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On the existence of the wave operator in
relativistic quantum scattering theory?)

by L. P. Horwitz and A. Soffer

Department of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel

(18. I. 1980, rev. 13. III. 1980)

Abstract. We discuss scattering theory in a covariant relativistic quantum mechanics. The
equation of evolution, with respect to an invariant parameter 7, is of Schrédinger form, and potential
scattering theory is formally similar to that of non-relativistic potential scattering. Although an
invariant potential V(x?) cannot be in L*(R*) we prove that {7 Ve *7¢| dr exists for V bounded and
decreasing fast enough as |x?|— = for every ¢ in a set dense in L?(R*), and hence the corresponding
(relativistic) wave operator exists.

The dynamical variables needed to describe a spin zero particle are (%, ¢, p, E)

[1]. They have Heisenberg equations of the form
d :

% (=K x,] M
where K is the generator of motion in 7, an evolution parameter (historical time)
needed to order the events along the path taken by the particle in space-time, and
x, and K are viewed as self-adjoint operators in the Hilbert space L*(R*). The
corresponding Schrddinger equation is [2]

. alp'r

I
or

=Ky, . (2)

where ¢, € L*(R"). We shall assume that
K =K+ V(x?) 3)
with the Stueckelberg free evolution operator

_ PP _ P Ps
2M 2M

and the invariant potential V(x?) is a function of x*>=X%>—x"* only (A=c=1). In
the presence of an external electromagnetic field, 2MK would have the form
(p* —eA*(x))(p. —eA,(x)). In this paper, we shall restrict ourselves to the
potential model (3).

K,

)  This research was supported in part by the U.S.-Israel Binational Science Foundation,
Jerusalem, Israel.
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The Heisenberg relations (1), with the evolution operator (2), imply that
([x*, p*]1=ig"")

dx" _ R_’*

iy @)
dp* _ iV

dr (r)= 0x,, ©)

The central motion of a scattering wave packet is described by the expectation
value of (4). If the motion, as a function of 7, brings x* to a region for which V
and its derivatives are small, (p*) becomes approximately constant. Further
evolution of () is therefore proportional (since dt/dr = E/M) to r. Since 7 — %o
implies t — x (for E >0) if these limits coincide with regions where the potential
vanishes, the usual asymptotic condition on scattering, involving limits in ¢, can be
replaced by limits in 7.

This qualitative equivalence is closely analogous to the heuristic observation
that the asymptotic condition in ¢ in the non-relativistic theory is qualitatively
equivalent to an asymptotic condition on the form of the wave function at large
distances.

We shall require that

e~y - e 0 ©
for T — Foo. Hence,

D=0, | (7)
where, if the limits exist,

Q.= lim e e *o" (8)

T—>*0

are the wave operators for relativistic scattering theory. We shall formulate the
scattering problem in the following, and then prove that the wave operators exist
for conditions on V which are essentially the same as the well-known sufficient
conditions for the non-relativistic scattering problem.

To formulate the scattering problem [3] [4], let us assume that asymptoti-
cally, the average motion of the wave packet is that of a free particle, i.e., for the
ith wave packet in the incoming beam,

sk

F () = (O + 5 r
' ©
*

(N = (O + 27 7

The probability for a particle to be scattered into a small volume d*p of
momentum space after a collision is given by

w(d4_p s fb;) sy d4p |¢‘€+)scatt.(p)|2 (10)

The incoming beam has average momentum p**, and the wave packets are
initially (at 7=0) at a given large distance (in the beam direction) from the target.
Summing over directions transverse to the beam and displacements in time [5], we
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find the number of particles scattering into d*p to be

N(d*p)= T o(d*p < )= dp | dTno(dp < 8,2 (1)
where

bpr=e " P (p)

and n;,. is the number of packets per unit area and time. This integral can
effectively ‘cover’ a potential V(x?) of the type considered if it falls off sufficiently
fast as a function of x*x,, since such functions decrease rapidly in all directions in
space-time except in a diminishingly small region near the light cone (the overlap
of a wave packet with this tail of the potential decreases in the L*(R*) norm).
Assuming n;,. to be constant in a large enough region, the differential cross-

section (p =+/p°) is

d
ST (40, dE <« ¢)= | @ aT [ app? w5, B)F. (12

Defining a ‘T matrix’ in the usual way [6] from the S matrix associated with the
wave operator (8), one obtains [3] [4] [7]

do
dQ dE

(dQ, dE < ¢)= (21r)5lea*| IT(p < p™)P, (13)

where p=+p¥p**+E* (p*p, is conserved). We remark that do has the dimen-
sions of areaXtime (for example, the electromagnetic scattering of a charged
particle on a heavy charged target yields, in lowest approximation, the usual
Rutherford scattering cross-section times what may be interpreted as an interac-
tion time [4]).

We now turn to the proof of the existence of the wave operator.

A sufficient condition for the existence of the wave operator (8) is that

j Ve oo dr <oc (14)
T

for some finite T and for ¢ any element of some dense set in the Hilbert space.
We start with

Theorem 1. The operator p*p,, defined as a mulnphcanon operator in momen-
fum space, is essentially self- ad]omt on ¥-space functions contained in L*(R*).

Proof. Given the set of & space functions with support in some open domain
of R, consider the algebra of multiplication operators O™ (R*) which leaves &
invariant. This algebra consists of those ., functions which, together with all their
derivatives, are polynomially bounded on all of R*. & is then an ideal of OM.

Consider the linear functional | on & only defined by l(¢)={ ¢ d*p for all
¢ €F. Then, l(ap, + ¢,) = al(g;)+1(¢,); l(¢*¢)=0, and the equality holds if and
only if ¢ =0. If we define the scalar product on & by

(o, ¥)i=Ue*P) Vo, Y e, (15)
the completion of ¥ under this product is L*(Q2), where £ is the support of &.
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For each element a of O™, define the operator A on ¥< L? by A¢ = j(ae) €
F<L? where & is j(¢) and j is the identity map of ¥< O™ onto ¥ < L”. Then,
A is densely defined on L?, leaving & invariant. If a is real, then A is symmetric.
One may verify, moreover, that if a€ O™, then a*a, (1+a*a)”™" and ¢** (for
every real a) are also in O™. Suppose ¢ is in <L We shall show that
p.€F < OM exist, for which (A +i)g,.= . In fact, if ¢ =(A=xi)@, then =
(ati)e, or

(a*Fi)y=(a*Fi)axi)p.=(a¥a+1)e.
and hence

e.=(a%*a+1)"(a*Fi)y.

Since ¢ belongs to the ideal & of O", it follows that ¢, are in &, and hence ¢,
are in ¥ < L?. Taking a to be a real polynomial function of the p* € R*, this result
implies that the corresponding operator is essentially self-adjoint. W
Lemma 1.
1
(4miT)?

where x*>=x - x = ¥>—x°? in the Minkowski metric.

(e”o7p)(x) = Ie‘“""”’z"”cp(y) d*y (16)

Proof. e "7 is defined by Theorem 1 and Stone’s theorem; the result follows
by application of the Fourier transform

iy jdwamwm E (17)

1
(2m)*
Theorem 2.

. 1 ) ( X )

—iK T i(x2/47) A

e Bp)(x)—> ——e —],

(e 0)(x) > oz €85

i.e., in the L? sense, as T — .

Proof. The proof is almost the same as in the three-dimensional case [8],
where now the three dimensional Fourier transform is replaced by the four

dimensional Minkowski Fourier transform. We reproduce the proof here since we
will utilize some of the intermediate steps later. For 7 fixed the map

; X
ix2/4T A
—r — 19
(2ir)? ‘P(zr) (19)
is unitary. It is therefore sufficient to demonstrate the result for ¢ €%, for
example. We assume that ¢ € & in the remainder of the proof. Since

V.:g—

i(x—y)?/4r ix2/4r —ix-y/27 iy2/4T

e = ¢ e e ,
we obtain
. 1 . ~ [ X
—iK,T _ — ix?/4T A 20
(e" ") (x) — (V,)(x) Gin)? € GT(ZT), (20)

’)  We take 2M =1 in the following.
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where the function G,(y) is defined as

G, (y)=(e”"* "= 1)e(y). (21)
Then, for ¢ € #(||-| is the L*(R*) norm),
. 1 x
0= Vel= 1o |6 (- )|= 16 =G <5 [Iye )P aty -0
(27) 27
as 7 —> %0,

At this stage, it is possible to estimate the effect of the tails of the wave
function off the classical trajectories using stationary phase approximation [9]
[10].7 In the following, we use direct calculation.

Theorem 3. [7||Ve *7¢| dr (T finite) exists for V bounded and decreasing
fast enough as x* —  on a dense set in {¢ € L*(R") | ¢ € L(R")}, where Li(R") is
the Hilbert space of square integrable functions with support in the positive cone.

Proof. Consider the set of states ¢ with support of ¢ in the forward cone and

with p>=¢€>0 (no zero-mass states in ¢). Now, calling e” "¢ = ¢, we have

Ve ll=[V(e. - Vi) + V,ol|< V(e - Vo)l + [ VV.¢| (22)
Consider the last term of (22):
1 NE Ak
27)°* ‘”(5»?)

- j (V@ary)? [ ()P d'y

J (V(x?))? d*x

IVV.elF =

< max (V(47°y*)* = max (V(x%). (23)

x2=47%e
Next, we consider the first term of (22):
Vie, — V,o)(x) = i72e™ " (fy(x) + f(x))

where
fl(x)_ V(x2)-[d4y(p(y)( iy /41'_1 l4yT) —iy-x/27
2 (24)
fz(x) V(XZ)J d4y(,0()7)_'— e R x/21—’
and we now choose ¢ such that y*@(y)e L>. Hence
V(e — Vio)ll<Ifill +Ifll (25)
Consider the second term of (25):
212
2 4 2y)\2 4 kix~y/2-ry_
I = G | @t (vi? | [ atyetyge e
y2 2
= [@z(viazzey | [ atyope
7

3)  We wish to thank B. Simon for pointing out this possibility to us.
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Suppose now that the support of

1 )

is outside of the set z?<e. Then,

2 4
I <2 max (Viaz*5) [ d*z (P

1612
2 4
(1:)2 max (V(4z27%))? J d*y [y?e(y). (26)
For the first term of (25),
2 4 2112 4. —ix-y/2r| jiy2/4r _ ly ) g
I = e [ @*x vy | [ atyeon(o L))
:Jd4z(v(47222))2 Jd4ye—iz-y( iy2/ar __ 1__41_)
< max (V(x?))? j Jd4Ye‘iz'y(eiy2’4*—1 4 )
xeR* 4
e L 2
= @m)* max (VY [y |(em-1-2)g(y) 27)

We now break the integral up into two regions, the first for |y?/47|<1 and the
second for |y?/47|=1. Using the bound |e™ —1—ix|<x*/(1—x/2) for |x|<2, we
obtain for the first part

b 49
ly2/47|<1

for ¢ such that (y*)’¢(y)e L>. Using the bound |e™ —1—ix|<1+v1+x*><3 |x|
for |x|=1, we obtain for the second part :

[ any|(e-1-2ery| <
[y?/a7|=1

iy o

4

(eiy2/47_ 1 jd4y(y2)4 |¢’(}7)‘2: % (28)

2)@(}’) (44)4

2

9 B
d4 2\4 2 29
w)ew)| =g [ 407t o= @9
for ¢ such that (y*)*¢(y) € L*. Hence, ||f,|| is bounded by O(1/7°) if (y2)2<p(y) el?
and V(x?) is bounded. Gathermg these results, we see that the requlrements of
the theorem are met if ¢(y), y?¢(y)- and (y )2<p(y) are in L2, ¢ and (y2¢) have

support in the positive cone and vanish on an e-neighbourhood of the boundary,
and if V(x?) is bounded and

max | V(47%y?)
y =e>0

is integrable on (T, «) in 7 for some finite T. For V of the form |x*|™®, a >0, for
|x?| large, integrability requires that a =3+ 8, for some 6§>0. W

Corollary. The wave operator exists for V(x*) bounded and decreasing fast
enough x*> — oo,
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This result can be seen by replacing y* by |y?| in the appropriate places (to
apply the proof to the space of wave functions with support in momentum space
inside the space-like region;*) in this more general case, V(x?) must vanish for
x*— — as well.

For the method using stationary phase approximations, one should choose
the open set containing the support of the Fourier transform of the wave function
to be away from the light cone. One can then apply Lemma A.1 of Ref. [9].
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