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General solution of multichannel partial-wave dispersion
relations

I1. Noncoincident thresholds, one pole approximation

by G. Nenciu') and G. Rasche
Institut fir Theoretische Physik der Universitat, Schonberggasse 9, CH-8001 Zirich, Switzerland

and W. S. Woolcock

Department of Theoretical Physics, Research School of Physical Sciences, Australian National
University, Canberra

(1. TV. 1980)

Abstract. We find the general solution for the matrix of s-wave amplitudes when there are two
channels with different thresholds and the only unphysical singularity is a simple pole. The method of
solution uses a representation theorem for matrix R-functions. We distinguish a special solution called
the isolated solution which contains only the prescribed pole position and residue matrix as parame-
ters. There are cases where the isolated solution does not exist but other solutions do exist. We also
find cases where the diagonal element of the isolated solution which corresponds to elastic scattering in
the channel with the lower threshold is not the isolated solution of the equivalent inelastic one-channel
problem for that channel.

1. Introduction

In an earlier paper [1] we considered the case of an arbitrary number of
coupled two-body channels whose thresholds were coincident. Competing chan-
nels were neglected, the unphysical singularities of the S-matrix of s-wave
amplitudes were taken to be a finite number of simple poles and the input
consisted of the positions of these poles and the residue matrix at each pole. By
using a generalization of some parts of Schur-Pick-Nevanlinna interpolation
theory to analytic matrices we were able to obtain the general solution for the
partial-wave S-matrix, to give necessary and sufficient conditions for a solution to
exist and to distinguish different types of soluble problem.

The history of the problem of obtaining solutions of multichannel partial-
wave dispersion relations and a discussion of various questions of physical interest
which one wishes to answer are given in [1]. The next step beyond [1] is to
consider cases where the channel thresholds do not coincide. This generalization
alters the nature of the problem and the mathematical methods which seem to be
needed for its solution. In this paper we shall solve rigorously the simplest special

1) On leave from the Institute of Nuclear Physics and Engineering, Bucharest.
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case for which the channel thresholds do not coincide. The simplification consists
in taking a single pole as the only unphysical singularity and in considering only
two channels and s-waves. The motivation for considering this special case is to
obtain an insight into the structure of the probable solution of the general
problem. We shall comment in the conclusion on the extension of our results to
[>0 and to more than two channels.

Comparison of the solution given in this paper with the solution of the
one-channel case when the effect of competing channels is specified via the
function R (see [2]) shows that there is a similarity between the methods used.
The key mathematical result used in this paper is a representation theorem which
is proved in the Appendix. It is a generalization of a quite well known result for
ordinary complex-valued R-functions [3] to what we call matrix R-functions.

We shall see that, among the solutions of our problem there is a distinguished
solution £* which we call the isolated solution. Although we do not make the
connection with Levinson’s theorem explicitly, it is clear that this is the isolated
solution in the sense of Hamilton and Tromborg [4]. It contains only the
prescribed pole position and residue matrix as parameters. Unlike the one-
channel case and the multichannel case with coincident thresholds, it sometimes
happens that the isolated solution does not exist, though other solutions do exist.

In [1] we considered the following question which has been extensively
discussed in the literature. For the n-channel problem with coincident thresholds
we took the isolated solution, obtained from it the inelasticity parameters for each
of the n possible elastic scattering processes and considered the n equivalent
inelastic one-channel problems (EIOCPs) thus generated. We found that in the
one pole case the n diagonal elements of the isolated solution of the n-channel
problem were always the isolated solutions of the respective EIOCPs. For the two
pole case however we were able to construct an explicit two-channel example for
which this was no longer true. For the problem considered in this paper we can
take the isolated solution and calculate from it the inelasticity parameter R for
elastic scattering in channel 1, the channel with the lower threshold. The function
R will be 1 between the thresholds, greater than 1 above the threshold for
channel 2. Given R, we have the EIOCP for channel 1. Is the diagonal element

® of the isolated solution of the two-channel problem always the isolated
solution of the EIOCP for channel 1? As we shall see, the answer is no, even
though there is only one pole. The fact that the channel thresholds are different
makes it possible to choose the residue matrix at the pole so that f{% has a CDD
zero between the two thresholds.

To meet some criticism expressed by Johnson and Warnock [5] we want to
point out that in the one-channel case with m- or R-unitarity and in the
multichannel case with coincident thresholds our methods can be adapted to cover
the case of an extended left-hand cut. Moreover, it is possible to construct in
some sense the best approximation to an extended cut by a finite number of poles.
Some remarks on the one-channel case are made by Nenciu [6]. Longer and more
technical proofs are required, and we do not want to write out the results at the
moment. Eventually we hope to be able to solve the multichannel case with
noncoincident thresholds and an extended left-hand cut, but the many pole
problem has to be solved first.

The plan of the paper is as follows. In Section 2 we solve the s-wave problem
with two channels whose thresholds do not coincide and with one pole whose



136 G. Nenciu, G. Rasche and W. §. Woolcock H. P A.

position and residue matrix are prescribed. The reader who is not interested in
detailed proofs can go directly to the results at the end of the section. Section 3
gives special examples which illustrate the points mentioned already and discusses
the case when the residue matrix at the pole is singular. Section 4 contains
concluding comments, while the representation theorem used in Section 2 and
other mathematical results are given in an appendix.

2. General solution

We consider a system of two coupled two-body channels with different
thresholds. Using the Mandelstam variable s, the thresholds are s,, s,, with s; <s,.
We consider the 2 X2 matrix S whose element S;; is the s-wave S-matrix element
for the process j — i. Time-reversal invariance will be assumed to hold, so that
S =8'?) We define the matrix f by

S=1,+2iq"*fq"?,

where q is the diagonal matrix whose diagonal emements are the channel
momenta in the centre-of-momentum frame. From the unitarity of S we have

Imf = f*qf, §> 5, (1)

We now assume that f(s), for s >s,, is the boundary value from above of a matrix
function f(z) which is analytic in the whole complex plane, except for the cut
[s4, ) and a single pole at x,, where x, is real and x; <s,;. We need to extend the
unitarity relation (1) to f(s+)=1im,_,, f(s +ig) for s, <s<s,. From [7] we see
that the required extension is

Im f(s) = £(s)*p(s)i(s), s, =<5, (2)
where we have shortened f(s+) to f(s) and p(s) is defined by
_(a1(s) 0 =
p(s) = ( 0 qz(s)>, $2 <5, (3a)
0
p(s)= (qléS) O)a SiSS=<3ss. (3b)

To be complete, we list all the properties to be satisfied by the functions f(z).

(a) f(z) is analytic on C—([s{, ©) U{x,}), where x, <s;;

(b) £(2) =(z)*;

(c) f(z) has a simple pole at x,, with real symmetric residue matrix I" # 0;

(d) there exists a function f(s), defined on [s,, ), such that, given a =s, and
g >0, there exists 8 >0 (depending on a and &) for which

|lE(z) —f(a)||<e, ze{|z—al<$§, Imz>0};

(e) Equation (2) holds for f(s);
(f) there exists a non-negative integer k such that |z|™ |f(z)|| — 0 as |z| — o,
uniformly in 0<Arg z <m;

(g) £(z)' =1(2).

%) The superscript ¢t on a matrix denotes the transpose, * the adjoint.
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We now proceed to obtain such functions f(z). Define
Pm(s)=min{q,(s), q2(s)}, s, <s,
and write (2) as
Im £(s) = p,,, ()E(s)*£(s) + £(5)*(p(5) — pm (5) 1)E(s).
Now
P()—pn(s)12=0,  p, (5)(s)*(s) =0,
and so, by (A.8), (A.7) and (A.1),
[tm £(5)]|= p.. (5) [IE(s)I.
However, from (A.4),
I[Xm £(s)]| <[lCs)]-
The last two inequalities imply that
il <1/pn(s),  s2<s.

Since

qi(s) = %Sllza I = ]-9 25

§—>00

it follows that there exists a (finite) positive constant M such that

s2fs)l=M, s <s.
From (A.2),
S2If)<M, s <s.

We now appeal to the Phragmen-Lindelof theorem to conclude that

Izllz ij(z)lsz-Ma |Z|?"o,

137

4)

with r,>max {|x,|, s;}. This bound is a uniform bound for 0=<Arg z<2m. The
formulation of the Phragmen-Lindeldf theorem appropriate to our application is
given on page 135 of Conway [8], with a =3 so that the sector has angle 24r. The
result given there is clearly unaffected if we exclude from the sector a disc |z| <.

We now define a new function
g(z) = (z —xf(z).

Instead of a pole at x; we now have
g(x,)=T.

From Eq. (2),

Img(s)=(s—x,) 'g(s)*p(s)g(s),  s;<s,
while from Eq. (4)

2Py (<M,  roslzl,  0<Amgz<2m

®)

It follows from this bound that each g;(z) satisfies a once subtracted dispersion
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relation. Taking the subtraction point at x, <s,; we have

1 ([~ 11
e =) | Imew (o) ©
From (6),
Img(z)= II: 2 Jm Tin—gz((z) dt, Im z#0. (7)

Since p(s)=0 for s=s,, it follows from (5) and (A.8) that
Img(s)=0, S=§,.
Eq. (7) then shows that
Img(z)>0, Imz>0.
From Lemma A.2, detg(z)# 0 for Im z >0. Thus we can define
h(z)=—g(z) ', Im z >0. (8)

Now
1 1 - #—1
Imh(z)=§—_(h(z)—h(z)*)= ——(g(z) ' —g(z)*™H
i PA

=g(2)* ' Im g(2)g(z)™",
so that, from (A.9),
Imh(z) >0, Imz>0.

Moreover, for every s R for which det g(s) # 0, h(z) converges to h(s) = —g(s)™"
as z — s from the upper half-plane. This follows from property (d) of £, which
also holds for g. Let

so ={s R |det g(s) =0}.

Since g(z) is analytic in (—o, s,) it follows that S, has no accumulation point in
(—oo, ;). We now make the stronger assumption that S,, which we know to be a
closed set of Lebesgue measure zero, has no accumulation point in R. It then has
a finite number of points in every closed subinterval and so is countable. It follows
from (5) that

Imh(s)=(s—x;) 'p(s), s=s, SES,. (9)

A matrix function which is symmetric, whose matrix elements are analytic in
the upper half-plane and whose imaginary part is nonnegative (in the matrix
sense) there we shall call a matrix R-function. Clearly g(z) and h(z) are such
functions. In the appendix we prove a representation theorem for matrix R-
functions which is a generalization of a result in [3] on complex-valued R-
functions. The theorem says that

h(z)=a+Bz+ J_Z (——1——- £

t—z 1+1¢?

)do(t), (10)
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where a, B, o(t) are real symmetric matrices, =0,

o(t,) —o(t) =0, t,>1,, (11)
and

V(6,5 R) <<,
where V denotes the total variation and &;; is defined by

. 0 (1)
W01

To get (10) into the form we require, we follow an argument similar to that in
Section 3 of [2]. Write the function o as

o=0,1+t0, (12)

where o is continuous on R and &, is a saltus function; it has a jump R; at each
of the points of an at most countable set {£} and is constant otherwise. It is clear
from (11) that each R; =0. The decomposition (12) is given in Section (13.18.6)
of [9]. The function o, may be split into an absolutely continuous part and a
singular part. However, our assumption on S, eliminates the singular part. For, if
[t,, t,] is a closed interval contained in R—S,, then from the Stieltjes inversion
formula and the continuity of h(z) onto [t,, t,] from above,

ol o g = j Im h(t) dt.

t

Now use (9); since p(t) is continuous on [s,, ), & (t) is differentiable on R— S,
and

o/ (1)=0, t<s, t€ So,
(1) 1 0 (13)
o ()=m"t—x)'p(t), t=s;, €S,

This fixes the absolutely continuous part of o.. The measure associated with each
matrix element of the singular part of o, is thus concentrated on S,, which is
countable; this is impossible.

Now note that, from the behaviour of g;(t) as t — o,

r q:(1)
. 1+t

dt <o, i=1, 2,

Thus, using (12) and (13) and redefining «, (10) becomes

- 1 :
h(z) = o+ Bz +Zi=1R‘(§- -z 15162)

1 (~ p(t)
p J —x)t-n P €C L) v
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From the properties of o we have only that

IRl _
Z 1+g2 %

so that the sum in (14) has to be kept in the form given.
Functions h(z) of the form (14) will lead to functions f(z) satisfying the

conditions (a)—(g) given earlier provided that certain further conditions are
fulfilled. The first of these is that

h(x,)=-TI"! (15)

whenever I is nonsingular. We shall assume that det I" # 0 throughout the rest of
this section and consider the case det I'=0 in Section 3. The second condition
arises from the fact that by its definition (8), h(z) is either undefined or
nonsingular. Now, from (14), h(z) is undefined only when z €{£}. Taking note of
(8), all we need to check is that h(s) is nonsingular for sZ{¢}. Since p(s) >0 for
s >s, (equation (3)) we see from (9) and Lemma A.2 that it remains to ensure
that h(s) is nonsingular for s <s,. Physically this means “‘absence of ghosts”.

So far, with an obvious generalization of the definition of p in (3), the
argument applies to any number of coupled channels. From now on we restrict
ourselves to two channels only, and prove first a simple lemma.

Lemma 1. If h(s) is not diagonal for s, <s<s,, then h(s) is nonsingular in
that interval.
Proof. From (14) and (3b) we see that
a(s)+i(s—x;)7"'q(s) b(s))
b(s) c(s)/’
with a, b, ¢ real-valued functions. Thus
det h(s) = a(s)c(s) — b(s)*+i(s—x,) " "q.(s)c(s).

Im det h(s) can vanish on (s, s,] only if c¢(s) vanishes. But if ¢(§) =0 and b(s) # 0,
Re det h(s) # 0. Thus b(s)# 0 implies that deth(s)#0. [

h(s)= (

SI<SS825

Physically this result means that with coupling present between the channels a
stable bound state in channel 2 above the threshold for channel 1 cannot exist.

For the case of two channels we can restrict the representation (14) of h(z) a
little more. We see from (6) that the derivative of g(s) is

g'(s )——J Eng()tgdwo, s <sy. (16)
Now g(s) is degenerate if and only if g,,(s) = g»,(s) and g;,(s) = 0. Since g(z) is
analytic in (—0, s,), either g(s) is degenerate on a subset of (—, s,) which has no
accumulation point in (—<, s,) or it is degenerate for all s <s; (Kato [10] gives this
result on page 64 for matrix functions of any order). Now in the first case the
eigenvalues g,(z), g,(z) of g(z) are analytic in (—,s,) (Kato [10], Ch. II,
Theorem 6.1). From (16) and Lemma A.1 it follows that g,(s) and g,(s) are
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increasing functions on (—, s,]. In the second case, g(s) = g(s)1, for s <s; and it
is again clear from (16) that g(s) is an increasing function on (—, s,]. It follows
that each of the functions g,(s), g,(s) can vanish at most once on (—», s;]. If g(s)
vanishes at £, we choose the functions g; so that &, < &, whenever both &, &, exist.
If now h,(s), h,(s) are the eigenvalues of h(s), then, since h;(s)=—1/g;(s), each
function h;(s) is differentiable and increasing on (—, s,], with the exception of
the point ¢ if it exists. Either h;(s) does not vanish on (—%, s,] or h;(s) is positive
for s <§, increases to +o as s 1 &, jumps at & from +% to —= and increases from
— but remains negative as s increases from & to s,.

The points &;, &,, if they exist, are the only points in (—, s,] at which h(s) is
undefined. By redefining o« we can recast the representation (14):

__ Ry R, 1" o |
h(z)_a+§1_z+§2—z+'n,[l (t—xl)(t—z)dt+A(z)’ 17
where
_ 5 I &
A(Z)—Bz+i§3Ri(§i—~z 1+€i2) (18)
and
§1$‘§2‘<‘Sh Sl<§i(i ?’3)9 Ri 209 BEO (19)

The matrices R; and R, are of rank 0 or 1. We now prove a substantial theorem.

Theorem 1. If there exists a function h(z) of the form (17), with deth(s)# 0
for s € (—=, s,]—{&,, &} and satisfying (15), then there exists a function h'®(z) with
B=0and R;=0(i=1,2,...), which also satisfies (15) and has det h“(s) # 0 for
s€ (-, 5,].

Proof. First we remove the function A(z). Define

o R, R, 1(~ p(t)
h(Z,A)—a+§1_z+§2—z+’nL (t—x)(t—2)

+(1-)N) A(z2)+AA(xy), osiA<I1.

dt

Then

h(z; 0) =h(z),

h(x;; A)=h(x)=-T"", 0=si=1.
Looking at h(z; 1), which we call h(z), we see that in it the function A(z) in h(z)
has been replaced by the constant A(x;). Moreover, h(z) satisfies (15); we now
show that det h(s) #0 for s e(—x, s;]—{&,, &).

For fixed s, h(s;A) is contmuously differentiable in A and so are the
eigenvalues h;(s; A), by Theorem 6.8, Ch. II of Ref. [10]. Further,

S<x17

—h(s AN =A(x,)— A(s)<0 ..

since A'(s)=0 for s=s,, on differentiating (18) and using (19). Thus each
eigenvalue h;(s; A) is a nondecreasing function of A on [0, 1] when s<x,; and is a
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nonincreasing function of A on [0, 1] when s> x,. Further, each h;(s; A) remains
an increasing function of s on (—o, s,]—{&} for fixed A €[0, 1].

Now if h;(s; 0)>0 on (—ox, s,], take —M <x, and A >0. From the statements
of the previous paragraph,

hi(s; A)>h(—M; M) =h(-M;0)>0,-M<s=<s,.

But M may be chosen arbitrarily large. Similarly, if h;(s; 0):<0 on (=, s,], then
for A <0 S

hi(s; A)<h;(s;; A)=<h;(s;; 0)<0, s <S$;.

Finally, if h;(s;0) jumps at & from +o to —oo, we use the argument for positive
functions to the left of & and that for negative functions to the right of §. We
have thus shown that deth(s; A) # 0 for se(—», s,]—{£&;, &), A €[0, 1.

The argument for removing the poles at £,, &, is similar. Assume that &, <x,
and define

— 1
hz; 7]=R, 2 ——+w(z), T<&, (20)
gl_xl T—Z
where
R, 1 r' p(1)
o(z)=a+ +— dt.
(2) &—z wl, (t—x)(t—2)

Then
h(z; £&]=h(z),
h[x;; 7]=h(x,)=-T"", 7=<¢,.

We are going to take 7 to —o, thus obtaining a function h[z; —] in which the

term R,/(¢,—z) in h(z) is replaced by the constant R,/(& —x,). Moreover,

h[z; —oc] satisfies (15); we shall show that deth[s; —]# 0 for s € (—x, s,]—{&,}.
On differentiating (20),

R, x;—s =0, T
& —x, (1—5)* =0, 5 %y

—-h[s r =

The derivative is undefined at s = 7. Thus as 7 decreases from &; to —, h[s; 7]
increases for s <x,, decreases for s> x,. Further, for each r<¢,, h[s; 7] is an
increasing function of s on (-, s,], with of course the jump point excluded.

The eigenvalue h,[s; 7], for fixed 7, has a jump from +o0 to — as s passes
through 7. The other eigenvalue h,[s; 7] has a jump at &, if R, # 0; otherwise it is
of fixed sign on (—, s,]. The same argument as before shows that h,[s; —o]# 0
for se€(—, s,]. The argument for h,[s; ] is almost the same. When 7<¢,,

hi1; 7]<hy[1; &]<0 and so hy[s; 7]<0 for 7<s<gs,. Also, if we choose M so

that —M <t (<¢,), then hy[-M; 7]>h[-M; £,]1>0 and so hl[s 7]>0 for —~M=<
s<t. But M may be chosen arbitrarily large. Thus deth[s;7]#0 for se
(=00, 5;]—{m, &}. Now take the limit T — —o.

If £, >x,, we start with 7 at & and move it to +o. Exactly the same
procedure will remove the pole at &, if it is present. [
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The theorem we have just proved shows that in considering whether there
exist functions h(z) which lead to functions f(z) satisfying all the specified
conditions, we can confine ourselves to functions h”’(z) of the form
1= p()
h(z) = +~J dt. 21

el = m ks, (t—x)(t—2) o

For if such a function does not exist, nor do others of the more general form (17).
We shall call h‘”(z) a restricted function. We must still require that h©(z) satisfies
(15) and that det h®(s) # 0 for s <s,. When these conditions are satisfied we shall
call h”(z) the isolated solution of our problem (though strictly speaking it is £”(z)
which should be so called). Clearly, a is fixed by (15) and the isolated solution is a
distinguished solution which is fixed by the input data (x;,I') and contains no
disposable parameters.
We now define

1 [~ p(t) 1 r’ p(0)
Az_J >0, — dt>0. 22
), (t—x)(t—sy) =l B ™ J, (t—x,)° (22)
Since A >0, A~Y? exists and we can define
M=-A""2(T'+B)A™'2, (23)

The next theorem gives the key result of the paper.

Theorem 2. A necessary and sufficient condition that there exists a function
h®(z) which satisfies (15) and has

det hK9(s) # 0, S<s,, (24)
is that each eigenvalue m; of the matrix M defined in (23) satisfies either

m, =0 or m, <-1. (25)

Proof. Define

I(z)= AW O(z) A2, (26)
The condition (24) becomes

detI(s) # 0, S<s,. (27)

From (21) and (26),

I(—x) = liIP I(s)= A Y2qA12, (28)
Further,
I(s))=A" 1/2(a+ A)A™ 12 = I(—o0) + 1]2- (29)

Let I,(s), I,(s) be the eigenvalues of I(s). They are analytic in (-, s;) and
since from (21)

T (1)
Orfey — &
e wL (—xpu—sp @70 s
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they are increasing functions of s on (—, s;]. From (29),
L(sy) = L(—2)+ 1.

Condition (27) is equivalent to L(s) # 0, s <s,. For this to hold it is necessary and
sufficient that

L[(—2)=0 or L(-x)<-1. (30)
But h‘”(z) has to satisfy (15) and so, by (21) and (22),
a=-T"!1-B. (31)

From (28) the matrix M defined in (23) is indeed I(—o) and (25) is just the
necessary and sufficient condition (30). O

It is easy to see that, if —-I'"'>0, then (25) becomes

_ 17" pt)
L J 32
T Js, (t—x1)2 ’ ( a)
while if -I'"' <0, (25) becomes
_ (51— x,) J'm p(1)
™ 1 (t— x1)2(t_ $1) ( )

The conditions (32a,b) may be compared directly with the conditions for the
one-channel case which are given in Section 4.1 of [2] (where the variable s was
scaled so that s, =1).

We have still to make sure that det h“(s) # 0 for s; <s=<s,. From Lemma 1,
since

h(loz)(z) == (_1-1—1)12’

it is sufficient that I';, # 0. However, if I';, =0 we must be more careful. The
restricted function h”(z) satisfying (15) is then diagonal for all z; from (21) and
(31) it is

hO(z)=-I' '+

z-x) [* o)
L t—xr—n ™ - (33)

Now h{%(s) cannot vanish for s >s, since q,(s)>0 there. To have h{9(s) # 0 for
s <s, it is necessary and sufficient that

__T1 lJ,w QI(t) -1 _(Sl—xl) J‘OO ql(t)
I‘H;w e, (=% de or —Ti< ™ b, (8= x1)*(t—s4) ds G4

At the same time we must ensure that h$3(s) # 0, not just for s <s,; but for s <s,.
For this it is necessary and sufficient that

1J°°qz_<t>

aw

—1
—Tn=—
m™

dt (35)

1 _(Sz—xl) ” q2(1)
dt or —I5< _L (t—x)*(t—s,)

(F— x1)2 m™
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It is worth looking more closely at what happens when (34) holds for I'y; and
(s3—x;) J'm q,(1) (s1—x4) jw q.(1)
- dt<-T7 <-
m ), (t=x)*(t—s,) = 7 ), (t=x)*(t—sy)

Then h$)(s) has a zero in (s,, s,] and it is no longer true that det h’(s) # 0 for
s <s,. Thus there is no isolated solution of our problem. However, there are other
solutions! For take £>5s,, £ >0,

R, = (f %E)>0 (37)

5 &

dt. (36)

and define

héo)(z)=-T"1+ R(z—x) , (=x) Jm o) dt (38)

E—-x)t-2 = 4, 20 02

Then h®®(x,) = -T'! as required and, from considerations of continuity, if we fix
¢ and keep ¢ sufficiently small, then det h¢*(s) # 0 for s <s,. Moreover h**(z) is
nondiagonal and so deth®®(s)#0 for s,<s<s,, by Lemma 1. Thus h®*(z)
leads to a solution of our problem. We put these results in the form of a lemma.

Lemma 2. If T is diagonal then (34) and (35) give a necessary and sufficient
condition that the restricted function h(z) given in (33) leads to a solution of our
problem (the isolated solution). If however (34) continues to hold for 'y, but T'5,
satisfies (36) instead of (35) then the restricted function (33) does not lead to a
solution, but other solutions do exist. (For example, for fixed £>s, and R, defined
by (34), (38) defines a function h“*(z) which leads to a solution for all sufficiently
small €.)

We promised in Section 1 to collect the results of this section together at the
end. Recall that we set out to find functions satisfying conditions (a)—(g) given at
the beginning of the section and that we have assumed that det I # 0.

(I) (See Theorem 1) Suppose that a function h(z) exists of the form (17),
which satisfies h(x;)=-T"' (equation (15)) and has deth(s)#0 for se
(=, 5;]—{&,, &}. Then there exists a restricted function h”(z) of the form (21)
which also satisfies (15) and has det h®(s) # 0 for s e (—=, s,].

(IT) (See Theorem 2) A necessary and sufficient condition that there exists a
restricted function h'®(z) satisfying the conditions in (I) is that each eigenvalue m,
of the matrix M defined by (22) and (23) satisfies either

ml;() or ml<_1-

(III) If T';, # 0 and the condition just given in (II) is satisfied, then h”(z) is
uniquely determined by x,, I" as

(z—x1) J‘” p(t)

O\ — _p-1
W) =T+ | oxre=2)

dt
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and gives the isolated solution f°(z) of the problem via
f9(z) = —h(2) " /(z = xy).

If however I';, = 0 then the condition given in (II) is sufficient for solutions of our
problem to exist, but a more restrictive condition on TI',, is required for the
isolated solution to exist. Details are given in Lemma 2.

3. Special cases

We begin by discussing a case mentioned in the introduction where the
element f{9 of the isolated solution of the two-channel problem is not the isolated
solution of the equivalent inelastic one-channel problem for channel 1. Write
h(x,) instead of —I'"! and consider a two-channel problem for which

hyy(xy) >— jm 4u(1) dt or h11(X1)<-—(Sl;x1) Jm q,(t) dt,

5 (t—x,) ; (t—x)"(t—s,) (39)
(55— xy) j q2(1) di
a ), (t=x)*(t—s)
- _(Sl_xl) = q-(1)
< Il < j o (40)

hi2(x1) # 0.

We need to verify that (25) holds. Note that if we start with M diagonal and then
take M;,#0 the smaller eigenvalue is decreased and the larger eigenvalue
increased. From (39) and (40), M,; >0 or M,, <—1, while M,,<—1. In the case
M, >0, (25) is satisfied for any h;(x;); when M;; <-1, (25) will hold provided
|h1,(x,)| is sufficiently small. Then the isolated solution exists and is given by (33):

(0) (Z B xl) ” ql(t)
(0) (Z - xl) * qz(t)
22) = hanloxy) + j Tt “2)

(0)(2) hia(xq).

Moreover, from (40) and (42) we see that h{2(s) =0 at a point s, € (51, S].
Now

(=]

q(t)
5 (t - 1)2

a constant, as |z| — o, uniformly in 0<<Arg z <2, and

Im (—h53(s)™") ~_(constant)s™ "2,

hQ(2) = hyaly) —~ j d,

Thus we may write a dispersion relation for —h$3(z)™!:

Y(Z—x1)+(z—x1)J Im (—h53(t) 1)
S0 ( xl)(t_z)

—hR(2)™t = —hay(x;) 1+ e

Z_SO a



Vol. 53, 1980 General solution of multichannel partial-wave dispersion relations 147

with y <0. We now compute the inelasticity parameter R{”(s) for elastic scatter-
ing in channel 1 corresponding to the isolated solution:

R(s) = q1(s)* Im (—fQ(s)™Y)
= (5 —x1)q,(s)"" Im [A§(s) — h{Q(s)*/hD(s)]
=1+(5—x1)q1(8) " hyx(x1)*> Im (—hQ(s) "), (44)

the second term being >0 for s> s,.
Consider now the EIOCP for channel 1. The residue of the pole at x; is I';;;
thus the isolated solution, if it exists, is given by

O\ — (z—x) [~ @()R(1)
hi(z) = hy(x,) + I (- x)2i—2) dt, (45)
where
hy(x;) = _F;11 = hy,(x,)— h12(x1)2/h22(x1)- (46)

For the isolated solution to exist, we must have
hi®(—2)=0 or h{(s,)<0.
From (45) this condition is

(0)
e = [ QRO

dt.
(t= x1)2

(47)

Now using (46), (44) and (39) we see that (47) is satisfied provided |h,(x;)| is
sufficiently small.
We wish to compare

h32(s)
(s —x,) det h©(s)

(s,—x1) (7 Q1(t)R(10)(t)
dt or hy(x,)<-— - 4[1 = xR =)

FRU) = -

with
1
(s—x)h(s)

for s =s,. Since the former has a zero at s = s, which the latter does not have, it is
clear that the functions cannot be the same. In detail, from (41), (45), (46), (44)
and (43),

det h”(z)

h3G)
= hQ(z) - h Q)P hQ(z) - h(z)

- _ (z—xy) * q,()(RP(1)— 1) hia(x4)?
= by 1) = () = j B T

— X, = | _h(O) 1
= hia P R eyt - 2 [T IRERED D)

., (t—x:)(t—2)
_ hlz(xl)z‘Y(Z —X1)
22— 8

fP(s)= -

—h{%(z)

# 0.
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Thus the diagonal component i} of the isolated solution of the two-channel
problem does not coincide with the isolated solution of the EIOCP for channel 1.

Note that the case where hy,(x,) =0 is in some sense singular. If we take the
limit of £9(z) as h,,(x,) — 0, we find that f°(z) has a pointwise limit for z# s,
which is

1
(z—x)hi(z)’

The pointwise limit for z# s, is the ‘formal’ isolated solution when h,(x,)=0,
which has a pole in f,,(z) at z = s,. But at z = s, only f{} has a limit, namely zero,
and this is obviously not f;,(s,). It has been argued that the ‘formal’ isolated
solution is to be considered as the physical solution of the problem, even when it
is not strictly a solution. Thus, in the case considered above, it would be claimed
that when h,(x;)=0 but (39) and (40) hold, the pole at x; (which is an
approximation to the forces acting) produces a bound state in channel 2 at s = s,.
But this viewpoint has to take account of the singular nature of the case with
h,»(x,) = 0. There is a qualitative difference between the case with h,5(x;) =0 and
cases with h,,(x;) # 0, however small, when h,,(x,) and h,,(x,) satisfy (39) and
(40). When h,,(x,) =0 (strictly no coupling between the channels via the driving
forces), the ‘formal’ isolated solution is uncoupled at all energies. The component
f2- has the pole (bound state) at z = s, which we have discussed; however f11 is a
genuine solution of the one-channel problem and shows no sign of the pole in Fos
at z=s, But when h;,(x;)#0, however small, this is not true. The isolated
solution of the two-channel problem is a genuine solution for which f{ has a zero
at z = s,. The pole is no longer present in 5%, though 5 grows large at z = s, if
|hyo(x,)| is small.

We now consider an unusual limit of the case we have been considering.
Keep s, fixed and take s, out to +o0, but adjust h,»(x,) and h,,(x,) as functions of
s, so that the zero s, in h“”(s) remains fixed (and s,>s,, of course). For this
purpose we take the masses in channel 2 to be equal, so that

dx(s) = 2(s —s) "%

Everything can then be calculated analytically; we sketch the results. From (42),

fii(z)z -

f]Z(Z) =0.

1 1
(0) h £ - =g, 48
A TR, L e s TP A G
(s5—x) Y2+ i(s—s,)"? 1
hQ(s) = + — =5,. 49
(S) h'22(x1) 2(8 _ xl) 4(82" xl)l/z’ s SZ ( )
The condition (40) on h,,(x;) becomes
1= d’(sz)
—=<a=],
1+ d(s,)
where

— 172
@= 4= x) Phae), i) = (Z22)



Vol. 53, 1980 General solution of multichannel partial-wave dispersion relations 149

The zero s, of h{%(s) is given by

_ da N (1 = a)z
0 (1+a)? 2t
From (44) and (49),
qi()(RY(s) = 1) = (s — x1)hy2(x,)* Im h3(s)/ |33 ()
_ 8(s2— x1)(5 — 85)*hy5(x,)?
(1+ a)®>—4a(s,—x4)/(s — xy)
To keep s, fixed as s, — © we choose a so that

[(Sz—xl)”z"(sz_ 50)1/2]2 N (80— x1)
So— Xy -
_[(Sz_xl)llz_(sz— s0)' T N _(So"x1)
4(s,— xl)llz(so_" xy) = 1633/2 -

At the same time, for reasons which will soon become clear, we choose h,(x;) so
that

b

(50)

has(x,) =

1682"2]112(361)2 ""';'2‘__;? k > 0

We need to check that (25) is satisfied as s, — . Since (39) holds we have a fixed
M,; (equation (23)) satisfying

M11>0 or M1-1<_1. (51)
Again using (22) and (23)

T |h12(x1)| k2

Mol = AlzAL - 2A TP

Moo= — (1+ a)[(s2— x1)"+ (52— 51)""] - _1- (50— 51)
22 2(S2_ x1)1/2 §5—>00 432 ’
since
1 | 1
A, B,,

B 2[(s,— x1)1/2 +(s,— 31)1]2] ’ - 4(s,— 351)1/2 .

The eigenvalues of M, as s, — %, have the behaviour

k
~M,,+
a 1 4A11(1+M11)32’
So— S k 1
~—1-(° 14 )—.
e 4 4A,(0+M))s,

Since (51) holds, (25) is satisfied for all finite s, provided that, when M;; <-1, k
is restricted to

0<k<—(1+M,)(sq—51)A;. (52)
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It may also be arranged that the isolated solution of the EIOCP for channel 1
always exists as s, — . A rather tedious calculation shows that

1 [ q.()Ry(1)
hl(xl)_;J; Wdt
= 1 T Al 1'lzhu 1 2
= ()= | R i R (53)
while
(51— x1) [ q:.()R,(?)
bt J (- x2—sp @
_ (s1—xy) 7 q4(1)
= hqy(xy) + - J;1 (t—x)2(t—s,) dt
4(s,— x1)1/2[(32 - 31)1/2 +(s,— xl)llz]h12(xl)2 (54)

al(1+a)(s,— 31)112"' (1—a)(sy— xl)llz]

The final term on the right side of (53) and of (54) approaches the same constant
k/(sq— x;) as s, —> . Thus if the first condition in (39) holds, k is unrestricted; if
the second holds, we need to restrict k to

0<k<-(1+M,;)(so—x1)Aq1,

which is a weaker condition than (52).
We now look at what happens to f$Q(s) for s=s,, as s, — . With h,,(x,)
chosen as in (50), the expression (48) for h{J(s) becomes

[(32 - 351)1/2 —{(85— 30)1/2]2

(0)
2(8)= 4(s,~ x1)"*(sp— x,)
[(52 )1/2 (S )1/2]2 gids
4(sp—x) (s —x)) o
For fixed s,
SOWN
Thus
h$3(s)
(0) —
f (S) (s— xl)[h(lol)(s)h(zoz)(S) == h12(x1)2]
, S$— S8
= (s—xp)lk— (s = 59)hQ(s)]

-1
B fs= xl)[h(o)(s) +k/(so—$)]

In the limit we have taken, f{2(s) does not approach the isolated solution of the
one-channel elastic scattering problem with a simple pole at x,, the prescribed
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residue being —[h,,(x;)+ k/(so—x,)]"'. It approaches instead a solution with a
CDD zero at s =s,,.

The example we have given is pathological in the sense that the elements I'y,,
I',, of the residue matrix and the elements f{2(s) and f$3(s) of the isolated
solution all — o (in absolute value) as s, — . In a sense this does not matter. It
could be argued that we have given a simple model of a situation in which there is
elastic scattering in a single channel, but the physical amplitude is not the isolated
solution of the appropriate dispersion relation. Instead it has a CDD zero in the
physical region which is the manifestation of what could perhaps be called a
‘confined bound state’. It should be noted that a similar situation has been treated
in potential scattering in Refs. [11, 12]. The aim of our example has been to show
that if ‘confined’ channels exist then the ‘physical’ solution of a partial-wave
dispersion relation for the unconfined channels may not be the isolated one.

We consider next what happens when the prescribed residue matrix is
singular. Then det I'=0, but I is of rank 1 (I' #0). Write I" in the form

cos> 0 cos 0 sin @
I'= F( ), Os0<m, I'#0.
cos @ sin 6 sin” @ m 7

With 0 defined by

(ot o) 9
define a function g in terms of the function g considered in Section 2 by
- §(2)=0'g(2)0.
Then we look for functions g(z) satisfying
gy =oro=r() )
Im §(s) = (s — x,) '8(s)*B(s)g(s),  s=s5,,
with
p(s) =0'p(s)0=0, (56)
by (A.8).
To get such functions we write as before
g(z)=-h(z)7",
but now h(z), which is a matrix R-function, has the form
K =k(n—2) () o )+hea) (57)

where k>0 and h(z) has the form (17), but with just one pole, & say, with
&1 =s,. It is easy to verify that

80— (0 _, o )
= A0 —haos(xy)
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so that h,,(x,) must be fixed as
hoo(xy)=-T"". (58)

However, hll(xl) and hy,(x;) are not fixed. The arguments of Theorem 1 show
that if there is a function h(z) of the form (57) with given h(x;) and with
deth(s) # 0 for se (=, s;]—{x,, £,}, then there is a restricted function h®(z) of
the form

h©(z) = k(x,—2)~ (0 8)+h“”(2),

with h@(z) of the form (21), h®(x,)=h(x,) and deth®(s)#0 for se
(=, 5,]—{x,}. One eigenvalue of h”(s) behaves like k/(x,—s) for s near x, and
so jumps from + to —= there. The other eigenvalue goes through h,,(x,)=—-T"".
We have not tried to work out the conditions on h(x,) which ensure that neither
of these eigenvalues vanishes for s € (—», s,]. The conditions will depend on « and
are rather complicated.

Another class of solutions for the case when I’ is of rank 1 is obtained from
solutions of the type (57) by letting k — . From (57),

g(z)=—h(z)"
Khyy(2) h,»(z) hix(z)
[det A X1 =2z ] (hu(Z) —hu(Z)—K/(er))'
Now multiply by (x; —2z)/x and let k — o0; then
" 0 0
€= ) (59)

Condition (58) must of course hold; if this class of solutions is not empty, there is
an isolated solution

§O(z2) = (8 (O)O( - )

In this case it is easy to give the conditions on I' for the isolated solution to exist,
namely

_]_"—1 =

1 (T pon(t
_J p2o(t) d

v ) (t_“xl)z

or

i< _(31_x1) Jm P2(1) d 97&7—7,
™ S

i (t_xl)z(t“s1) ’ 2
Ly (s=xy) (* q2(t) _m
Rl = S S

From (55) and (56),
P22(8) = p11(s) cos® 8+ p,y(s) sin” 6.
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We have the exceptional case 6§ = m/2 for which a stronger condition is required
on I' in the case when I'>0. It is similar to the exceptional case with I' diagonal
which we met in Section 2 when det I' # 0.

It is not difficult to verify that if one starts from general solutions of the form
(17) for det I' # 0, with « fixed by —I'"! and the other quantities (B, &, R;) fixed,
and then takes the limit in which one eigenvalue goes to zero, only solutions of
the form (59) result. The more general solutions of the form (57) can be obtained
by a special limiting procedure in which one of the poles (£, say) in h(z) is taken
-to be close to x; and & — x, as the eigenvalue of I' goes to zero. Thus reducing
the rank of the residue matrix involves tricky limiting procedures.

4. Conclusion

We have now obtained the results given in the abstract. One can convince
oneself that our methods can also be applied to cases where there are more than
two channels, though there will be more and more subcases to consider as the
number of channels increases.

When [>0 we need to go to a modified amplitude matrix. For [ =1, the
matrix f introduced at the beginning of Section 2 can be put in the form

f(s) = Q(s)F(s)Q(s),
where
q.(s) 0 )
0 q,(s)

and lim,_,, F(s) exists for i =1, 2, uniformly in angle as usual. The function g;(s),
when continued to complex values of the argument, has [s;, ©) as a cut, so that

Q)= (

q-(s) = ik,(s), SISS<s,,

with k,(s)>0. We need to assume that the other singularities of g,(s) lie to the
left of s,. Now

f12(8) = q1(s)qa(s)F5(s),

and this behaviour of f,, near the thresholds s;, s, cannot be reproduced by
means of the solutions we have found. Thus a partial-wave dispersion relation for
I =1 (and of course for higher [) has to be formulated for the matrix of reduced
amplitudes F, which is defined for general [ in [7] for example.

Proceeding further with the /=1 case and using the matrix F we have the
unitarity relation

ImF(s) =F(s)*p(s)F(s), s=sy,

where
_ q(s)? 0 -
p(s)= ( _— (s)3)’ s, (60a)
p(s) = (qlgs) 8), §;=5<5s,. (60b)
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Defining G(z) by
G(z)=(z—x,)F(z),

the same argument as for s-waves shows that G satisfies an unsubtracted
dispersion relation and that G is a matrix R-function, as is

H(z)=-G(z)™".

The representation theorem then gives

_ S 1 __&
H(Z)""J’B“i;&(g—z 1+g%)

AL )
g =% =g 14
with =0, R, =0. In contrast to the s-wave case, because of the behaviour of p(t)
for large t, the integral must be kept in the form shown. Incidentally we note that
cases with [ >1 and just one pole have no solutions, since the integral no longer
converges. In general, a necessary condition for solutions to exist is that the
number of poles N=1 (compare the result for the one-channel case in [2]).
Returning to the one pole =1 case, we have G(s)>0 and G'(s)>0 for
s <s,, from the unsubtracted dispersion relation. Further g;(s) — 0 as s — —.
Thus each eigenvalue H;(s) increases from —o to some negative value as s
increases from — to s,. It is therefore necessary that H(x,) <0 and so the
prescribed I' > 0. The terms with &;, &(=<s;) do not appear. The same argument as
before shows that if there is a solution, then there is an isolated solution. A very
short calculation shows that, provided I' is nondiagonal, a necessary and sufficient
condition for the isolated solution to exist is that

Crer (si=xy) (7 p(t)
= T J (t*xl)z(r—sl)dt'

The methods of Section 2 can in fact go part of the way to solving the case
with [ =1 and two poles (or more generally, cases where the number of poles is
(I+1)). For the [ =1 case with poles at x,, x, we define

G(z) = (z —x)(z — x,)F(2).

Then G(z) satisfies a once subtracted dispersion relation and so both G(z) and
H(z)=—-G(z)™ " are matrix R-functions as before. Then H(z) has the representa-
tion (17) but with an integral of the form

1" p(1
7 J —x)—xe)(t-2)

p(t) being given by (60a, b). However the argument that, if there is a solution then
there is an isolated solution, breaks down. It is specific to the case of one pole,
and the two pole case requires much more study (even for the one-channel case
the analysis is very elaborate; see Section 4.2 of Ref. [2]).

The main difficulty is to extend the methods of the present paper to cases
where the number of poles is greater than (I + 1); encouraging work is in progress.
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Appendix
We begin with some elementary results on matrices. The norm of M is

defined by

M| = max [Mu| = max | (v, Mu)|.
lloll=1

When M is normal (M*M = MM®).
M= max (D,

where A; are the eigenvalues of M (see Kato [10], Eq. 1-(6.67)). For any matrix
M, M*M is hermitian and

M =M, MM = ME. (A.1)

Also, if e; is the vector in C" whose only non-zero component is 1 in the ith place,
then

M| = |(e;, Mey)| <lle:|| [IMe;[| <M. (A.2)
We define the real and imaginary parts of a matrix M by
Re M =3M+M*),

1
ImM=— (M—-M%*).
21
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Then Re M and Im M are hermitian matrices and
M=ReM+iImM.

If M' =M, then

(Re M); =3(M; + M;) = Re M; (A.3)
and similarly ,

(ImM); =Im M,.
Further

[T M| < ((M| -+ [Iv[]) = |[mal] (A.4)

by (A.1). The same inequality holds for |[Re M.
A hermitian matrix H is called positive (written H>0) if

(u, Hu) >0,  |lul>0. (A.5)

If > is replaced by = in (A.5), then H is called nonnegative (H=0). Clearly H>0
if and only if all its eigenvalues are positive. If H>0 it follows that

H,; >0, (A.6a)
|H|| = largest eigenvalue of H, (A.6b)
trH>|H| if dim H>1, (A.6¢)
|H,|<tr H. (A.6d)

Further, if B=0, C=0 and A=B+C, then
(u, Au) = (u, Bu)+ (u, Cu),

sO that

A=0,  |Al=max{B],|CI}. (A7)
Next, if H=0, then

M*HM=0 forall M, (A.8)
and, if H>0 and M is nonsingular, then

M*HM > 0. (A.9)

Before going to the main representation theorem we prove two lemmas.

Lemma A.1. Let H(x) be a 2X2 hermitian matrix defined on an interval
centred on x, and differentiable at x,. If H(x,) is nondegenerate and H'(x,) >0,

then the eigenvalues h;(x) of H(x), which are differentiable at x,, satisfy h!(x,) >0,
i=1,2.

Proof. That the h;(x) are differentiable at x, may be seen from the last part
of Theorem 5.4, Ch. II of Ref. [10]. If ; are the eigenvectors (normalized to 1) of
H(x,) corresponding to the eigenvalues h;(x,), then a straightforward calculation
(well known from perturbation theory for nondegenerate eigenvalues) shows that

hi(x,) = (u, H'(xo)u,)>0. O
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Lemma A.2. Let M be a matrix for which InM>0. Then det M# 0.

Proof. Suppose that det M= 0. Then there is a vector uy,# 0 with Mu,=0.
Then

0 = (ug, Mugy) = (uy, Re Mug) + i(uy, Im Muy).

Since ReM and ImM are hermitian matrices, it follows that (u,, Im Mu,) =0,
which contradicts the assumption that ImM>0. O

We come now to the representation theorem, which to our knowledge is
stated and proved here for the first time. Recall from Section 2 that a matrix
R-function is a symmetric matrix function whose matrix elements are analytic in
the upper half-plane and whose imaginary part is nonnegative (in the matrix
sense) there.

Representation Theorem for Matrix R-Functions. The matrix function h(z) is
an R-function if and only if it is representable in the form

h(z)=a+Bz+ j:c (—1—~ d

t—z 1+1¢?

) do(t),Im z >0, (A.10)

where a,  and o(t) are real symmetric matrices, =0 and o(¢) is a nondecreas-
ing function in the matrix sense:

(l'(tz)—(]'(tl)BO, t2>t1, (A.].l)
whose matrix elements satisfy
V(6 R) <o, (A.12)
where
a;: (1)
~” t s !J
(1) 1+

and V denotes the total variation.

Proof. We begin with a theorem of F. Riesz and Herglotz (see [13], page
389). If H({) is a complex-valued function analytic on |/|<1 and having
Re H({)=0 there, then H({) admits a representation

2m eiﬂ g

ei® —

H()=ilm H(0)+J

0

dr(6), (A.13)

where 7(60) is a nondecreasing function. Moreover Re H({) satisfies the growth
condition

2
sup J Re H(re*®) dg <. (A.14)
r<1 Jg
Equations (A.13) and (A.14) also come from Theorem 11.19 of Rudin [14].
Now consider a symmetric matrix function H(¢), analytic on |{|<1 and
having Re H({) =0 there. From (A.3), Re H({) is a matrix function each of whose
elements is a real harmonic function. Thus tr Re H({) is a real-valued harmonic
function and tr Re H(Z) =0 on |£| <1, by (A.6a). It follows that H({) = tr H({) has
the representation (A.13) and satisfies the growth condition (A.14). Using (A.3)
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and (A.6d) (slightly modified for nonnegative matrices) we have
lRe I'L,(Ol = ‘(Re H(‘:))i,‘l <tr Re H({) = Re H({),
2 2
supj |Re H;;(re*®)| do ssupJ' Re H(re') do <o,
(¢] 0

r<i r<1

Thus the real part of each matrix element of H({) satisfies the growth condition of
the first part of Theorem 11.19 of [14] and we can write

(Re H({)); = J

0

21T eiG +€
Re (e“’ - g)dfij(ﬂ), (A.15)

where 7; is now a function of bounded variation, so that
V(Tij; [0, 27r]) <<e,

V being the total variation. The connection between complex Borel measures on
R or on a closed interval in R and functions of bounded variation is given in
Theorem 8.14 of [14]. It follows from (A.15) that

2 eiﬂ+c
eie _

H(Z) = i ImH(0)+ J

0

d=(6). (A.16)

We now follow the argument on page 390 of [9]. The function h(z) is a
matrix R-function if and only if H(¢) is symmetric, is analytic on |{|<1 and has
Re H({) =0 there, where

{=(z-1)/(z+i) and H()=—ih(z).

The representation (A.10) is derived from (A.16) via the relation between ¢ and z
just given and the relation

t=—cot (6/2),
using the identity

1+tz_( 1 _
t—z 1+12

)(1+ t?).

t—z

Note that g in (A.10) is the sum of the jumps of the function 7 at the points 6 =0
and 0 = 2. The function o(t) in (A.10) is related to 7(0) in (A.16) by

(1+t5) ' do(t) = d1(0),

and so (A.12) is satisfied by o(t).
Finally, the representation (A.10) is unique if the function o(t) is normalized
in some way, say,

a(0)=0, o(t)=o(t+0)+a(t-0)].

Equation (A.11) follows from the Stieltjes inversion formula

o(t,) —o(ty) =l IiI(I)l J ZIm h(t+ie) dt =0.
w e—0+ :

t

It is easily checked that
B=lim Imh(iy)/y=0. O
y—>0
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