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On the propagator of the relativistic oscillator’)

by C. Kunz
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(24. TIL. 1980)

Abstract. We propose an expression for the propagator of the scalar relativistic oscillator [1]. It is
shown that this expression has several decent properties. On the other hand we did not succeed in
obtaining a unique characterization of the propagator in terms of physical requirements.

1. Formulation of the problem

‘We consider a system of two spinless constituents described by the wave
equation of the relativistic FKR oscillator [1, 2] and introduce an external
perturbation (e.g. an electromagnetic field). The problem we put ourselves is the
following: How do we calculate the effects of such a perturbation on the system?

In order to get a systematic perturbation theory we study the Green’s
functions of the oscillator and choose the analogue of the Feynman propagator of
the free system. We are therefore led to the problem of constructing an approp-
riate Green’s function to be identified with the propagator of the oscillator.

Here we are confronted with serious difficulties arising from the fact that the
wave equation of the relativistic oscillator is supplemented by a covariant con-
straint eliminating relative time excitations [2]. This gives us a restricted class of
solutions of the wave equation. We are looking for a propagator which,
addition to the standard requirements (covariance, analyticity, spectral propertles
proper free and nonrelativistic limit), also satisfies this constraint.

Unfortunately, we were unable to find an unambiguous definition determining
the propagator uniquely. Nevertheless we can propose a well motivated ansatz
which fulfils the above requirements. The generalization to spin 3 systems [3] does
not introduce special difficulties, up to gymnastics in spin matrices.

In Section 2 we define the FKR oscillator and show that the associated
Bethe-Salpeter kernel leads to unphysical modes. In Section 3 we give a charac-
terization of the causal (homogeneous) Green’s function and argue that it is not
possible to define the inhomogeneous (retarded, advanced, mixed) Green’s func-
tions as in the free case just by multiplying these objects with suitable 6-functions.
In Section 4 we make an ansatz for the propagator, motivated by solutions of a
compatibility condition, and discuss its properties. In section 5 we provide
conclusions.

1 Work supported in part by the Swiss National Science Foundation.
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2. The FKR oscillator and the Bethe-Salpeter kernel

A system of the two spinless constituents may be described by a covariant
wave function ¢(x’, x"). States with a sharp value p of the four-momentum are of
the form:

¢, (x', x") =exp [ —Et p(x'+ x")](bp(x' — %"

Notation

w,=3(x'+x"), z,=x'-x", a,=3,-Az, a;=-9, Az,
1) _ i 2 1 2y

DSC __axax+m0+ZDw,’ Di)—axawxy

o(x', x") = bd(w, z,),  &,(w,, z,) =exp (—ipw, )b, (2,).

In the following I omit the subscript x whenever this does not lead to
confusion. In the above notation the FKR oscillator is defined by:

D" ¢(w, z)=0 wave equation,

D@ ¢(w, z)=0 constraint. (1)
The free case is obtained for A — 0:

D% — i[O, +mg) = O+ m3)].

For a discussion of the properties of the FKR oscillator within the framework
of Hamiltonian quantum theory on the null plane I refer to [2].
The timelike part of the mass spectrum is a sequence of linear trajectories:

pi=4mi+8An, n=n,+n,+n,, n=0,1,... (i=1,2,3). (2)
The corresponding eigenfunctions are products of Hermite polynomials:

$pi(2) = (‘{)3/4[ 2 !]1/2 exp (g zZ)Hnl(\/X(zl+ﬂ z))

™ Vpin,! n,! n, P+

Xan(\/X(ZZ‘F% z"))Hna(\%(pz—g—i‘z“)) (3)

n

(P+=3(po+ps), 27 =3(z°—2%)).
In the normalization (3) the functions ¢,;(x', x")=exp (—ipw)d,:(z) are
orthonormal in the following metric:

. > > < >,
—J do;J 0By (6, XV T™ = A2H G NG 2" 1y a(x, X")
a’ o’

=Q2w) \Pé"'po' 3(Pp'—P)ésa (4)

for any two spacelike hypersurfaces o', o”. Here the adjoint wave function q!")pﬁ is
given by

bua=exp (-1 20, ©)
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It satisfies the following equations:
DV¢(w,2)=0, D®¢(w,2)=0,
ﬁ(l)z—a+a+2)l+m§+%|:|w xD(1)++2/\’ D(Z)z_a+aw = D@+ (6)

These wave equations, of course, lead to the same mass spectrum as (1).

There arise problems in the spacelike part of the mass spectrum. The
eigenfunctions and adjoint wave functions are known but for most of them the
above metric leads to divergent integrals. A short discussion of the completeness
problem of the oscillator on the null plane may be found in [4].

The basic problem investigated here is the construction of the associated
inhomogeneous Green’s function to be identified with the Feynman propagator
which for two free particles is given by

’ n ’ n 1 ! ! 1 n n
Gro(x's x" |y, y) == Ap(x’ = y's m) = Ap(x"—y"s mg). (7)
The free propagator may be characterized by the four inhomogeneous wave
equations (A =0)
free __ free o B ee T T
DGl = De{D{, D?, DV, D®}, [feee (IO, [@ [ [

o~ ' ] " n 1
IW=1"= E [8("=y) +8(x" =y~ Ar(z, — 2,5 mg), ®)

P U 1
I1® = 1(2)=E[5(x —-y')— 8(x"—y”)];AF(Zx —Zy; mcz))-

supplemented with suitable boundary conditions. Clearly, the inhomogeneities
vanish unless x"=y’ or x"=y". This property suggests that one characterizes the
propagator associated with the oscillator by the inhomogeneous wave equations

DGe=1 (9)

and requires that the inhomogeneities vanish unless x'=y’ or x"=7y". This
requirement is however inconsistent: in order for (9) to admit a solution the
inhomogeneities have to obey an integrability condition. An ansatz of the
structure (8) for IV, I®, I, I® fails to satisfy this integrability condition. This
implies that the locahty requirement on the inhomogeneities has to be weakened
(‘segment locality’ instead of ‘point locality’, see Section 4).

Alternatively, one might characterize the propagator by the fourth order
differential equations

B * Ge=Gg * B=1,
B(x', x"|y, y)==(DP+2A = D@)DP + D)8 (x'— y)8(x"— y"), (10)
which are also satisfied by the free propagator (B~ —('+ m3)((]"+ m3)), and

avoid the integrability problem. (The factor 2A in the differential operator is
inserted to guarantee that both ¢ and ¢ are eigenstates of B in the sense:

Bx¢p=¢*B=0
[(D®+2A = D®)(DY+D?)=[(DD -2\ + D?)(D® - D®)]"].
We call B the Bethe-Salpeter operator of the oscillator.) .
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The equations (10) determine Gg up to a solution of the homogeneous
equations B*G=0= G*B. In order to get a unique solution one has to supple-
ment (10) with suitable boundary conditions such that G indeed describes
propagation. A convenient method to achieve this consists in solving the corres-
ponding Euclidean problem. In the Euclidean region B~*(x', x" | y’, y") is uniquely
determined by the requirement that the Fourier transform with respect to the
variables z,, z, and w is well defined (at least as a tempered distribution).
Explicitly we have found the following expression for this kernel:

B-l ' " ’ " — J‘ 4 . -1
(x » X | y ’ y ) (277)41 d p exp( lpW)B (ZxJ p |Zy)’ (11)
1 A e A 3/2 &,
sty penlbit-] i)
(le P lzy) 32772 exXp 5 (Zx zy) ) dT\/’;‘ 1—3_)”' A dg
2 2.2
T 14 A - &pT
X e 2__)+ AT/2 = 2 _
exP[ 4 (m° 7)o@ aTs) e
i AT i
e pe 2|, (1)
2 1_e—A1*/2 1/2
§12= = [1+e"”’2] , (z,—2,)°<0, Rep’<4m].

The inverse B™' describing propagation in the Minkowski region is obtained
as the boundary value of the analytic continuation corresponding to the following
prescription

B™' — B '(w?—ig, wz,, wz,, 22, 2,2,, 23)

(motivated by the free case, see Subsection 4.D).
Discussion of the properties of B~! (without details):

(i) B! has the correct free and nonrelativistic limit (Subsection 4.C).
(ii) Though B™' has poles at the correct values p>=4mj+8An(n=0,1,...)
the residua

R,(z|plz,)= lim (p.—-p*)B7'(z.|plz,)
P —*Pn
have exotic contributions (relative time excitations). It may be verified that:
B*R,=R,*B=0, but D®R_#0#D®R,.

As may have been expected the inverse of the Bethe-Salpeter operator
propagates physical as well as unphysical modes of the oscillator; B~" therefore
does not solve the problem posed here.

3. Causal Green’s function

The causal Green’s function G(x', x"| y’, y”) of the relativistic oscillator may
be characterized by the homogeneous wave equations:

DG=0, De{D",D?, D, D} (13a)
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and the boundary conditions at x'*=x"" =y =y"=0: .
G=8G=8.G=8G=8.G=0, ‘ (13b)
— (03 G)(X', X" | §', ") = —(87:85.G)(X', X" | §', §")
=8(x'—y") 8(x"—y"). '

The solution of (13a, b) exists and is unique.

In general the causal Green’s function should be expressible by a sum over a
complete set of eigenfunctions of the four-momentum. It may be decomposed
into a timelike and a spacelike part. According to (3)-(5) the timelike part is

d3
G'x,x"|y,yn= ). Jm b, (X', X", (¥, yE. (13¢)

n
pn=0

The spacelike part should, at least formally, be of similar structure [4]. G' may
also be written in the form
Gt ! " ] m d4p - - 2 oD 2
&, x" |y, y") = 2y &P CiPW) L, B — PR bulpize P2 25y 520 2,
n=0

1 oo
(bn (pzx? sza Zi: szy:» Zi) = I déJ d"? exp [F—l(gpzx - npzy)] (13d)

X qbn(ga n, Zi, Zny, Zi)

In the free case ¢, vanishes unless £ n € {2, —1}, but in the oscillator case this
is not true anymore. Intuitively the oscillator may be viewed as describing objects
extended along the straight line segment connecting the two defining points. The
naive definition of the retarded Green’s function suggested by the free case:

Gret(x': xn i y!, yn) — e(xfo_ er)B(xﬂO _ ynO)G(xr, xu | yl’ yH)

is not acceptable, because it violates Lorentz invariance. (G(x', x" | y’, y") does not
vanish if say x'—y’ is spacelike, but x"—y" is not.)

4. Our candidate for the propagator

Actually the starting point of our investigation was the observation (see
Section 3) that the Green’s functions, in spite of the writing, are not really
four-point functions but rather two-segment functions and that the in-
homogeneities should vanish unless the two lines intersect (‘segment locality’,
which is the appropriate notion for a two-segment function).

We made the following ansatz:

; d*p (”
1,21y, =7 [ 555 | de[ dnexpl-ip(x(@)-y(m)

X I(g’ 7,7 Z szy7 z )7

x(€) =31+ &x"+3(1-&x",  y(m)=3(1+n)y +zx(1-n)y". (14)

(We did not restrict the support of the variables ¢ and m, but assumed the most
simple segment locality, i.e. independence on p?.)
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Because of the commutation relations

[D?, DP]=2ADP,  [DP, D{P]=-2\DY, (15)
the following compatibility conditions have to be satisfied:
— 3T — (P 72
DPIV=(DP+20)I?,  DPIV=(DY-20)I?. (16)

An analysis of these integrability conditions, carried out in [4], leads to a
propagator with a structure closely related to B™':

1 A A
_ N2 .2
Ge(z,| p|z,) 352 SXP [2 (% zy)] L dr ’T(l_e_h) J_l dé
<ewp| =5 (mi=F) e e n P
§2p27 [ AT i
- 16 —Ef 1—e A p(e '\jzzx—zy)]’
By — 2 =1, Re p*><4mj,. (17)

The only difference in comparison to B™' (see (12)) is the range of the &-
integration.

In configuration space this result may be written as

' " ’ " 1 A 2 2 !

= * of(1 1
=J‘ d'rlf dr,m’ CXp[—%g("-+—)+T10'%+T2O"§] (18a)
0 0

1 T2
=2 jdeT"3n3 exp [ —ﬂg ’1""1 (o7 + 0'3)]
by 4 T
[ —0i—-0;3
V—-0iv-a3
012 = x(£§) — y(£m),
x(&)=3(1+&x'+3(1-¢' = H)x",  y(n)=3x(1+7n)y +3(1-n)y",

K, (% J—T%J—T%) +2K, (-i— J—_(;Z{J—_crg)] (18b)

AT 172 '
n= [1_6_‘“] =1, £= ew)m'z,nT =¢  in (18b)

1 1 1 1
=9 |r=>—+—, E=§|r—>—+— in (189)
T1T T2 T, T2

K, are modified Bessel functions of the second kind:

[o=] v/2
j dit” ' exp [—g—pt]=2(i) K,(Vap), Re p>0, Re a>0.
o 4t 4p
The representation (18) exists in the region where o7, <0 for all values of
the arguments. By analytical continuation (18) determines Gy in the whole space

of complex arguments, except in the singular points. This will be discussed in
Subsection 4.E.
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In (18a) it is immediately seen that G, exhibits a sort of minimal coupling; it
represents an average of the product of two free particle propagators along the
straight lines through corresponding points.

Properties

Gr has the correct free limit.

Gy has the proper residua at the poles p*=4m{+8in (n=0,1,...) in
momentum space.

Gr has the correct nonrelativistic limit.

Gr has good analytical properties.

Gy has the proper short distance behaviour.

mon Wy

4.A. The free limit

It is immediately seen in (18a) that G has the correct free limit.

It is interesting to consider the free case in more details. In Appendix A an
investigation of Gp°® in terms of the eigenfunctions of the total four-momentum
may be found. The most interesting result is the decomposition of GE°° in its
timelike and its spacelike part. In particular this decomposition shows that the
Fourier transform

Gr=(p|z)= :J d*w exp (ipw)GE=(x', x" |y, ¥y") (w=w,—w,z=2,—2)

does not have any cut for p><0. In other words, the spacelike part of Gg**(p | z)
is an entire function in the variable p,. This fact should not surprise because for
fixed value of 'z the spacelike part GZ*** of G is of compact support with
respect to the conjugate variable w® of py:

free s(x xlr| y yﬂ) 9(2| ZO I_ O)Gfree(x xrr| y y

Roughly speakmg, the spacelike eigenstates of the four-momentum p propagate
with respect to the relative momentum (the conjugate variable of z) rather than
with respect to p.

More surprising may be the fact that a similar situation holds in the oscillator
case, too As seen in the representatlon (17) Ge(z,| p |z ) does not have any cut
for p>=0. We will come back to this in Subsection 4.B and Section 5.

4.B. The residua of Ge(z,|p |z,)
For pl*>=4mi+p>+8An,n=0,1,...:

lim (pi—p*)Grlz|plz,)= Y bpalz)dpalz,), (19)

p°—p.° Y n=n

d)p,r'u (bp,ﬁ as in (3)7 (5)
- Sketch of the proof: Substitution in (17):

r =exp (_E)
5 )
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Consider a new function: for z><0 (z =z, —z,), Re p>>0

w562 N a -y

sin (1 (m%vg—))
2A 4
X (___ r)—1+(1/2/\)(m02—p2/4)

ol e E59)- (o229}

The integration path Tuns as shown in Fig. 1.

Gi(p?, pz,, pz,, 23, 2,2,, z5) is meromorphic in the Re p>>0 half plane and
G — Gj is holomorphlc there. o

(19) are the expected residua, because the timelike part of the causal Green’s
function may be written as (see (13c, d)):

1
%(Z"lplzy)— 3/2\/ 2

G‘(zx| p |Zy)= Z 27” a(pz_pi)(bp,ﬁ(zx)(ﬁp,ﬁ(zy)*'

It is interesting to note that, as Gg(z,| p |z,) is a meromorphic function in p,
by the theorem of Mittag-Leffler G is determined by its residua up to an entire
function:

Ge(z,|p lzy) - Z (bp,ﬁ(zxz)ibp,r;(zy)*
A Pn—P

where E(z,|p|z,) is entire in p,.

Note however that in E(z,|p|z,) not only the spacelike contributions are
contained but also those which arise from the ambiguity in the off-shell extrapola-
tion (compare with the free case in Appendix A).

In fact we found an appropriate off-shell extrapolation of the residua making

+E(z.| p|z,),

Yl

Ir|=1

Figure 1
The integration curve y in the r-plane which is cut along the positive real axis.

Rer
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E(z.| p|z,) zero. For (z, —z,)*<0, Re p><4mj:
v 1 o0 . o 2 2
i L& m, 25, 2,2, 23)
GF(leplzy)=j d&J dn eXP[——p(ézx-"nzy)] L R
-1 —0o0 2 n=0 pﬂ_ p
(20)

Lll dEf; dn exp[ = &z — wz, )].SP (&, 22, 2,2y, 22) | om

E ¢p,ﬁ(zx)(£p,ﬁ(zy)*'

Yn=n

This may be proven by using the generating function for products of Hermite
polynomials.

Actually the result in the beginning of this subsection is a consequence of
(20) or, properly speaking, it may be taken as a proof that the interchangings of
summation and integrations in the proof of (20) are allowed.

Thus, in addition to the characterization of the propagator by its locality
properties we have found an alternative characterization by means of the above
off-shell extrapolation which is minimal in its p>-dependence and, in this sense,
canonical.

From (20) further information may be taken without any calculations: For
(z, —2,)*<0 the inhomogeneities

I=DG;
(D @ 3 T "
(D E{Dx 1 sz L Dgl), D;Z)}, IE{I(i)’ I(Z), I(l), I(Z)})

have to vanish unless the two lines {x(&)||¢|=1} and {y(n)||n|=1} do intersect
(segment-locality).

This may be verified explicitly in our case. For (z,—z,)><0 the in-
homogeneities are of the form

I, x|y, y) =2 I drd(x(£¢,) — y(En ) L7, z3, 2,2y, 23) (21)

0
with

AT L2
"*=[1—e-n] e[l,®), ¢=e*"q,€[0,1].

They clearly satisfy segment locality, as suggested from the very beginning. (The
inhomogeneities of B~' do not satisfy segment locality!)

It is interesting to consider the support properties of the variables £ and 7,
in (21) in more details. That £ is concentrated on the interval [0, 1] was to be
expected from the qualitative picture of the oscillator as describing an object
extended along the straight line between x' and x". More surprising is the support
property of 7, : it suggests that the adjoint oscillator describes an object concen-
trated on the straight line thr0ugh the points y' and y outside the segment
between them.
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4.C. The nonrelativistic limit
The nonrelativistic Hamiltonian H for the oscillator is
1 (p°
9,0 = H(p =——[———Az+)\2"2—3/\}.
i (P) e L4 z

H(p) is selfadjoint in the usual nonrelativistic metric. A complete set of orthonor-
mal eigenfunctions is given by: (n=n,+n,+n,;, n,=0,1,...(i=1,2,3))

A
e en(-29)
Jal2)= (_> [n! ny! nyt]'2

aw

H, (VAz")H, (VAz) H,,(VAz?)

= lim v/moce, ; (2)

C—>00

(for ¢, see (3)). They satisfy

52 2\
Hp) () =6,%:(3), &, =—L—+=""=lim [cpl—2moc?].
4m0 mO c—>©

The resolvent is given by:

(5 L. Z \k A 3/2 ®©
R e plz) =y LB  _ (2) 0y,
0

F; E,—E s 4
MoT ﬁz
_ ,—AT\—3/2 -
X(1—e™7) exp{ 2 (e 4m0)
A —AT/2 2 . P = —AT/2 2 \2
_m[(e Zo— 2 TiE,—2 Z,)° ;- (22)

The representation (22) is valid in the region Re £ < p*/4m,. The free limit is the
correct one:

Rfree(t, V-\;, 2) -~

2 J de J dp exp (— iet — ip;w’) 115)1}) R(Z,|e,p|Z,)

> im, .,
(f) exp [Z—t(x?ﬂz)],

It is immediately shown that our candidate for the propagator of the oscillator has
the correct nonrelativistic limit:

R(Z | & p|Z,)=lim 4m{cGe(Z,| p |Z,) (23)

c—>o -

if in the expression (17) for Gg p? is replaced by p>=4mjc*+4mye — p°.
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4.D Analytical properties

The representation (18b) shows that the analytical continuation of
Ge(x', x" |y', y") is well defined for any complex values of the arguments except in
points, for which there exists a 7(0 <1 <) with ¢?=0 and/or o5=0.

The free case tells us how to take boundary values, namely by giving —o7 and
—oj a positive imaginary part: —o7,—> —0o7,+ie. This may equivalently be
described by giving the variable w? in the function G of the invariant arguments
a negative imaginary part:

Gy — Gp(w?—ie, wz,, Wz,, 23, 2,2, 23)- (24)
Of course, the prescription (24) is only motivated, not proven by considering the
free case. '

It would be interesting to investigate the topology of the singularities of Gg
in more details; we do not intend to do this here.

In any case, it seems to be very convenient in applications to make calcula-

tions always in the Euclidean world (the representations we have given are well
defined there) and to come back to the Minkowski world only at the very end.

4.E. Short distance behaviour

The representations we have given do not simplify if only two of the points
x', x", y', y" coincide.

A case where the leading contribution may be extracted in a simple way is
the following: for x'—y' — 0, x"—y" — 0

] morom — 1 1 1
Ge(x', x"y',y") G =yt i~ =y P ie +1.s.t. (25)

The less singular terms (l.s.t.) do not factorize. (We do not know them explicitly.)
Therefore only the most singular contribution of the ‘both-sided’ short distance
behaviour of Gy is the same as for free particles.

Of some interest is the high-momentum behaviour of

GF(ZX| p |Zy) == GF(pza pzx‘) pzya Zz: szy7 23)'
It may be shown that for z><0, |arg (—p?)| <, |p*| = o

1 A =
Ge(p?, pz., P2y, 22, 2,2, 23) ~ I —pd) exp [‘2' 2 — Zi)] L dr

1 A 3/2 T A
XT; (1—e_“) exp [_Z m%Jrl_e_)w £ R 3 -zy)z]

i AT
X - —A7/2 _
{exp[ S N1 p(e Z, zy)]

I AT
+ — —AT/2 _
exp [2 \/ = p(e z, zy)]} (26)

4.F. Problems in the search of G¢'

We did not succeed in obtaining an explicit inverse Gz' of Gg. At first glance
one might think that Gz' should be equal to the Bethe-Salpeter operator B (see
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(10)). However:
B*G.=1-R, Ggy*B=1-R: (27)

The operators R and R may be calculated explicitly (their integral kernels satisfy
the same line-segment locality as the inhomogeneities). In a formal sense there
naturally arises a perturbation series for G¢':

Gr'=(1-R)'*B=B+R*B+R*R#*B+- -
Gy'=B*(1-R)'=B+B*R+B*R*R+--- (28)

Of course, in order to give (28) a meaning, the convergence of the series should
be proven.

5. Conclusion

There does not seem to exist a canonical definition for a two-segment
function. We therefore have not succeeded in characterizing the propagator of the
relativistic FKR oscillator in a unique way. In fact we have found two functions
describing propagation which are connected with the oscillator: G (see Section 4)
and B~' (see Section 2).

Gy is the better candidate because of the following points:

(1) Its locality properties are maximal (see beginning of Section 4).

(2) It is the only one which is closely related to the causal Green’s function
(see Subsection 4.B and Appendix B).

(3) It is characterizable by a simple off-shell extrapolation of the residua (see
Subsection 4.B) which is minimal in its p>-dependence and which leads to
a unique expression in the Euclidean region.

On the contrary B™' has ghosts in its residua and inhomogeneities not
satisfying segment locality. The advantage of B™' is that the inverse is known
explicity (by definition), which is not the case for Gg.

As an application we give in Appendix B a characterization of the causal
Green’s function in terms of the analytic continuation of the function G
Moreover we are able to separate the timelike and spacelike contributions
explicity.

The generalization of these results to spin 1/2 systems is not difficult.
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Appendix A: The free two-particle propagator

free(x xu | y yn) — Gfree(xl _ yl, JC”_ yh’),
e 1 1 d*p exp (—ipx)
Gf (xls x2) - i F(x17 mO) AF(xza g)a AF(x; m%) = J (277)4 mg_pZ_ ie :

We intend to investigate G3°° with regard to the individual contributions of the
timelike and spacelike eigenfunctions of the four-momentum. These functions are
given by (in terms of null plane variables [2]):

(X', x") =exp (—ipw)d.(2),  ¢.(2)=exp (—ikz),
=1x',x"), z=x"—x", «kz=kKk_z +Kkz +K2, z =pz
= p+z+ + p,TZT,
Pik_=pKk" +3pTRe —3mA (WK,  m(k)=(G— ki) (mg+k%).

Now it is easy to see that

1 s ree I
Gi(s, %) = | d'pexp Cipw)GE=(pl2),  w=w—w,
z=2z,—1z,
1 [ d®krdk J(p, z, ¥) {+1, m?(x)>0
free = 25 L 5 <~ 2y —
Cr (plz)“(Z*rr)?’ j 2(;— ki) m*(k)— p*—ie(m?)’ sl —1, m*)=0

where J may be decomposed into the separate contributions of the timelike and
of the spacelike spectrum: Let be

u(2)=0G—kDd(2),  PiT(2) = O0(xKL —2)Du(2).

Then: J=J'+J5*+J°7,

T(p. 2,0 = 4200450 ) exp [ - I;; |(pz—mZ)z“]

+0(—2z7) exp [—
F(p 20 = 61 (20632, fexp [Z; (¢~ m)z|

i 2 2y, —
—exp [—4—p+(p -m?)z ]}
x{0(z7)0(xp.,)+0(—z7)0(Fp.)}.

Therefore we may look at J'(p, z, k) as an extension of ¢‘(z,)¢'(z,)* away from
the mass shell p?> = m?(x). Further:

lim J5*=0

p?>m?
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such that G¥**(p | z) does not have any cut for p*>=0. Explicitly:

I 1
free — S T
= (p\Z) 82 J;mz dtt—pz—is

0

1 1 [t—4m;
X ——sin [—L; mov(pz)z—tzz], 22 <.

t

Appendix B: The causal Green’s function

For a characterization of the causal Green’s function G we refer to (13) in
Section 3. It is not difficult to get a characterization of the timelike part G' of G
in terms of the analytic continuation of Gg. The observation is based on the fact
that (13d) may be rewritten as (because of

(pa—p*—ie) ' —(pi—p>+ie) =2mid(p*—p7))
G'=G;-G;

1 :

Gr(x',x" |y, y") = = J d*p exp (=ipw)G, (z,] p |z,) | Im p> = x¢
2m)*i

G (z,)| p |z,) according to (17).

Of course:

D®[G; - G;]=0=DY[G; - Gy
Note that the analytical continuation of G is not to be identified with Gg: the
two functions take different boundary values. This has to do with the fact that in
fixing the boundary values of G the spacelike eigenfunctions play a role. In
contrast to this the analytical continuation of Gg is everywhere fixed by the
substitution p§ — pi+ie in Gp(z,|plz,).

We now introduce four functions

Definition. G, ,,,(x’, x"|y’, y")(a, be{+,—}) is the analytical continuation of
the representation (18b) with the following convention for taking boundary
values: give the null components —o) and —o9 the imaginary part aie and bie
respectively. Equivalent prescription: replace in Ge(w?, wz,, wz,, z3, 2,2, 23) w° by
+7 £1 p s e
E_ _; and z} by z{Fie (or z| by z+ie) for (a, b) (=(_ +)?
Then it may be easily verified that

i
G'= Gyt Gy

w’Fie for (a, b)=

Our main result here is motivated by the free case: The full causal Green’s
function is

G =Gy~ Gy~ Gyt Goyoy-
It follows that the spacelike part G° is:

G = _G<+)(-) — Gy

Proof. [4].



	On the propagator of the relativistic oscillator

