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New approach to the morphological stability of the
Stefan problem

C. Lievre* and F. Rothen

Université de Lausanne, Institut de Physique Expérimentale, CH-1015 — Lausanne — Dorigny,
Switzerland

(17. III. 1980)

Abstract. Solutions of the Stefan problem are considered which differ from the common
‘undisturbed’ ones by quantities small enough to allow the linearization of the equations. Physical
examples are given in the case of the melting or freezing mixture of two substances. Because of the
peculiar form of the boundary condition, the linearized equations display a nonlinear character similar
to the case of the usual Stefan problem. However, explicit solutions are given which deviate from the
common ones because the shape of the interface is no longer plane.

Introduction

The so-called Stefan problem is a very old one. From the historical point
of view, this name is related to the process of diffusion of heat in a medium
accompanied by a change of state. More generally, this denomination has been
given to every process of diffusion accompanied by a phase transition charac-
terized by a certain type of boundary condition: namely that at the phase
boundary (hereafter called interface), the derivative of the field under concern is
related to the (unknown) velocity of the interface.

One of the reasons for interest in the Stefan problem is that one can obtain a
solution through a very elegant procedure, although the general problem is a very
difficult nonlinear one. In the case originally treated, a liquid (water) fills up a half
space (i.e. a lake). At time ¢ = 0, the external surface x = 0 of the lake is submitted
to a temperature T <T,, .- At infinity (i.e. far from the surface) the tempera-
ture is held fixed, equal to T(,> T, ,cping. Ice is then forming along an interface
Xo(t). Taking into account the latent heat produced, the thermal conductivity of
water and of ice, and neglecting small density variations and convection, one has
to calculate the velocity dx,/dt of the interface.

The way Stefan solved the problem is well known: he showed that if the
conditions

Ts % = constant (1)
T(x, t)= f( X ) in water and ice (2)
xo(t)

*)  Décédé le 31.8.1978.
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are imposed on the solution, then the problem is transformed into a much simpler
one involving only ordinary linear differential equations. This procedure which
transforms a nonlinear diffusion problem into a linear one by a set of Ansatz
analogous to (1) and (2), we will call ‘reducing’ in what follows.

The number of physical systems belonging to the class of Stefan problems
which have been analysed is very large (see for instance the reviews of Parker [1]
and Rubinstein [2]). They concern especially phase transitions of the first order
and precipitation or solidification out of a liquid solution. There is however
another type of Stefan problem which does not normally appear in the common
literature: this is the problem of the destruction of superconductivity by a
magnetic field ([3]{7]). However, this problem clearly belongs to the same class
of physical and mathematical problems (the destruction of Type-I super-
conductivity by a magnetic field is a first order phase transition).

To the same class of problems belong the cases where two quantities, obeying
separately a diffusion equation, are coupled because of the thermodynamical
relation which exists between them at the transition: for instance concentration of
solute and temperature, magnetic field and temperature. The various geometries
and arrangements lead also to numerous variants of the problem. Moreover, the
questions that are posed in a Stefan problem are also very different ([1]-[2]).

The concepts of kinetical and morphological stability

We shall now take up the consideration of a special Stefan problem. In the
following, we restrict ourselves to two cases: the isothermal growth of a solid out
of a liquid solution filling the half space x >0 and the inverse problem. We shall
call the unperturbed solution that solution of the problem obtained by the reducing
procedure (i.e. by imposing the condition (1) and (2)). The stability of this solution
has been studied by a large number of authors. From a physical point of view, the
most important work are perhaps the articles of Mullins and Sekerka ([8}-{9]),
even though these authors consider the stability of plane interface moving with
constant velocity.

In this paper, we shall use the technique of linear stability theory which is
well known in hydrodynamics to study the time evolution of solutions which are in
the ‘neighbourhood’ of the unperturbed solution. More precisely, we shall con-
sider the time evolution of a solution of the form

c(F, 1) = ¢, (xi (t)) +e(R 1) 3)

S’:(x = xO(t)a ya Z) = iO(t)+ fl()’a Z, t) (4)

where X,(t)=(x((t), y, z) and y are the vector radius of a given point of the
unperturbed and of the perturbed interface respectively: cy(x/x(t)) and c(X, t).
play the corresponding role for the concentration in the liquid phase (see Fig. 1).
We shall linearize the equations of motion (i.e. the diffusion equation) around
the unperturbed equation (i.e. we retain only terms linear in ¢, and X,). Because
of the special form of the boundary conditions, the equations we shall obtain for
c,(x,t) and X,(x, z,t) are nevertheless nonlinear: they are analogous (but not
similar) to the equations one gets for ¢ in the case where the interface is supposed
to be planar. What is important, however, is that a reducing procedure is possible
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Figure 1
A solution occupies the half space x >0. An interface divides this region into two domains. The liquid
is characterized by a concentration c¢(%, t) (Phase 1 or 2) varying from place to place; the solid is
supposed to be of uniform concentration ¢, (Phase 2 or 1). The location of a point of the interface
y(y, z,t) is the sum of a vector %,(t)=(x,(t),y,z), giving the position of the interface in the
unperturbed state, and of a deviation %,(y, z, t) = (x,(y, z, t), 0, 0).

for these equations also. One can look for a special form of solution for ¢; and %,
so that the equation which the special solution satisfies is again a linear one. We
shall distinguish two cases:

(a) Kinetical deviation

We speak of a kinetical deviation in the case where the interface is still planar
and parallel to the unperturbed one. We can follow the evolution of the deviation
X,(y, z, t) = X,(t) which is necessarily accompanied of a deviation of the field
c,(%, t).

(b) Morphological deviation

We speak of a morphological deviation in all other cases, i.e. when the
deviation of the interface is not uniform. In this case the deviation of the
concentration field depends on y or z.

A reducing procedure will be shown to be possible in both cases. Moreover,
we shall indicate how to generalize this procedure to higher order in perturbation
theory in the case of a kinetical deviation. In all the cases we shall consider here,
we shall discuss neither the existence nor the uniqueness of the solutions we shall
find. In this sense, this paper does not discuss the stability of various formulations
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of the Stefan problem, but rather it shows the existence of a new approach to the
Stefan problem. Some examples are given, not because of their physical interest
but as an illustration of the method which could be applied to other formulations
of the Stefan problem, for instance when two fields such as the temperature and
the concentration are coupled together.

We must emphasize an important point here for the cases we shall consider
below. All effects related to the surface tension of the interface will be omitted. It
is the price we must pay for generalizing the reducing procedure to the evolution
of deviations. Convection effects are also omitted.

Advance of the phase boundary of a binary solution

We consider a binary solution filling the half space x>0 (Fig. 1). The
concentration of the solute is supposed to be both weak and supersaturated so
that

(1°) linear equations apply for the solute concentration ¢(X%, t).

(2°) for 0<x<x,(t), the solution is in the solid state with a constant
concentration ¢, and the phase boundary x,(t) is moving forward.

(3°) for x,(t) <x <, the solution takes the form of a supersaturated liquid in
which the solute concentration satisfies a diffusion equation

ac
D Ac= a7 (5)
together with the boundary conditions
¢(xo(1), 1) = ¢ <c, (6)
(o, t)=c.>q 7)

A is the Laplace operator, ¢, is the equilibrium concentration of a saturated
solution at the given temperature T (recall that the process is supposed to be
isothermal). D is a diffusion constant.

(4°) across the interface, the conservation of the solute demands that the
following relations holds

ac dx,
D— =(c —¢) —2 8

If the interface is not planar, (8) takes the form
D(i - V)E |yo, = (c,—c)ii - V (9)

V and 7 are respectively the velocity of the interface and the unit vector
orthogonal to it at the point x, located on the interface.

Equations (5)—(8) constitute together' a classical example of the Stefan
problem. Equations (8) and (9) simply express the conservation of solute during
the process of solidification.
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The well-known procedure for obtaining an exact solution of this particular
case of the Stefan problem is to look for a solution of the form

Co(X, t) = co(&)
(10)

X

E=a— (1)
Xo

- As can be directly checked by introducing (10) into (5)—(8), x,(tf) must satisfy

% % =2Da? (11)

or, by an arbitrary choice of the integration constant, ‘
x2(t) = 4Dat (12)
co+2&ch=0 (13)

where the prime denotes derivation with respect to £ Using the boundary
conditions (6)—(8), one finally obtains

1
co(§)=——{c, —c.erf a+(c.—q) erf &} (14)
1—erf o
and
Y
avm(l—erf a) exp a R (15)
s 4
erf z is the so-called error function
erf z _ 2 J: exp (—t?) dt (16)
N P

Evolution of a displaced boundary

We consider here an interface whose shape deviates from the planar shape;
we shall retain here only deviations whose amplitude are sufficiently small so that
they satisfy equations which are linear in this amplitude as well as in the
corresponding correction to the concentration of the liquid phase.

Let us define X, as the radius vector of a given point of the unperturbed
interface and 7, as the unit vector normal to the interface. As a consequence,

r

Xo = (xo(1), y, 2)
fip,=(1,0,0)
dx, dx,

(dr dt

17

Mo



124 C. Liévre and F. Rothen H. P. A.

Similarly, we define the corresponding quantities for the perturbed interface, i.e.
for the interface which deviates from the location just calculated (e.g. (12)):

r

§:i0+i1
) n=nytn, (18)
dy . dx,
vV =—/—"n=——+1v
L dt e !

The symbols with indices 0 and 1 refer to the unperturbed quantities and to the
deviations respectively. Notice that the component of the velocity of the boundary
in the direction of 7 is the only one which can be given a precise meaning. Notice
also that in the linear approximation, i being a unit vector,

ny-n,=0 (19)
- We need a one-to-one correspondance between the points of the unperturbed and

perturbed boundary so that to each X, there exists only one y. As a consequence,
we choose x; in the following way:

Xy = A(550, D (20)
so that, using (18) and (19), we get
d . .
Ul = a A(xOs t) (21)

(recall that we keep only terms linear in A).

The concentration in the liquid phase also is modified in the presence of a
perturbation of the boundary

E(X, 1) = co(&) + ¢1(X, 1) (22)
On the boundary, we obtain in the linear approximation
- d
G5, 0+ o)+ 6o, 0+ Al 0222 | —, (23)
E=a

so that c¢,(x, t) satisfies the diffusion equation
_ ¢,
D AE, =—21 24
&= (24)

Using (6), (7), (9) and (22) we write the boundary conditions for ¢, as

C1(, 1)=0 (25)

. A

€i(Xg, B)= —2— (g, —&)a? (26)
Xo

dA__2A ,d%_ D dq (27)

dt Xo dt  c,—¢ 0x |—,,

Because of the form of the boundary conditions, this is a nonlinear problem.
However, we can transform it into a linear one by an ‘Ansatz’ similar to the
reducing procedure used to solve the unperturbed Stefan problem.
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We write indeed

A%, 1) = a(xo)h(n, {) (28)

&(x vz, )=c1(&m, & x0) = (¢, — ) as:")g(& n, {) (29)
where

n= %0 TN 4 =f;

and so we define 3 new functions a, h and g to be determined. Introducing (28)
and (29) into (24) to (27), we get

X, da
8ee + &um T 8rr T 2(£8 T Mg, +Cgc)+2(1“—0‘_)g=0 (30)
a dx,
gla, m, ) =—2ah(n, {) (31)
g(a,m, )= 20:(2012-’:-& —d—a)h —nh,, —¢h, (32)
a dx,
g(e,m, =0 | (33)
where
_9g  _98
gé—ag, g, o’ etc.
Now the problem becomes linear if we demand
Xo da = —k = constant (34)
a dx,

The value of k is very important, because it determines the evolution of the
system. Given h, we shall see what can be said about g and k.

One-dimensional case (kinematical deviation)

As a first example, we shall consider the problem of a planar perturbation;
i.e. we write

h(m, ) = hy = constant (35)

On the other hand, we shall take g as being independent of both n and ¢, so that
the problem is a pure one-dimensional one.

From the physical point of view, we analyse now a situation where the
interface does not occupy the position given by equation (12). As a consequence,
the concentration depends only on & and x,. Equations (30)-(33) now become

m"+2ém'+2(1+k)ym =0 (36)
m(a)=-2a? (37)
m'(a) =2a*(2a®— k) (38)

m () =0 (39
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where

m(&) = g(&)/ho (40)
The general solution of (36) can be written

m (&) = Am,(€) + Bm,(£) (41)

where A and B are constants to be determined by the boundary conditions and
m, and m, can be expressed with the help of the confluent hypergeometric
function [9] M(«, B, z). Indeed

m(® =M, 2 -¢) 2)
ma®=M(1+5, 5 -#) @)

We look for a solution k independent of a. As a consequence, the boundary
conditions (37)—(39) can be satisfied only for

e=1+k>0 (44)

In fact, m,(¢) and m,(&) vanish for £ — o for all values of k satisfying (44) and
only for those values. We see that if (44) is realized, there always exists one and
only one solution (41) satisfying (36)—(39). Now (34) and (44) imply

) '

where t, is some quantity having the dimension of time. Equation (45) shows that
the relative deviation of the interface a/x, decreases with time, although the rate
of decreasing can be as slow as one wishes.

Localized morphological deviation of the interface

We consider a deformation of the interface of the form
P (M, £) = X (M) X (0) (46)

where m, n are fixed nonnegative integers and

d\' _.,
(=[] e @7)
dy
satisfies the differential equation
d? d
T xit2y - xi+2(1+Dx =0 (48)
dy, dy

Notice that we could define a basis for a localized deformation with the help of
. With this choice for h(m, £), g(& m, {) satisfies the equations

8ee T 8o T+ 8 +2(6g + Mg, + L) +2(1+k)g=0 (49)
g(®,m,{)=0 (50)
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g(a, m, £) = —2ah,,, (51)
g (o, m, &)= aX{hpiopnt hpni2t2Q2+m+n+2a>—k)h,,} (52)

It 1s easy to see that the function
g(‘fﬁ m, {) = unm (G)hnm (’ﬂ, C)+ un+2,m(§) ) hn+2,m(’ﬂ, C)+ un,m+2(§)hn,m+2(n’ g)

(53)
where u,g satisfies
d*u, g d L .

Uyg(®)=0 for (a',B)=mm), (n+2,m) and (n, m+2)

1s a solution to equations (49)-(52). (Notice that we have not specified the
boundary conditions that u,s must obey on the plane &£ = a, because they are not
important here.)

Equation (54) is automatically verified if

k>m+n+3 (55)

because the set of equation (54) is quite analogous to equations (36)—(39). Such a
perturbation decreases as (notice that £ >0)

k+1
EN(}_L) * ~t—(m+n+4+e)/2 (56)

Xo \Xo
For a gaussian deformation hgo(m, {)e™™**? we get a rate equal to

EN t—2—5/2 (57)

Xo
As a consequence, we can retain two major features of these solutions:

(1°) As the domain of the liquid phase is not bounded, the equations of
motion together with a boundary condition do not furnish a discrete
spectrum for the eigenvalue but rather a continuous one.

(2°) For a given solution, there is a unique k because this quantity governs
the motion of the interface. As a consequence, we cannot superpose
solutions corresponding to different values of k. This is a consequence of
the nonlinearity of the problem.

The inverse problem: dissolution of a solid into the liquid solution

We shall now consider a rather artificial problem which is nearly the opposite
of the problem discussed above: we shall impose that the strip 0 <<x <x,(t) is
liquid; the concentration ¢ of the liquid varies with x and satisfies the diffusion
equation (5) with the boundary conditions

Cxo(t), )= <c, (58)
¢0,t)=co<q (59)

The condition (9) remains unchanged. Notice the condition (59) which implies
that the solid phase existing for x > x,(t) will become liquid and therefore that
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dxy/dt will be >0. The interesting feature of this system is that the domain of
definition of the liquid is now bounded. However, the condition (59) is rather
artificial because it is difficult to maintain a constant concentration at one point
(x =0). Notice that there are other Stefan problems where such a situation is quite
natural: for instance the isothermal destruction of superconductivity by a magne-
tic field imposed or a sample at x =0 (see [3]). The magnetic field does not
penetrate the still superconducting domain x >x,(t) and therefore the normal
domain is characterized by a diffusion equation for the field and is bounded
(0<x <x(t)). An analysis similar to the analysis made here can be found in [7].
We consider now two different solutions to this problem.

A. Planar boundary, unperturbed problem

The solution of this problem is very similar to the previous one; if we
consider the velocity dx,/dt of the interface, it takes the same form as above
(equation (11)). The only difference lies in the distribution of the concentration,
given by

G —Co

erf a

and in the definition of «

co(é§)=cot erf £ (60)

G —¢g

Vra erf a exp a’= (61)

cs - cl
B. Kinetical deviation

In this case, recall that the problem is still one-dimensional. Using the same
procedure that we applied above, we obtain for the function m(£) defined by (40):

m"+2¢&m’+2(1+k)m =0 (62)
m(a)=—2a? (63)
m'(a) =2a(2a’*-k) (64)
m(0)=0 (65)

Compared with equations (36)—(39), the only change concerns condition (39)
which is replaced by (65). Now this modification is important became the domain
of definition of £ is now bounded.

In the limit ¢—0, M(q, B, —£€%)—1 so that, using (43), we conclude that

k 3 2
m(§)=K§M(1+-2-, X ——C—%) (66)

K being a constant one can eliminate between (63) and (64), with the result
am'(a) = (k—2a*)m(a) (67)

The properties of the confluent hypergeometric function are such that (67) is
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fulfilled if and only if

k:_ﬂ.ﬂzl (68)
dx, a

so that the amplitude of the relative deviation decreases as

.E.—... x62~ t—l (69)
Xo
The boundary can then be said to be stable with respect to the type of
perturbation considered here.

More general solution in the case of a planar boundary

As we saw above, it is possible to reduce the Stefan problem if one allows
small deviations to the unperturbed problem. The procedure used for the reduc-
tion of the equations is a generalization of the one used in the unperturbed case.
A question now arises: is it possible to apply this procedure to higher orders in
the perturbation?

We shall show this can be done in principle in the simplest case of a planar
boundary (one-dimensional case). We begin with the original one-dimensional prob-
lem (the liquid occupies the domain x <y,).

0°¢ O¢

e s 70

x> ot (70)
c0,t)=c, (71)
c(yo, 1) =0 (72)

ac dy

= - =(c.—¢q Eg (¢, >¢) (73)

A. cp<¢

In this case, as seen above, one expects dy,/dt to be >0. We make the
following change of variables:

w (74)

-_*
BVt

e = YO(t)_
B/t

B is a constant such that if we allow the system to evolve in its unperturbed state,
the interface occupies the position

1 (75)

xszzB\/i (76)

at time t. On the other hand, if the system is perturbed with respect to this
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evolution, the interface satisfies the equation
x = yolt) (77)

during its motion; yy(t) is unknown. We see that £ can now be interpreted as the
relative deviation of the position of the interface at time t. We assume that (74)
and (75) define a valid change of variables and that it possesses an inverse, so that
one can write

t=1t(g) (78)
If one introduces (74) and (75) into equations (70) to (73)
¥c y* ac 93¢

w2 "aw ¥ Vs 72}
with the boundary conditions
c(0,e)=1cy (80)
c((l+e),e)=q (81)
;—;((H e),8)=(cs—cl)[1;8+ﬁ]'yz (82)
and with the definitions
c(w, £) =c(x(w, &), t(g)) (83)
8= (e)(21) (84
g = Dy? (85)

The value of y? is calculated by letting £ =0, 9 = 0 in the equations (79)—(82). We
find

lzexpy—zjldvexp—
2 T4 )

(U'Y)2 _ G —Co
4 C. =

(86)

(Notice that w differs from ¢ by a constant factor.) Now, we could in principle
solve the (nonlinear) equations (79)—-(82). However, a perturbation scheme is now
in principle directly accessible if we develop ¢ and 4 in powers of &, with the hope
that such a development is meaningful. We must take care that {3 vanishes with g, so
that we could write

2

c(w, £) = co(w)+ scl(w)+% Calw)+- - - | (87)
g? g3
ﬂ(s)=eﬂl+2—!ﬁz+§ﬁ3+--- (88)

Retaining terms up to the first power of £ only is exactly equivalent to the analysis
made above: this is a consequence of the choice of the variable &. If we go one
higher order in the power of &, we determine c¢,(w) with the help of ¢,(w) and so
on (the convergence of this procedure has to be checked). At the same time, we
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get the corresponding values of 3,, 3, - - - and therefore determine 3(e), which is
equivalent to the determination of y,(f). Instead of doing this, we shall solve
(79)—(82) by an approximation scheme valid in the case where ¢, — co/c, —¢;, and
therefore y2, are very small. (61) tells us that

lim y2=2 3% (ﬂ_»o) (88)
C,— (G C,—

First, we divide ¢ by ¢, — ¢, and call n(w, €) the resulting function:

niw, €)= o\ &) (89)
CS == Cl
Now we develop n as a power series of y2
h=Hng + ‘anl + 0('}’4) (90)
3 =9,+0(v?) (91)
The boundary conditions (80)—(82) now become
n(0, g) = —=2 (92)
cs - cl
2
i+ g g — By L (93)
C,— (G C,— (G 2
+
%(1+e,s)=72[1 Sy 130]+0('y4) (94)
ow 2
Because of (79), n, now satisfies
az nO(Os 8) = i[
LI o9
no(]. + g, 8) = L
Cs - Cl
n,0,e)=0
2 _1
W W £ ﬂ(l+&3, g)= 8+1‘}0(8)
ow 2
(95) and (96) uniquely determine J,(¢):
de 17 1
(0) 5 = u(e) =5 [ -1 +0) ©7)
so that we finally obtain
1/2
yo(t) = Bi(1+22) ©98)

To IS an integration constant. We see that the relative deviation of the unperturbed
position of the boundary tends to vanish as time increases.
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B. ¢o> ¢ (metastable case from the point of view of thermodynamics)

As one expects dx,/dt to be <0, we make the following change of variables

X
Bv~—t
_yold)
g e _

B—t

In the unperturbed state, the interface reaches the surface x =0 at time ¢t =0, so
that all times considered here are negative.

This second case is very similar to the previous one. In fact, we obtain the
same equations for the concentration ¢ with the only exception that y>= g?*/D
has to be replaced everywhere by —vy?, which therefore satisfies

W:

(99)

1 (100)

2

2 rl 2
Y Y (vy) Co™ G
_ | d _ 101
) exXp 4 L eXp 4 c—¢ ( )

We then obtain
=Y o w=—y9_— (102)
w £

with the boundary conditions

c(0, &)=c¢, (103)
c(l+ge)=¢ (104)
9 1

5‘::—)(14‘8, 8)=—(cs—c,)'yz( ;8-{-19) (105)

If we now develop n=c/c,— ¢ and & as a power series in y?, we obtain for
exactly the same relation with £ as previously, namely

17 1
190:5[1—_'_;—(14'8)] (106)
which now leads to
_ 1/2
yolt) = 3\/?:(1 +?) (107)

As t increases from —o to —0, y,(t)/B+v—t increases and ultimately becomes
singular at a time which depends on 7, which can be Z0. In that case, the
unperturbed solution is therefore unstable against a deviation of the planar interface
(or kinematically unstable); the solution is most probably also morphologically
unstable. Notice that the surface tension we omitted does not play any role in the
case of the kinematical instability. One can therefore conclude that in the case
studied here, thermodynamical metastability implies instability.
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Conclusion

In this paper, we have discussed the use of the linear stability theory in the
Stefan problem. Instead of establishing existence theorems, we have merely
looked for solutions differing from the well known ‘unperturbed’ ones by quanti-
tites small enough to allow the linearization of the equations of motion with
respect to these amplitudes. However, the linearized equations are still nonlinear
because of the peculiar form of the boundary condition. As a consequence, we
had to find an Ansatz permitting us to transform the equations into truly linear
ones.

In the case of the simple systems studied here, the results obtained are not
especially interesting from the physical point of view. However, the method used
here can be extended to more interesting situations where, for instance, there is a
coupling between temperature and another field, such as the concentration. In the
examples treated here, we have remarked that the transition out of a metastable
state implies instability from the point of view of the dynamics of the transition.

In fact, this instability seems to be connected with the sign of the gradient of
the considered field in the neighbourhood of the interface (here the concentration).
This relation has already been presented in previous articles [5], [8].

On the other hand, the approach introduced here allows us to describe the
time evolution of a morphological or kinematical deviation of the interface. The
domain of validity of this approach is however restricted to Stefan problems
where the surface tension can be neglected. The extension of this approach to
systems characterized by a surface tension is not trivial.
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