cases where (1.10) expresses a physical law, such as the energy conserva-
tion law, equation (1.10) is termed a global conservation law, equation (1.8) being
the corresponding local conservation law. To find explicit expressions for x,, it is
necessary to investigate the variations of A precisely. In general, this is not very
easy because one has to consider changes of the integrand as well as of the
integration bounds. Steudel has proved that if a local conservation equation (1.8)
can be derived with the variations (1.5)—(1.6), the same conservation equation can

also be derived with an equivalent variation of the field variables alone (Steudel,
1966)

@i (x) = @l(x) = ¢;(x) + 8¢; (x), (1.11)
where (see egs. (1.5), (1.6))

8¢; (x) = @l(x)— ¢;(x) = @l(x"— 8%x) — ¢;(x) | |
= @i(x) ~ @1o8*x, — (), L
or

og; (x)= 8*(Pi(x)— (Pi,aS*xa (1.13) -

This means that in the search for local conservation equations, variations of the
field variables only may be considered.

This idea, which is also found in von der Linden 1963, and mentioned in
Havas 1978, is rarely used in the literature. Nevertheless, Steudel’s result simp-
lifies the construction of local conservation equations considerably. Especially, this is
the case if we have to do with so-called hidden symmetries (non-manifest
symmetries). The simplification mainly comes from the fact that, as we will see, it
is sufficient to discuss variations of the Lagrangian density instead of the action.

Let us consider a variation

@i (x) = @i(x) = ¢;(x) + 8¢ (x). (1.14)
Then a first-order Taylor expansion of & gives
A A oF
8F =— 8¢, + 8, T B gt ™" = (1.15)
d¢; a‘Pi,a a‘Pi,as
(Summation over i=1,2,...,m and o, 38=0,1,2...n—1 is implied.) With

S(Pi,cx = (S(Pi),a = daS‘Pi
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and the chain-rule for differentiation, we also may write

A 0¥ A
ayz&pi(a —dy——t dydy—— - - )
@; a‘Pi,a a‘Pi,aB
A A A
+da(8(pi( —d )+(8<pi) T ) (1.16)
dJ Pix ? a‘Pi,aB ’Ba‘Pi,as

In the first term, as a factor we recognize the equation of motion (1.4). Therefore
we have the weak identity

(2, a.sz)+ (5%),66655 ,o ) (1.17)

QGiap

If now by guessing or by systematic investigation, one finds that for a special
choice of the variation 8¢; as function of ¢ and its derivatives, one has the strong
identity

SL=d ., (1.18)
from (1.17) and (1.18) follows

o 02— 42
i Piap

SL=d, (Sqoi

i Pi.ap

)= Ged gz ) =0, (1.19)
0Q; op

which has the structure of a local conservation law.

Infinitesimal transformations (1.14) which yield an expression of the form
(1.18) are termed Noetherian variations. A simplified version of Noether’s
theorem now is:

Every Noetherian variation yields a local conservation equation.

In the applications of Noether’s theorem it is essential to make a good choice
for the Noetherian variations. In most literature, those applications are restricted
to manifest symmetries. For instance if the Lagrangian density & does not depend
on the field ¢, explicitly, i.e. if

0L
==y, (1.20)
d¢;
the infinitesimal shift of the field ¢;
&g, =g, — 8F =0, (1.21)
is a Noetherian variation. With (1.17) it yields ’
A 0
da( —dg o +---)_‘—-0, (1.22)
a(\oi,a a‘Pi,aB

which is the equation of motion written in the form of a local conservation
equation.

Another manifest symmetry is met in those cases where & does not contain
explicitly the independent variable x,, i.e. when

0F

2o (1.23)
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Then the infinitesimal shift &x, = ¢, leaves the action invariant. With (1.11) we
find the corresponding Noetherian variation

8¢, = £,d0®; = €401 0 (1.24)
that yields

8 =¢,d . % (1.25)
Then (1.24), (1.25) together with (1.17) give

ds,. =0, (1.26)
where
A oF A
S.ya = ‘Pi,a( - dB )+ (Pi,aB + L= 6a'y=$’ (1.27)
0¢; Qi g 0Q; g

and 3, is the usual Kronecker symbol
8y =0 (a#v); 8yy =1(a=1). (1.28)
If & only depends on derivatives up to the first order, (1.27) reads

oF
S'ya = (Pi,ot “a_(;—- - Sa-y‘gﬁ

Ly

which in many physical situations is the usual expression for the energy-
momentum tensor. In those cases equation (1.26) expresses the conservation of
energy and of momentum.

We stress here that it is not necessary to have an a priori knowledge of the
Noetherian variations or symmetries of the system. With a suitable ansatz for the
variations 8¢; and using equation (1.15) one can systematically figure out condi-
tions for &¢; being a Noetherian variation. As an example assume that the
Lagrangian density (1.1) only depends on x, ¢ and ¢,, and that it is a homogene-
ous polynomial in ¢ and ¢, of degree 2. Then the equation of motion (1.4) is a
linear second (or first) order partial differential equation and all coefficients are
linear polynomials in ¢ and ¢,. Taking now as an ansatz

op; = ;i (x )‘Pj + Bija (x) Dj.as

and substituting it in (1.15) one can find out conditions on «;(x) and By, (x) for
O¢; to be Noetherian. The density and flux density of the corresponding local
conservation equation then are polynomial expressions in ¢ and ¢, of second
degree.

In the following sections, we will give some illustrations for the use of the
method described above. These illustrations are chosen out of the field of classical

mechanics. Examples for continuous systems can be found elsewhere (Kobussen,
1973 and 1976).
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2. Integrals of the motion of the N-body problem

Consider N particles in an Euclidean space R;. The particles will be num-
bered from K = 1 through K = N. The coordinates of the Kth particle are denoted
by rx = (xk, Yk, Zx), its mass being mg. The total kinetic energy of the system is

1 N
q = 2 Z Mgk * Tk, (2.1)

where the dot - denotes the usual inner product in R;. We assume the potential
energy U only depends on the mutual distances of the particles:

U= U(rg.), (2.2)
where
kL = |]'K _l'Ll =((re—rp) - (rg _'L))1/2 (2.3)

1s the mutual distance of the particles K and L.
The dynamics of the system now follows from the Lagrangian

N

1
£=T-U=; Y, mykg i — UL (2.4)

K=1

A first-order Taylor expansion of (2.4) yields

N N
8L =dldt ) Mgy - St — ) Wiy - 6rg — ZZ 2 rK;(rK—rL)-arK.
K=1

K=1 K,.L=1
K#L
(2.5)
Then, the equation of motion is
. v .U
M+ 2, 257 ri e —r) =0, (2.6)
L=1 Txi,
K#L
and from (2.5) remains
N
8F = d/dt ), myiy + Org. (2.7)

K=1

Now we will look for integrals of the motion of which the leading term, i.e. the
term that comes from the right-hand side of (2.7), is linear in the coordinates ry
and velocities rx. Therefore, we introduce the ansatz

ory = ag, (2.8)

ax being an infinitesimal vector, possibly explicitly depending on t, that does not
depend on r; noron i, (L=1,2,...N). With (2.4) we find

8L = Z Mgk 8 — ZZ 2 rei(g — L) - ag.
K=1 Kl—-1 Orgr
KL
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The second term of this expression vanishes if one takes
ar=a (2.10)
for all K=1,..., N identical. Then we have

N
0¥ = Z Mgk * A

K=1

N N
=d/dt) mgrga— Y. mgrg - i (2.11)

K=1 K=1

Thus, 6% is a total time derivative

N
8L =dldt ) myry -a, (2.12)

K=1

if a satisfies

a=0 (2.13)

or
a=o+te (2.14)

a and £ being arbitrary constant infinitesimal vectors. With (2.8), (2.10) from
(2.7) follows

N
8L =djdt ) myix - a (2.15)
K=1

The equations (2.12) and (2.15) together yield
dldt) (a- mgrg —a - mgrg)=0. (2.16)

Taking either a or € zero, instead of (2.16), with (2.14) we have the two vectorial
conservation equations

N
dldtP=0; P= ) mgix (2.17)
K=1

d/dt G=0; G=

"oz

1

Next we will look for integrals of the motion of which the leading term is
quadratic in the coordinates and the velocities. In this search, we also restrict
ourselves to those integrals of which the leading term can be split up in the
sum of one-particle terms. This leads to the ansatz

Org = Agrg + Byig, (2.19)

where Ag and By are possibly time dependent infinitesimal 3 X 3 matrices. For
this ansatz, we investigate the variation 8T of the kinetic energy T first. From
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(2.1) and (2.19) one deduces

N
6T = Z mKi'K ° (AKrK + (AK + BK)rK + BKiK)
K=1
N

K=1

N
+ Y mgGig - (Ag — ADrg +3ig * (Bx — BPix
K=1

—3Fk * AKI'K +ix - (Ag +%Bx)i'1<)- (2,21)

Thus, 8T is the total derivative

N

ST=d/dt ), my(irg - Agryg +3Fg - Bgig) (2.22)
K=1

if

Ag=AL,  Ac=0, (2.23)

Bx = BT, (2.24)
and

Ag HiBg = —(Ag +3B)™ | (2.25)
The conditions (2.23)—(2.25) are satisfied if one takes

Ag = S + P+ Qgt, (2.26)

By = Ry — 2Pt — Qg t?, (2.27)

where Py, Ok, Rk, Sk are constant infinitesimal matrices satisfying the symmetry
conditions

Py=Pg; Qx=Qk; Ry=Rg (2.29)
With (2.26)-(2.29) we then have
N
8T=dldt ) (rg * Qgrg +ix - (R — 2Pt — Qtdig), (2.30)
K=1

the variation (2.19) being

Our next step is the investigation of the variation 8U of the potential energy (2.2).
One easily verifies

N~ U
SU= )Y — ritlex — 1) - (8rg — By ). (2.32)
KL=10Tgr
K#L
In general, 8U will neither vanish nor be a total time derivative. Therefore, we
will simplify the expression (2.32) by assuming that the matrices Pg, Ok, Rx and
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Sk are identical for all K. In that case, we can drop the subscript K in Ag, By, Px,
Qg, Rk and Sk. Equation (2.32) then reads

N
8U = KZ;ZI % re (=) A —r) + (g — 1) * Bl — 1) (2.33)
K#L
If one chooses A=—AT B=0, i.e.
Sk=8=-8T (2.34)
Py = Q=R =0, (2.35)
one easily sees that
U =0. (2.36)
Thus, we have found the Noetherian variation
Sy = Srg, S=-8T (2.37)
yielding (see (2.36) and (2.22))
8£=0. (2.38)
On the other hand, with (2.7) we have
8L = d/dt i Mylx * STx. (2.39)
K=1
For arbitrary constant S =—-S7, we then have
d/dt i Mgty * St = 0. (2.40)
K=1

In a three-dimensional Euclidean space, there are three linearly independent
skew-symmetric 3 X 3 matrices. Thus, there are three linearly independent conser-
vation equations of the form (2.40). Taken together, they can be written as one
vectorial conservation equation

N
d/dtL=0; L= ) mgrgAig, (2.41)
K=1

where A stands for the usual vector (cross) product. To investigate the possibility
that 8U is a total time derivative, we now assume S = S, = 0. With (2.26), (2.27),
we then have

Bx=B=R-2Pt—Qt?>; Agx=A=-1B, (2.42)
and (2.33) reads
N aU -1 . . 1 3
U= ZZ :3“— rer((eg — 1) * Big — 1) —5(x — 1) - B(re — 1)) (2.43)

KL=19"r
K#L

A=0, B=-1l (2.44)



192 J. A. Kobussen H P. A.

equation (2.43) reduces to

A oUu _, " y
oU = ZZ —"'a rer(rg —xp) * (P — 1)

KL=1 Tkr
KL
0 oU d d
= - — = ~—gp— UL 2.45
Ké; Tore dt ¢~ Tdt (2:45)
K#L

With (2.22) we then have

d N
dt \g =y
On the other hand, equation (2.7) yields
d N
OF =—1— mKl'K ° i'K, (247)
and we deduce the scalar conservation equation
d N
dt K=1
In many physical applications the potential energy (2.2) can be given in the form
1 N
Ulra)= -5 L2 Carel, (2.49)
K, I.=1
K+*L

where the constants Cy; are arbitrary and the parameter 8 indicates the charac-
ter of the internal two-body interaction, E.g. for Newtonian gravitational interac-
tion one has B =1. With (2.49) equation (2.43) reads

N
oU = ZZ —3BCxrrif *((xx — 1) - B(ix —11)

o
—3(rx —x) - Blrg —rL)). (2.50)
This form for 8U suggests the possibility that it can be written as
sU = d/dt ZNZ aCe 155, (2.51)
Kt

where a is some possibly time dependent scalar. A simple calculation gives

N N
d/dt ZZ aCy, 1= ZZ CKer(giz(—Ba(rK —rp) (g — 1)

K, L=1 K.IL=1
K+#L K#L

Comparing (2.50) and (2.52), one sees that 8U takes the form (2.51) if
B=2al and B=4/Bdl, (2.53)
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I being the unity matrix. Equation (2.53) is satisfied if either

B=2al and B=2, (2.54)
or
B=2al and a=0. (2.55)

The last case is equivalent to (2.44) which we already have studied. In (2.54), the
condition B =2 represents a restriction to a special kind of non-Newtonian
internal forces. In that case one generally has

B = (—2yt=AH)I; A=(y+A)l (2.56)
Here we have left out the constant term in B, because this term is also contained
in (2.44).

From (2.56) and (2.22), (2.51) one finds with B =2

N
K=1
1 N
-5 L2 Qyt+ Mz)CKLrE‘L) : (2.57)
2 K, L=1
K#L
On the other hand (2.7) yields
N
8L =djdt ). (me(y+ADrg * tx — M 2yt + Ak - Ex). (2.58)
K=1

The equations (2.57) and (2.58) together yield a linear combination (coefficients y
and A) of two scalar conservation equations. These scalar conservation equations
are found when we take in (2.57) and (2.58) either A =0 or y=0. In this way
one finds

d/dtD =0, (2.59)
N 1 1 N N
K=12 211 K=1
) K+L
or with (2.48)
N
D = 2tH“‘ Z mKi'K * k. (2'60)
K=1
Additionally one has
d/dtF =0 (2.61)
N 1 1 N N
F: tz( _mKi'K ™ i.K - ZZ CKLrE%_)_ Z (thl'K * iK
K=1 2’ K,L=1 K=1
K#L
—Lmerg  Te), (2.62)
or with (2.48)
N
F= tZH_ Z (thl'K * iK —%mKlK * l'K) (2'63)

K=1
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Summarizing:

For the general case, we have the following conservation equations and corres-
ponding Noetherian variations

(2.17) djdt P=0, ol = (2.64)

(2.18) d/dt G=0, Org = t€ (2.65)

(2.41) d/dt L=0, Org =Srx, S=—-87T (2.66)

(2.48) d/dt H=0, OFx = —TIk, ' (2.67)
where

N
(2.17) P= ) mgix
1

(2.18) G

1

(2.41) L

Il

R =~ A
1™z ™Mz

My P ARg
1

N
(2.48) H= ) rmgigx i+ U

K=1
Additionally for U(rg; )= — 1Y Ck.rxi, we have found
(2.59) d/dtD =0, org = y(rg — 2trk) (2.68)
where :
N
(2.60) D=2tH— ) mgrg - ke
K=1
N
(2.63) F=1*H- ) (tmgrg *tx —imerg * ).
K=1

According to Steudel’s equivalence rule (1.13) the Noetherian variation (2.67)
corresponds to an infinitesimal translation of the time axes

s*t=r. (2.70)

The variations (2.64), (2.65), (2.66) and (2.70) together form a basis of the
10-parametric group of infinitesimal Galilei transformations.
The three vectorial conservation equations (2.17) (2.18), (2.41) and the
scalar conservation eq. (2.48) yield the ten so-called classical Eulerian integrals.
Obviously, for U given by (2.49) with g =2 the symmetry of the system is
larger than the Galilei symmetry. We have the additional Noetherian variations
(2.68) and (2.69), or equivalently

8%y = yry; 8%t =2t (2.71)
and
8*rg = Atrg; 8%t = At?, (2.72)

respectively.
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The variations 2.64), (2.65), (2.66), (2.70), (2.71) and (2.72) together form
an infinitesimal basis of the 12-parametric symmetry group called Jacobi-
Schrodinger group (Havas 1978).

Usually, e.g. Havas 1978, one derives the conservation equations with
Noether’s theorem directly from the symmetry of the system. In this section, we
have succeeded in the derivation of these conservation equations without the
necessity of knowing the symmetry of the system at forehand.

3. The isotropic harmonic oscillator and Kepler’s problem

3.1. Introduction

Let the state of a dynamical system be described by the coordinate vector

reR, and the velocity vector r= d/dt r. We assume the Lagrangian of the system
is

§£=%i'-i—2—1a-(r'r)°‘, (3.1)
where « is a given real constant and the dot - stands for the usual inner product in
Ko For an arbitrary variation ér, the first order variation 6% of £ is

8F=r-8r—(r-r*'r- o, (3.2)
or with the chain rule for differentiation

SF =d/dt(x - 6r)—8r- (¥+(r-r)* 'r). (3.3)
Consequently, the equation of motion is

P+ r=0 (3.4)
and from (3.3) remains

6% = d/dt(x - Sr). (3.5)
For a =1, equation (3.4) describes an n-dimensional isotropic harmonic oscillator
with unit frequency. For a = —3 we have Kepler’s problem in n dimensions for a

unit mass and a unit gravitational constant.

3.2. Energy and angular momentum
Let us now investigate a special variation 8r of the form
dr=e(Mr+ Ni), | (3.6)

where € is a vanishingly small constant and M and N constant n X n matrices.
Substitution of (3.6) into (3.2) yields

1
;655 =r-Mr—(-r)* 'r- Mr+i: Ni—(r-r)* '(r- Ni). (3.7)

The variation (3.6) is Noetherian if 8L vanishes or can be written as a total time
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derivative. E.g. this is the case for
M=-MT N=I (3.8)

where [ is the unit n X n matrix and A some constant. One easily verifies
1 1
HSE:Ad/dt(%i'-i'——(r-r)“). (3.9
€ 2a
On the other hand, from (3.5) and (3.8) one obtains
1
— 8F =dfdt(x - Mr+ Ar - 1). (3.10)
£
From (3.9) and (3.10) we then have
1
d/dt(i'- Mr+ /\(%i'-i'—i-z—(r-r)"‘))ﬁ() (3.11)
(44

For M =0, A =—1 we have the variation
or=—¢r (3.12)

which corresponds to an infinitesimal time-shift 8%t=¢, and that yields the
energy conservation law

1
d/dt(%i'-i'Jr——(r-r)"‘)i-O. (3.13)
2
Furthermore, A =0 yields the conservation equation
d/dt(x - Mrx) =0, M=-M". (3.14)

The underlying Noetherian variation is
or = eMr, M=-MT, (3.15)

which corresponds to an infinitesimal rotation in r-spaces. There exist sn(n—1)
linearly independent skew-symmetric n X n matrices. Therefore, equation (3.14)
represents a set of sn(n—1) linearly independent integrals of the motion. In a
3-dimensional space, these conservation equations can be taken together in one
vectorial equation:

d/dt(xrt) =0, | (3.16)

where A stands for the usual vector cross product. Equation (3.16) is the familiar
form for the angular momentum conservation. In the case a =1 (harmonic
oscillator) equation (3.7) reduces to

1 .
;8££:i°Mi'-r-Mr+i'-Ni'-—r-Ni'. (3.17)

Then to make (3.6) a Noetherian variation, equation (3.8) is a too strong
condition. We also may set

M=-MT, N=NT, (3.18)
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Then, equation (3.17) yields

% 8% = d/dt(3k - Ni—3r - N). (3.19)
On the other hand, from (3.18) and (3.5) one obtains

é 8F = d/dt(k - Mr+1 - Ni). (3.20)

From (3.19) and (3.20) we now get
d/dt(x - Mr+3r - Nr+ir- Nr)=0 (3.21)

Thus, besides the conservation equations (3.13) and (3.14), for the isotropic
harmonic oscillator we have additionally

d/dt(3r - Ne+ir- Nr)=0, N=NT, (3.22)
The underlying Noetherian variation for (3.22) is
8r= &N, N=NT. (2.23)

With the canonical momentum p=*t, one can write
or=eNp; Op = eN¥=—¢gNr

Thus in phase space, the Noetherian variation (3.23) can be interpreted as a
rotation of the coordinate and momentum subspaces as a whole around an axis
perpendicular to the phase space.

3.3. The Runge—Lenz vector

With the ansatz (3.6), it is only possible to find integrals of the motion of
which the main term is quadratic in the coordinates. To make the finding of more
complicated integrals of the motion possible, one has to investigate variations
which are more complicated functions of r and of r. For instance, as an alternative
ansatz one could also take

8xl = A,-]-kx]-xk + Bijkxj‘xk + Ciik.x.:jx.k,
or
ox; = Aijk!xjxkxl + ByjaXixi X, + Cijklxjxkxl + Dijklxjxkxla

etc.

Here, x; 1s the ith component of the vector r, and a summation over repeated
indices from 1 through n is implied. In the following, we only investigate a subset
of these possible variations. We set

le = A"k.i]xk (3 .24)

and will try to find conditions for the coefficients A;; that make the variation
(3.24) a Noetherian variation.
In terms of the components, the equations (3.2) and (3.5) read

8L = x; 8%, — (x;,)* 'x; 8x;, (3.25)
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and

8F = dfdt(x, 8x,), (3.26)
respectively.

Substitution of (3.24) into (3.25) gives

8F = AyXXixi + AeXiXiXie — (X )™ ™ Ay XXX (3.27)

Let us now look at the last term of (3.27) first. The coefficients have to be chosen
such that either this term vanishes or is a total time derivative. The term vanishes
if one takes A;; = —Ay;. Then 8% = A % X;x,, which will generally neither vanish
nor be a total time derivative.

When the last term of (3.27) should be a total time-derivative, a candidate is

d/dt[(x,,x,.)* (b - r)], (3.28)

where b is some constant vector with components By, B,, ..., B,. The question
now is whether conditions for B; and A;; can be found such that

~ (XX ) T A XXXy = 2a(%,0 X, ) BixiX X; + (X X ) *BiXi, (3.29)
or

— Ay X X%, = 2aBxxx; + BixXx;. (3.30)
This condition is:

Aiik = —2aB;8 — Bidy + Gy, (3.31)
where

Ci =G (3.32)

and §; stands for the usual Kronecker symbol. With (3.31) and (3.32) the second
term of (3.27) generally becomes a complicated expression. Only in the special
case o = —3 this term vanishes. Therefore in the following we restrict ourselves to
this case (Kepler’s problem).

With (3.31) and
a= -}, (3.33)
the first term of (3.27) becomes

AiXiX;x, = Bixxx; — Bixx;x; + G ;X% (3.34)
=M -t)FE-r)—(b- D)k r)+ CpXXx. (3.35)
A simple calculation now gives
b-H@E-v=ddfb-DE -r)]-b - 0)F-r)—(b-r)(x ¥ (3.36)
=d/dt[(b-t)E-r)—(b-x)(-1)]
—M-D)E-r)+2Mb-r)@E- 1) (3.37)
Thus,

AXiXx, =2 - 1)(T - 1) —2(b - r)(r - ¥) + Gy X, X; x5
—d/dt{b-t)E-r)— (- )X 1] (3.38)
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Because of (3.32), the third term on the right-hand side of (3.38) is skew-
symmetric for the exchange of r and r. The first two terms together have the same
property. Then C;;, can be chosen such that the first three terms vanish together:

Gy = 2B, — 2B, (3.39)
With (3.31) and (3.33) we then have

Ay = B8, — B;5, +2B,8,, (3.40)
which with (3.24) yields the Noetherian variation

dr=2(-r)i—(r-t)b—(b-P)r. (3.41)

This Noetherian variation has no obvious geometrical interpretation. As a conse-
quence, this symmetry has been unknown for a long time. Our method has
enabled us to find this symmetry by a systematic search.

With (3.28) and (3.33), equation (3.27) yields

dE=dldt{@-xr) " *b-)—-b-DE-r)+®B 1) 1] (3.42)
On the other hand, with (3.41) equation (3.5) yields

8L =d/dt[2(b-r)(x -¥)—2(b-k)(x-1)]. (3.43)
Now, equations (3.42) and (3.43) together yield

djdtf® -r)x-5)— b -DE-D—(@-1 "2(b-r)]=0 (3.44)
” b-ddffr-t)r—(x-Dr—(r-r) Yx]=0. (3.45)
In the case R, = R; we also may write

b-d/difin(@ar)—(r-r) r]=0, (3.46)

which is the usual formulation of the conservation of the so-called Runge—Lunz
vector.

Summarizing:
For the system (3.1) we have derived the Noetherian variation

(3.12) dér=—¢r

yielding the energy conservation
1
(3.13) d/dt(%i' r+—(r- r)"‘) =0
2a

and the Noetherian variation
(3.15) &r=eMr, M=-MT

yielding the conservation of angular momentum
(3.14) d/dt(x- Mr)=0, M=-M"

or for R, =R,
(3.16) d/dt(xrr)=0.
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For the isotropic harmonic oscillator (¢ =1) we have found additionally the
Noetherian variation

(3.23) &r=c¢&Nr, N=NT
which yields
(3.22) d/dtGr- Ni+3r - Nr)=0, N=NT.

For Kepler’s problem (o = —3) additionally to (3.12) and (3.15), we have found
the Noetherian variation

(3.41) or=2M®-r)r—(-Db—(b-1)r,

with b an arbitrary constant infinitesimal vector, yielding the conservation of the
Runge-Lenz vector:

(3.45) d/dt(k-pr—(r-D)r—(r-r) %r)=0.
or for R, =R, '
(3.46) d/dt@@r@®rr)—(x-1) Y1) =0.

All these results have been obtained by systematic investigation of possible
Noetherian variations and without an a priori knowledge of the symmetry of the
system.
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