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On a systematic search for integrals of
the motion *

by J. A. Kobussen

Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, 8001 Zürich, Switzerland

(1. IV. 1980; rev. 23. V. 1980)

Abstract. Noether's theorem stripped of the usual unnecessary complications of explicit transformations

of the independent coordinates is proved in a constructive way. This constructive proof makes
Noether's theorem more accessible for applications. Integrals of the motion or local conservation
equations, also those corresponding to non-manifest symmetries, can be found easily.

As an application, without explicitly using the Galilei symmetry group, the 10 linearly independent

Eulerian integrals for a system of N particles with central two-body interaction are derived.
Without explicitly using the so-called Jacobi-Schrödinger group, the 12 linearly independent integrals
of the motion are found for the special case that the interaction potentials are inversely proportional to
the squares of the particle distances.

In an analogous way the n-dimensional isotropic harmonic oscillator is discussed and for the
n-dimensional Kepler problem, the conservation of the Runge-Lenz vector is derived.

1. Noether's theorem simplified

In recent years, a lot of publications are devoted to symmetry transformations

and integrals of the motion. A great deal of them are based on Noether's
theorem (Noether, 1918), which is clearly represented by Hill (1951). Most
treatments are unnecessarily complicated. The reason is that mostly infinitesimal
transformations (variations) of the independent variables as well as variations of
the field variables are considered. It can be shown (Steudel, 1966) that as far as
the conservation equations resulting from Noether's theorem are concerned, such
infinitesimal transformations are equivalent to variations of the field variables
alone.

Let a physical system be fully described by say

<Pi(x), i 1,1,3,... m

where

x \X0, Xi, x2,..., X„_i},
and

Xg= t

represents the time.

*) Work supported by the Swiss National Science Foundation.
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Further, we assume the system to have a Lagrangian density SE which is a
function of x, the m-tuple <p ={(pi, cp2,..., <pm}, the mn-tuple

<Px ={<Pi._ l« 0,1, ...,n-l; i \,l,..., m},

the mn2-tuple

<Pxx {<Pi,ta.ß |a, ß 0, 1,. ..,n-l; i 1, 2,..., m}, etc.

Here cpi>a stands for d(pjdxa, etc. We write

^ taS?(x,taP,tapx,<pxx,...) (1.1)

The action or action functional then is

A j if(x, cp, <px, cp^,...) dnx, (1.2)

where the integration is done over some fixed region Gn in the n -dimensional
x-space. The equations of motion now follow from Hamilton's principle or the
action principle

8A 0, (1.3)

and can be written as

d<£ dX d££d- +dadß- =0, (1.4)
9<P. ôtapja ötapi>aß

where a summation over repeated Greek indices from 0 through n -1 is implied
and da denotes differentiation with respect to xa at constant x0 (a^ß) and
varying <p(x).

Here and in the rest of this paper, the weak identity is used to indicate
identities which only hold for solutions cp;(x) of the equations of motion.

In the study of Noether's theorem, one usually considers infinitesimal
transformations (variations) of the independent variables x and of the field variables
<Pi(x):

xa^x'a=xa + 8*xa (1.5)

<pi(x)^taP[(x') cpi(x) + ô*cpj(x) (1.6)

and investigates the variation of the action under these infinitesimal transformations.

If this variation 8A is identical zero or can be written in the form

SA \d"xdadja, (1.7)

Noether's theorem yields an equation

daXa 0. (1.8)

which has the form of a continuity equation. Here the xfrs are functions of x, ip,
cpx, cpxx, etc. The quantity \o is called the density, the quantities x<* (a
1, 2,..., n — 1) constitute the components of the flux -vector or currenf-density
vector.
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Integrating (1.8) over some region G„_i in the subspace spanned by the
variables x1;..., x„_i, one obtains

dfdt \ xo d^x - f I daXa d^x. (1.9)

With Green's first theorem one can transform the right-hand side of (1.9) into an
integral over the boundary of Gn_x. With suitable boundary conditions imposed
on cp, the right-hand side of (1.9) will vanish and one obtains

dldtl xo dn~lx 0. (1.10)

Then | Xo dn~1x is called an integral of the motion or first integral of the system
(1.4). In cases where (1.10) expresses a physical law, such as the energy conservation

law, equation (1.10) is termed a global conservation law, equation (1.8) being
the corresponding local conservation law. To find explicit expressions for xa, it is

necessary to investigate the variations of A precisely. In general, this is not very
easy because one has to consider changes of the integrand as well as of the
integration bounds. Steudel has proved that if a local conservation equation (1.8)
can be derived with the variations (1.5)-(1.6), the same conservation equation can
also be derived with an equivalent variation of the field variables alone (Steudel,
1966)

<fc(x)->taP{(x) tt(x) + &Pt(x), (1.11)

where (see eqs. (1.5), (1.6))

Stapl.(x) tapKx)-<pi(x) cp.(x'-Ô*x)-tapî(x)

<p'iix')-<p'Ua8*xa-<piix), (1.12)

or

8<Piix)=8*<piix)-çUct8*xa (1.13)

This means that in the search for local conservation equations, variations of the
field variables only may be considered.

This idea, which is also found in von der Linden 1963, and mentioned in
Havas 1978, is rarely used in the literature. Nevertheless, Steudel's result simplifies

the construction of local conservation equations considerably. Especially, this is
the case if we have to do with so-called hidden symmetries (non-manifest
symmetries). The simplification mainly comes from the fact that, as we will see, it
is sufficient to discuss variations of the Lagrangian density instead of the action.

Let us consider a variation

<Piix)^cp'iix) cpiix) + Scpiix). (1.14)

Then a first-order Taylor expansion of i? gives

„rn dse „ dse dse
82 —8tPi+- 8cpUa +- ô<pijŒ3 + • • • (1.15)

o<Pi o<Pi,a 3<Pc,«0

(Summation over i 1, 2,..., m and a, ß 0,1, 2 n -1 is implied.) With

ô<Pi,_ (&&),„ 4,-StaPj
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and the chain-rule for differentiation, we also may write

S_. fiç,(-—d-—+dadß-— +
™<Pi ÖtaPi-£e '3<Pi,,«p

+ dJ8<pt{- dp- +(090,3- +•••). (1.16)

In the first term, as a factor we recognize the equation of motion (1.4). Therefore
we have the weak identity

SL da(69t(^-dß—) + (SVt)J^-+ ¦ ¦ (1.17)
\ \dcPi„ (Pi „a/ OtaP.„H /Œ0

8L da4,a,

from (1.17) and (1.18) follows

djific 8(pA
\ vötapi-a d(pi,aß 1

-(Sep;),,
BSE

3

d(pUaß
+

If now by guessing or by systematic investigation, one finds that for a special
choice of the variation 8(pt as function of <p and its derivatives, one has the strong
identity

(1.18)

0, (1.19)

which has the structure of a local conservation law.
Infinitesimal transformations (1.14) which yield an expression of the form

(1.18) are termed Noetherian variations. A simplified version of Noether's
theorem now is:

Every Noetherian variation yields a local conservation equation.
In the applications of Noether's theorem it is essential to make a good choice

for the Noetherian variations. In most literature, those applications are restricted
to manifest symmetries. For instance if the Lagrangian density X does not depend
on the field <p> explicitly, i.e. if

dS£f^ 0, (1.20)

the infinitesimal shift of the field <p;

8(Pi £i^8<£ 0, (1.21)

is a Noetherian variation. With (1.17) it yields

d£ dX
-d»

3<Pi,a d(pi aß
0, (1.22)

which is the equation of motion written in the form of a local conservation
equation.

Another manifest symmetry is met in those cases where X does not contain
explicitly the independent variable xa, i.e. when

dS£
— 0. (1.23)
dx„
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Then the infinitesimal shift Sx« ea leaves the action invariant. With (1.11) we
find the corresponding Noetherian variation

Sep, e^cpi ea(pUa (1.24)

that yields

856=eadaX. (1.25)

Then (1.24), (1.25) together with (1.17) give

dta,s.,Œ 0, (1.26)

where

/a_ ai\ dse

V (PiJ- dß + <Pi,«0 t + 8ay%, (1.27)
\d(pUy dcpiiyf} I d(pi<yß

and 8ay is the usual Kronecker symbol

S,.,, -0 (a + y); 8ay Ha y). (1.28)

If ._? only depends on derivatives up to the first order, (1.27) reads

dX
d(Pi.y

which in many physical situations is the usual expression for the energy-
momentum tensor. In those cases equation (1.26) expresses the conservation of
energy and of momentum.

We stress here that it is not necessary to have an a priori knowledge of the
Noetherian variations or symmetries of the system. With a suitable ansatz for the
variations Sc, and using equation (1.15) one can systematically figure out conditions

for Stpi being a Noetherian variation. As an example assume that the
Lagrangian density (1.1) only depends on x, <p and <px, and that it is a homogeneous

polynomial in ç and cpx of degree 2. Then the equation of motion (1.4) is a
linear second (or first) order partial differential equation and all coefficients are
linear polynomials in cp and cpx. Taking now as an ansatz

ôcft a,j(x)-p,- + ßiiaix)cpj<a,

and substituting it in (1.15) one can find out conditions on «„(x) and ßiJO,(x) for
8(pt to be Noetherian. The density and flux density of the corresponding local
conservation equation then are polynomial expressions in cp and cpx of second
degree.

In the following sections, we will give some illustrations for the use of the
method described above. These illustrations are chosen out of the field of classical
mechanics. Examples for continuous systems can be found elsewhere (Kobussen,
1973 and 1976).
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2. Integrals of the motion of the N-body problem

Consider N particles in an Euclidean space R3. The particles will be
numbered from K 1 through K-N. The coordinates of the Kth particle are denoted
by 'k (xk, Vk, zk), its mass being mK. The total kinetic energy of the system is

1 £T ~~~ 2- mKTK-tK, (2.1)
Z K l

where the dot • denotes the usual inner product in R3. We assume the potential
energy U only depends on the mutual distances of the particles:

U=UirKL), (2.2)

where

Tra. \rK -r_| ((rK -rL) • (rK -rL))1/2 (2.3)

is the mutual distance of the particles K and L.
The dynamics of the system now follows from the Lagrangian

X=T-U \ X mKiK-rK-U. (2.4)
Z K l

A first-order Taylor expansion of (2.4) yieldsNN N ari-
aS^ d/df X mKiK • 8tK- X mK'iK • SrK - XX 2~ rKÌÌTK-tL)-8rK.

K l K l K,L=1 OTkl
K¥=L

(2.5)

Then, the equation of motion is

N taJT

mKifK+ X 2-—rKL(rK-rL) 0, (2.6)
L l OTkL

and from (2.5) remains

N
8%=dldt X mKrK-SrK. (2.7)

K l
Now we will look for integrals of the motion of which the leading term, i.e. the
term that comes from the right-hand side of (2.7), is linear in the coordinates rK
and velocities rK. Therefore, we introduce the ansatz

5rK aK, (2.8)

aK being an infinitesimal vector, possibly explicitly depending on t, that does not
depend on rL nor on rL (L 1, 2,... N). With (2.4) we find

N N QJJ
8X X ^kI-k * »k - XX 2 r^_(rK -rL) • aK.

K l K,L 1 ("KL
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The second term of this expression vanishes if one takes

aK a (2.10)

for all K 1,..., N identical. Then we have
N

SS? - X mK'K * à
K l

N N
d/dfX mKrK-à- X mKiK-à. (2-11)

K l K l

Thus, 85£ is a total time derivative
N

8X=dfdt^ mKrK-à, (2.12)
K l

if a satisfies

ä 0 (2.13)

or

a a+te (2.14)

a and e being arbitrary constant infinitesimal vectors. With (2.8), (2.10) from
(2.7) follows

N
8S£ dldt X mKrK-a (2-15)

K l

The equations (2.12) and (2.15) together yield

d/dt^ (a • mKrK-a • mKrK)-0. (2.16)

Taking either a or e zero, instead of (2.16), with (2.14) we have the two vectorial
conservation equations

N
dfdtP=0; P= X ™KiK, (2.17)

K l
N

d/d.G 0; G= X mKrK-.P. (2.18)
K l

Next we will look for integrals of the motion of which the leading term is
quadratic in the coordinates and the velocities. In this search, we also restrict
ourselves to those integrals of which the leading term can be split up in the
sum of one-particle terms. This leads to the ansatz

8rK AKrK + BKiK, (2.19)

where AK and BK are possibly time dependent infinitesimal 3x3 matrices. For
this ansatz, we investigate the variation 8T of the kinetic energy T first. From
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(2.1) and (2.19) one deduces

N
ST X %'k • (ÀKrK + (AK + ÈK)iK + BKïK)

K l
N

d/dt X niK(ïrK ¦ ÂKrK +|rK • BKiK) (2.20)
K=l

N
+ X mK(£kK • (ÀK -Àl)tK +|rK • (BK -B£)rK

K=l
-èrK • ÄKrK +rK • (AK +|BK)rK). (2-21)

Thus, ST is the total derivative
N

8T =dldtyl mK(±rK • AKrK + \tK ¦ BKiK) (2.22)
K l

if

AK Al, AK 0, (2.23)

BK Bl, (2.24)

and

AK + \BK -(AK 4- |BK)T (2.25)

The conditions (2.23)-(2.25) are satisfied if one takes

AK SK + PK + QKt, (2.26)

BK RK-2PKt-QKt2, (2.27)

where PK, QK, RK, SK are constant infinitesimal matrices satisfying the symmetry
conditions

SK -Sl (2.28)

PK PI; Qk QI; RK Rl (2.29)

With (2.26)-(2.29) we then have

ST dldt £ (|rK • QKtK + |rK • iRK - 2PKt- QKt2)iK), (2.30)
K l

the variation (2.19) being

StK AKrK + BKrK (SK + PK + QKt)rK + (RK - 2PKt - QKt2)iK. (2.31)

Our next step is the investigation of the variation SU of the potential energy (2.2).
One easily verifies

SU= fl j^- rKL(rK -rj • (SrK - SrL). (2.32)
K,L=1 "rKL
K¥=L

In general, SU will neither vanish nor be a total time derivative. Therefore, we
will simplify the expression (2.32) by assuming that the matrices PK, QK, RK and
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SK are identical for all K. In that case, we can drop the subscript K in AK, BK, PK,
QK, RK and SK. Equation (2.32) then reads

N -,TJ
8U= XX ^'¦KL((i,K-rL)-A(rK-rL) + (rK-rL)-B(rK-rL)) (2.33)

If one chooses A -AT, B 0, i.e.

SK S -ST (2.34)

Pk Qk Rk 0, (2.35)

one easily sees that

817=0. (2.36)

Thus, we have found the Noetherian variation

SrK SrK, S -ST, (2.37)

yielding (see (2.36) and (2.22))

&S? 0. (2.38)

On the other hand, with (2.7) we have
N

&2> d/dt X ™KiK • SrK. (2.39)
K=l

For arbitrary constant S -ST, we then have

N

d/dt X mKiK • SrK 0. (2.40)
K l

In a three-dimensional Euclidean space, there are three linearly independent
skew-symmetric 3x3 matrices. Thus, there are three linearly independent conservation

equations of the form (2.40). Taken together, they can be written as one
vectorial conservation equation

N

d/dfL=0; L= X mKtKArK, (2.41)
K l

where a stands for the usual vector (cross) product. To investigate the possibility
that 8U is a total time derivative, we now assume S SK 0. With (2.26), (2.27),
we then have

BK=B R-2Pt-Qt2; AK A=-\È, (2.42)

and (2.33) reads

8U= XX ^'•K_((rK-rL)-B(rK-rL)-è(rK-rL)-B(rJ£-rL)) (2.43)

For

A 0, B -rI (2.44)
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equation (2.43) reduces to
N -.TT

SU= XX - T7 rïcl(*K -r_) • fe -r_)
K,L 1 C"K_

VNV at/ d d
TTXX-tt— 3-frKta^-T-U. (2.45)

k,l=i ôrKL df dt

With (2.22) we then have

82 -t|( X |mKrK • rK - u) (2.46)

On the other hand, equation (2.7) yields

d N
82 -T— X mKrK-rK, (2.47)

"' K=l
and we deduce the scalar conservation equation

^H=0, H= X 5mKrK-rK+ta7. (2.48)
at K=1

In many physical applications the potential energy (2.2) can be given in the form

1 N

Ö ZjZ. CKLrKL,U(rKL,= --2,2,CKLr&, (2.49)

where the constants Ckl are arbitrary and the parameter ß indicates the character

of the internal two-body interaction, E.g. for Newtonian gravitational interaction

one has ß 1. With (2.49) equation (2.43) reads

SU= XX -ißCKLrKr2((rK-rL)-B(rK-rL)
K,L=1

-§(rK-rL)-B(rK-rJ). (2.50)

This form for SU suggests the possibility that it can be written as

8U=dldt XX «QtaJvl, (2.51)
K,L 1

where a is some possibly time dependent scalar. A simple calculation gives
N N

d/dt XX aCKI_rKl= XX CKLrit2(-ßa(]tK-wL)-(rK-iL)
K,L 1 K,L 1

+ d(rK-rL)-(rK-rL)). (2.52)

Comparing (2.50) and (2.52), one sees that SU takes the form (2.51) if

B 2aJ and E 4/ßaI, (2.53)
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I being the unity matrix. Equation (2.53) is satisfied if either

B 2al and ß 2, (2.54)
or

B 2al and à 0. (2.55)

The last case is equivalent to (2.44) which we already have studied. In (2.54), the
condition ß 2 represents a restriction to a special kind of non-Newtonian
internal forces. In that case one generally has

B i-lyt-Xt2)I; A iy + Xt)I. (2.56)

Here we have left out the constant term in B, because this term is also contained
in (2.44).

From (2.56) and (2.22), (2.51) one finds with ß 2

/ N
82 dldti X |AmKrK • rK -\mKilyt + Af2)rK • rK

\k=i

-\ XX (2yt + Xt2)CKLr^L) (2.57)

On the other hand (2.7) yields
N

85£=dldt X (mK(y + Xt)rK ¦ iK-mK(lyt + Xt2)iK -rK). (2.58)
K l

The equations (2.57) and (2.58) together yield a linear combination (coefficients 7
and X) of two scalar conservation equations. These scalar conservation equations
are found when we take in (2.57) and (2.58) either A 0 or y 0. In this way
one finds

dfdtD 0, (2.59)

(N
1 i N \ N

X ~mKÌK •'k-t XX Q_.r^l)- X mKÌK -tK,
K l Z Z k,L 1 I K l

K¥=L
or with (2.48)

N
D ltH- X mKrKTK. (2.60)

K l
Additionally one has

d/d.F 0 (2.61)
/ N i i N \ N

F=t2[ X X^kÌ-k-Ì-k-- XX Ça/A)- X (^KÏK-i-K
SK 1 Z Z k,l i / K l

-|mKrK-rK), (2.62)

or with (2.48)
N

F= t2H- X (tmKrK ¦ rK -|mKrK • rK) (2.63)
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Summarizing:
For the general case, we have the following conservation equations and
corresponding Noetherian variations

(2.17) dfdt P 0, SrK a (2.64)

(2.65)

(2.66)

(2.67)

(2.18) d/dt G 0, SrK fe

(2.41) d/dt L 0, SrK SrK, S -ST
(2.48) d/dt H= 0, SrK —rrK,

where

(2.17)
N

P= X %'K
K=l

(2.18)
N

G= X wKrK-tP
K=l

(2.41)
N

L= X wKrKArK

(2.48)
N

W= X l™KrK -'k+U
K l

Additionally for Uir^) - § X Oci/kL we have found

(2.59) d/df D 0, SrK y(rK - ltiK)
(2.61) dfdtF 0, StK XitrK-t2iK)

(2.68)

(2.69)

N

(2.60) D 2(H- ^ mKrK-rK
K=l
N

(2.63) F=t2H- X (fr"K'K * rK -hmKrK ¦ rK).

According to Steudel's equivalence rule (1.13) the Noetherian variation (2.67)
corresponds to an infinitesimal translation of the time axes

8*t r. (2.70)

The variations (2.64), (2.65), (2.66) and (2.70) together form a basis of the
lO-paramefric group of infinitesimal Galilei transformations.

The three vectorial conservation equations (2.17) (2.18), (2.41) and the
scalar conservation eq. (2.48) yield the ten so-called classical Eulerian integrals.

Obviously, for U given by (2.49) with ß 2 the symmetry of the system is
larger than the Galilei symmetry. We have the additional Noetherian variations
(2.68) and (2.69), or equivalently

8*TK yiK; 8*t lyt, (2.71)

and

S*rK AtrK; S*. At2, (2.72)

respectively.
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The variations (2.64), (2.65), (2.66), (2.70), (2.71) and (2.72) together form
an infinitesimal basis of the 11-parametric symmetry group called Jacobi-
Schrödinger group (Havas 1978).

Usually, e.g. Havas 1978, one derives the conservation equations with
Noether's theorem directly from the symmetry of the system. In this section, we
have succeeded in the derivation of these conservation equations without the
necessity of knowing the symmetry of the system at forehand.

3. The isotropic harmonic oscillator and Kepler's problem

3.1. Introduction

Let the state of a dynamical system be described by the coordinate vector
r € R„ and the velocity vector r d/dt r. We assume the Lagrangian of the system
is

^ |r-r
1

(r-rr, (3 1}
2a

where a is a given real constant and the dot • stands for the usual inner product in
Rn

For an arbitrary variation Sr, the first order variation 85£ of i? is

Si? r-Ôr-(r-r)a-1r-Sr, (3.2)

or with the chain rule for differentiation

8_? d/dr(r • Sr) - Sr • (r+(r • r)—1..). (3.3)

Consequently, the equation of motion is

ï+0-f)—^ 0 (3.4)

and from (3.3) remains

S_? d/dt(r-Sr). (3.5)

For a 1, equation (3.4) describes an n-dimensional isotropic harmonic oscillator
with unit frequency. For a — \ we have Kepler's problem in n dimensions for a
unit mass and a unit gravitational constant.

3.2. Energy and angular momentum

Let us now investigate a special variation Sr of the form

Sr=e(Mr+Nr), (3.6)

where e is a vanishingly small constant and M and N constant nxn matrices.
Substitution of (3.6) into (3.2) yields

-82 i- • Mi— (r • r)«"1! • Mr + r • Nr- (r • i)""^ • Nr). (3.7)
e

The variation (3.6) is Noetherian if SL vanishes or can be written as a total time
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derivative. E.g. this is the case for

M=-MT, N=XI, (3.8)

where I is the unit nxn matrix and A some constant. One easily verifies

- SgS? A dfdt(\r • r--î- (r • r)a) (3.9)
e V 2a I

On the other hand, from (3.5) and (3.8) one obtains

-82=d/dtii-Mr+Xi-i). (3.10)
e

From (3.9) and (3.10) we then have

d/dt(r • Mr + AUr • r+j- (r • t)a\\ 0 (3.11)

For M= 0, A -1 we have the variation

Sr=-er (3.12)

which corresponds to an infinitesimal time-shift S*t=e, and that yields the
energy conservation law

d/d.(er-r+^-(r-rr) 0. (3.13)

Furthermore, A 0 yields the conservation equation

d/d.(r • Mr) 0, M -MT. (3.14)

The underlying Noetherian variation is

Sr=eMr, M=-MT, (3.15)

which corresponds to an infinitesimal rotation in r-spaces. There exist §n(n-l)
linearly independent skew-symmetric nxn matrices. Therefore, equation (3.14)
represents a set of §n(n-l) linearly independent integrals of the motion. In a

3-dimensional space, these conservation equations can be taken together in one
vectorial equation:

d/d.(rAr) 0, (3.16)

where a stands for the usual vector cross product. Equation (3.16) is the familiar
form for the angular momentum conservation. In the case a 1 (harmonic
oscillator) equation (3.7) reduces to

- S_? r • Mi— r-Mr+r-Nr-r-Nr. (3.17)
e

Then to make (3.6) a Noetherian variation, equation (3.8) is a too strong
condition. We also may set

M=-MT, N^JST. (3.18)



Vol. 53, 1980 Systematic search for integrals of the motion 197

Then, equation (3.17) yields

- 82 d/d.(|r • Nr-|r • Nr). (3.19)
e

On the other hand, from (3.18) and (3.5) one obtains

- 856 dfdt(r • Mr + r • Nr). (3.20)
e

From (3.19) and (3.20) we now get

d/dt(r-Mr + èf-Nr-4r-Nr) 0 (3.21)

Thus, besides the conservation equations (3.13) and (3.14), for the isotropic
harmonic oscillator we have additionally

d/dti\i ¦ Nr+\x • Nr) 0, N NT, (3.22)

The underlying Noetherian variation for (3.22) is

8r=eNr, N=NT. (2.23)

With the canonical momentum p r, one can write

Sr eNp; Sp eNï -eNr

Thus in phase space, the Noetherian variation (3.23) can be interpreted as a
rotation of the coordinate and momentum subspaces as a whole around an axis
perpendicular to the phase space.

3.3. The Runge-Lenz vector

With the ansatz (3.6), it is only possible to find integrals of the motion of
which the main term is quadratic in the coordinates. To make the finding of more
complicated integrals of the motion possible, one has to investigate variations
which are more complicated functions of r and of r. For instance, as an alternative
ansatz one could also take

"Xj AijkXjXk + BijkXjXk + CjjfcXjXjta,

or

Sx; Ajjfc|XjXfcXj + ByfcjXj-XfcXj + CijklXjXkXi + DijkiXjXkXi,

etc.
Here, xf is the ith component of the vector r, and a summation over repeated

indices from 1 through n is implied. In the following, we only investigate a subset
of these possible variations. We set

Sx, AijkXjxk (3.24)

and will try to find conditions for the coefficients Aijk that make the variation
(3.24) a Noetherian variation.

In terms of the components, the equations (3.2) and (3.5) read

8^ xi8xi-ixjxi)a~1xiSxi, (3.25)
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and

82 d/dt(x,SXi), (3.26)

respectively.
Substitution of (3.24) into (3.25) gives

82 AiikXiXjXk + AjjkXjXjXk — (xmxm)™ AiikXiXjXk (3.27)

Let us now look at the last term of (3.27) first. The coefficients have to be chosen
such that either this term vanishes or is a total time derivative. The term vanishes
if one takes Aijk -Akji. Then Si? Ai/fcxrx;xk, which will generally neither vanish
nor be a total time derivative.

When the last term of (3.27) should be a total time-derivative, a candidate is

d/dt[ixmxmrib-r)], (3.28)

where b is some constant vector with components B1, B2,..., Bn. The question
now is whether conditions for B; and Aijk can be found such that

~(xmxm) AiikXiXjXk 2a(xmxm) BjXjXjXj +ixmxm) BjXi? (3.29)

(3.30)

(3.31)

(3.32)

and Sj, stands for the usual Kronecker symbol. With (3.31) and (3.32) the second
term of (3.27) generally becomes a complicated expression. Only in the special
case a — \ this term vanishes. Therefore in the following we restrict ourselves to
this case (Kepler's problem).
With (3.31) and

or

-AyfcXjXjXk 2aE .XfXjX,i + BjXj-XjXj.

This condition is:

A-ijk -2aBjS)k - Bj8ik + Cjjfc,

where

Qjic ~Ckji

«=-i (3.33)

the first term of (3.27) becomes

Ai/kx,x,xfc BjXjXjX, - BjXjXjXj + CijkXiX)xk (3.34)

(b • r)(r • r) - (b • r)(r • r) + CiikXix)xk. (3.35)

A simple calculation now gives

(b • r)(r • r) d/d.[(b • r)(r • r)] - (b • r)(r • r) - (b • r)(r • r) (3.36)

d/d.[(b-r)(r-r)-(b-r)(r-r)]
-(b-r)(r-r) + 2(b-r)(r-r) (3.37)

Thus,

AikXiXjXk 2(b • r)(r • r) - 2(b • r)(r • if) + C^x^x,,
- d/dt[(b • r)(r • r) - (b • r)(r • r)]. (3.38)
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Because of (3.32), the third term on the right-hand side of (3.38) is skew-
symmetric for the exchange of r and r. The first two terms together have the same
property. Then Cijk can be chosen such that the first three terms vanish together:

Qjfc 2BfcSj]-2BiSjk. (3.39)

With (3.31) and (3.33) we then have

Aiik -BjS/k -Bfrk + lBk8ti, (3.40)

which with (3.24) yields the Noetherian variation

Sr 2(b • r)i- (r • r)b- (b • r)r. (3.41)

This Noetherian variation has no obvious geometrical interpretation. As a
consequence, this symmetry has been unknown for a long time. Our method has
enabled us to find this symmetry by a systematic search.

With (3.28) and (3.33), equation (3.27) yields

82 d/d.[(r • rfr1/2(b • r)- (b • r)(r • r) + (b • r)(r • r)] (3.42)

On the other hand, with (3.41) equation (3.5) yields

82 d/dr[2(b • r)(r • r) - 2(b • r)(r • r)]. (3.43)

Now, equations (3.42) and (3.43) together yield

d/d.[(b • r)(r • r) - (b • r)(r • r) - (r • rfr 1/2(b • r)] 0 (3.44)
or

b • d/d.[(r • r)r- (r • r)r- (r • rfr1/2r] 0. (3.45)

In the case Rn R3 we also may write

b • d/d([r a (r a r) - (r • rfr 1/2r] 0, (3.46)

which is the usual formulation of the conservation of the so-called Runge-Lunz
vector.

Summarizing:
For the system (3.1) we have derived the Noetherian variation

(3.12) Sr=-£r
yielding the energy conservation

(3.13) d/dr(er-r +^(r-rr) 0

and the Noetherian variation

(3.15) Sr=eMr, M=-MT
yielding the conservation of angular momentum

(3.14) d/d.(r • Mr) 0, M -MT
or for Rn R3

(3.16) d/df(rAr) 0.
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For the isotropic harmonic oscillator (a 1) we have found additionally the
Noetherian variation

(3.23) Sr=eNr, N=NT
which yields

(3.22) d/dtiii ¦ Ni + \x • Nr) 0, N NT.

For Kepler's problem (a -§) additionally to (3.12) and (3.15), we have found
the Noetherian variation

(3.41) Sr 2(b-r)r-(r-r)b-(b-r)r,
with b an arbitrary constant infinitesimal vector, yielding the conservation of the
Runge-Lenz vector:

(3.45) d/dr((r • r)r- (r • r)r- (r • rfr1/2r) 0.

or for R„ R3

(3.46) d/d.(r a (r ar) - (r • r)"1/2r) 0.

All these results have been obtained by systematic investigation of possible
Noetherian variations and without an a priori knowledge of the symmetry of the
system.
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