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Vacuum state and particle creation in external
electromagnetic fields”

by Helmut Rumpf
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

(12.111.1980)

Abstract. It is shown that a recently proposed definition of physical quantum states in external
gauge fields (which is also applicable to generic gravitational fields) (i) reproduces some well known
results about particle creation in static and time-dependent electromagnetic fields and (ii) provides a
formally and physically satisfactory interpretation of a variety of phenomena which so far have been
inaccessible to a conventional quantum field theoretical treatment. These phenomena include Klein’s
paradox, the Schiff-Snyder-Weinberg effect and the occurrence of resonance and Bloch type solutions
in potentials which are periodic in time or space.

1. Introduction

During the past decade quantum field theory in external gravitational fields
and, to a somewhat lesser degree, quantum field theory in external electromagne-
tic fields have attracted much interest (for recent reviews on these subjects see e.g.
[1] and [2]). Although both enterprises are closely related, the gravitational
context is usually considered as posing the more fundamental problem (but also as
providing the more exciting perspectives) due to the lack of flat in- and out
regions or even of asymptotic flatness in realistic models of space-time. It should
be realized, however, that a somewhat milder version of the same problem exists
also in the electromagnetic case, if the external field is of infinite duration. In
particular strong electromagnetic fields, which are static within a good approxima-
tion, are encountered in various circumstances, but to our knowledge no satisfac-
tory quantum field theory in the presence of supercritical field strengths has been
formulated so far except for the special case of constant fields.

The embarrassing ambiguity of the notions of “ground state” and of “parti-
cle” in curved space-time has provoked several attempts of ‘“‘vacuum definitions”
(e.g. the “adiabatic” [3] and the ‘“‘quasiclassical”’ [4] one and the requirement of
““Hamiltonian diagonalization’ [5]). On the other hand it has been argued [6] that
the particle concept should be considered as a secondary one which makes sense
only under special conditions (such as high symmetry of the background) and that
the physics has to be sought only in the expectation values of observables which
mediate the backreaction on the external field. However, even if this is taken for
granted, the ambiguity persists in the choice of the state in which the expectation
values are to be calculated.

D Work supported by Schweizerischer National Fund.
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One obvious requirement that any general philosophy of choice has to fulfil is
that in Minkowski space it should yield the unique vacuum state known to exist
there. But we feel that in addition a selection rule for quantum states, if it exists at
all, should be universal in the sense that it be equally applicable to all types of
external gauge fields, in particular also to electromagnetic fields. A definition of
this type has been proposed in papers [7}-{9], where also some new results on
particle creation in external gravitational and electromagnetic fields were re-
ported. To our knowledge this definition is the only one proposed so far that can
claim universality in the above sense.

The main purpose of the present paper is to give a detailed derivation of the
electromagnetic particle creation effects mentioned in [7] and [8]. Since many of
these effects are well known, their verification constitutes a powerful test of any
approach to the external field problem. The explicit proof that this test is
successfully passed by our approach certainly strengthens the confidence in those
of its predictions which are more remote from direct physical insight, in particular
those concerning gravitation. Despite its emphasis of methodology, this paper is
not confined to the rederivation of old results. The results on particle creation by
potentials periodic in time or space appear to be new; moreover our treatments of
the Klein paradox and the Schiff-Snyder-Weinberg effect are quantum-field
theoretical accounts of the creation processes associated with these phenomena in
contrast to other approaches which remain on the level of first quantization.

Although the covariant in-out formalism on which this paper is based has
also been extended to cover Dirac particles [10], we shall confine ourselves to the
linear scalar matter field. This paper is entirely devoted to the identification of
physical quantum states and the evaluation of creation rates. The equally impor-
tant problem of regularization of divergent expectation values of current densities
is not treated. Likewise interesting mathematical aspects of the external field
problem (e.g. existence of the S-matrix; for a recent review see e.g. [11]) have not
been pursued. They would require a level of rigor which is beyond that of
rudimentary functional analysis as employed in this paper.

In the following section we repeat some basic facts about quantum field
theory in external fields from Ref. [9] and restate the two equivalent versions of
the particle definition which is to be used in the subsequent sections of the paper.
These deal with the following types of external fields: time-dependent, asymptoti-
cally constant, homogeneous electric fields (Sections 3); homogeneous temporally
periodic fields (Section 4); static magnetic fields (Section 5); supercritical static
electric fields in one space-dimension (Klein’s paradox) (Section 6); spherically
symmetric potentials including the Coulomb potential (Section 7) and spatially
periodic potentials (Section 8). Sections 3, 4, 6 and 7 also contain exactly soluble
examples.

2. Scalar particles in a classical electromagnetic field

In this paper we consider a quantized scalar field ® of charge e and mass m
coupled to a background electromagnetic potential described by the 4-vector A*.
® obeys the minimally coupled Klein—-Gordon (KG) equation

@A, +m>»®d=0 (2.1)
O, := n** (9, +ieA,)O, +ieA,) (2.2)
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and the commutation relations
[B(x), PT(x"]=iG(x, x) 2.3)

where G is the Cauchy two-point function solving the initial-value problem of
equation (2.1)

(x) = (G =)s(x) (2.4)
(Gah)s(x) := — j do* (x')G(x, x)[F, + 2ieA,, (x)](x") (2.5)
3

Equation (2.4) is valid for any solution ¢ of equation (2.1) and any spacelike
hypersurface 3.

There are two distinguished solutions K(x, x ) K(x, x) of the inhomogeneous
equation associated with (2.1),

[O.(x) + m?] R(x, x) = —8@(x — x') (2.6)

which are the integral kernels of the boundary values ((J, + m?—(+)i0)~" of the
resolvent of the minimally coupled KG differential operator. The resolvent is
well-defined because this operator is self-adjoint with respect to the scalar
product

. 9)= [ a*afg @7
(for a more detailed discussion of the self-adjointness condition see Ref. [9]). We
call K and K the “propagator” and “antipropagator”, respectively. These Green’s

functions define linear operators i"f, i’i acting on the linear space H of classical
solutions of equation (2.1):

(Pro)w = (Repsx)  x>3 (2.8)

(Plye)=—(K*w)sx)  x<z (2.9)
The subspaces defined by these operators,

H':=P1'H (2.10)

H :=P1H (2.11)

H,:=PlH (2.12)

H :=P|H (2.13)
yield two decompositions of H:

H=H"®H =H,®H_ (2.14)

These decompositions are orthogonal with respect to the Klein-Gordon charge
form

(@, ) := [do“@*(igﬂ —2eA, ) (2.15)

b
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Moreover, (., .) is positive in H" U H, and negative in H~ U H_. Thus the formal
requirements for the construction of two Fock representations corresponding to
the two decompositions (2.14) are fulfilled. We give the 4 subspaces (2.10)—(2.13)
the followong physical interpretation:

H" = {outgoing particle solutions}
H, = {ingoing particle solutions} (2.D)
H™ = {outgoing antiparticle solutions}
H_ ={ingoing antiparticle solutions}
As shown in Ref. [9], definition (2.D) can be reformulated in a manner that
dispenses with the introduction of the propagators:

. . outgoin
A solution of the KG equation is an g. i
ingoing
mode if it admits an analytical continuation in m?® such that it

past

particle (antiparticle)

remains regular, except in the ift m? acquires a

future’
negative (positive) .
.. ) imaginary part.
positive (negative)
(2.D')

By the term ‘“‘regular” we mean that the solution under consideration obeys
the restrictions characterizing the space of distributions on which [J, can be
defined and is self-adjoint not only in the formal sense. In all the examples treated
in this paper, these restrictions exclude an exponential growth in any direction in
terms of the Cartesian coordinates. In the case of singular potentials they also
involve certain boundary conditions at the singularity.

Once the subspaces (2.10)-(2.13) have been identified, the calculation of the
particle creation rate proceeds in the following well known manner: Choose
orthonormal bases {"{5}, {“ux}, {L¢s), {L¢s}in H, H, H,, H_, i.e.

(" i) = (s, +0) = (A, &) (2.16)
s, ") = (s, _Yx) = —8(A, A1) (2.17)
where A represents a collection of quantum numbers or is a more general type of
" index. The coefficients *a;, ~a}., ,ax, _ar., defined by the expansion of the field ®
in terms of the in- and outgoing modes modes can be interpreted as particle
annpihilation or antiparticle creation operators and yield the in- and outgoing Fock

representations based on vacua |0 in) and |0 out). The expectation value (Nj) of
the number of pairs created in the mode A in the state |0 in) is determined by

(N5) 8(X, A"y =(0 in|* alaz |0 in) (2.18)

If the transformation between the in- and outgoing basis is of the special form (as
it will happen in all the cases treated in this paper)

TP = axy, Yx + Br-Yi
TP = Vi Uk T e (2.19)
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then
(Noy=1B: = lv: /" =lez[*— 1 | (2.20)

This formula will frequently be used in the subsequent sections.

3. Homogeneous, asymptotically constant electric fields

In this section we deal with electromagnetic potentials of the type A" =
(0, A(t)) where it is assumed that both the direction and the modulus of the
electric field become constant for t— +o. The quantum effects that result from
these conditions were first explored by Heisenberg and Euler [12] and later
derived by Schwinger ([13], [14]) by very elegant formal techniques. As was
shown in a previous paper [9] the formalism that we will employ is in accordance
with Schwinger’s, but it is more closely adapted to conventional quantum field
theory in that two Fock spaces of in- and outgoing particles are constructed
explicitly. Thus we are able to show that in the special case considered our
particle definition coincides with the “quasiclassical” one which was introduced by
Nikishov [15]. A treatment of electron-positron creation by a time-dependent
electric field with the use of the quasiclassical particle definition is also due to
Marinov and Popov ([16] and references cited therein). Whereas for Dirac
particles this definition is equivalent to the requirement of instantaneous
diagonalization of the Hamiltonian mentioned in the introduction, no such
connection exists in the scalar case. /

As can be seen from the example of the constant electric field treated in the
end of this section there exist complete systems of solutions of the KG equation
minimally coupled to the potential A" which show quasiclassical behavior for
t — < or t — —oc. We denote these systems by {*i,,2¢} and {. {5,.2¢}, respectively:

Yo = (27) 7" exp (ikX)*fu2e (1) 3.1)
*fuze —> [2E()] V? exp [?zJ' dt’E(r’)] (3.2
E(t) := [m?+ (k — eA(1))2]"2 0 (3.3)

The modes .2, .fm2g are defined in an analogous manner with “t—” of
(3.2) being replaced by “t — —o”’. The normalization has been chosen such that

e, “Uor) = (cWmies < Pmzicr) = £8(k — k') (3.4)

Eq. (3.4) implies that the ‘“‘classical S-matrix” is pseudo-unitary:

"Wk = s Yo + Bz Ui (3.5)
"o = By Ui T a2 Yhag
otz |* = |Brmak|* =1 (3.6)

If "4,,2¢ is continued analytically in m? into the lower half complex plane by
substituting m* — m”—ie in (3.3), (3.2), (3.5), it converges to 0 as t — < whereas
it grows exponentially for t — —o< (the latter property follows from the asymptotic
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behavior of the ingoing modes, the branch cut of E(m?) lying on the negative real
m?-axis). Thus in virtue of definition (2.D') the *y’s are readily identified as
outgoing particle modes. A similar inspection shows that "yeH , ,¢eH,,
_ye H_ (cf. (2.10)—(2.13)). An alternative, but more lengthy proof of this relation
consists of using the spectral representation of the propagator K and then
checking the propagation properties (2.8), (2.9).

In order to make the discussion of some exactly soluble cases that follows
self-contained we list some well known general formulae for creation prob-
abilities. According to (2.20) the number of particles created with canonical
momentum k is equal to |B;|*. Because of the homogeneity of the external field
the total number of particles created is either zero or infinite. The “Golden Rule”
yields the spatial density n of the number of particles created

= (2w)-3j &k |Be? (3.7)

which is finite if the external field is only of finite duration. We now introduce the
absolute probability c¢; of no pair with momentum k being created and the
associated relative probability w; of pair creation in the same mode. They are
related by

c(l+wg+wi+: - )=1c=1—wg (3.8)
The expectation value of the total number of pairs created with momentum k is

1_ .
(Ng)= ce(0+ wg +2w2+- - )=— &

(3.9)
Ck

Hence (cf. (2.20) and (3.6))
G = ol 2 (3.10)

If the spatial sections of Minkowski space were replaced by 3-dimensional tori the
vacuum persistence probability would be

{0 out | 0 in)| = TIcg (3.11)
where the product is over the countable set of allowed momenta. In the standard
topology (3.11) generalizes to

(0 out | 0 in)|*> = exp (—J d3xw) (3.12)

W=—(2ﬁ)_3jd3k In ¢ (3.13)

The left hand side of (3.12) is either unity or zero. Because of the homogeneity of
the field one may consider exp (—w) as the probability that no particles are
created in a unit volume. Again, this is finite for a switched external field. The
quantity w is related to the effective Lagrangian of the Schwinger formalism [13]
by

w= ZJ dt Im £© (3.14)
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We have calculated the momentum spectrum of the particles created for
some 2-dimensional examples. It is straightforward to recover from these the
4-dimensional cases with the field in the x*-direction by the formal substitution
k—k?, m?>— m*+k2+k3.

(a) Time-dependent potential of the Sauter type
A* =(0, V/[1+exp (—at)]) '
E.—E_\(—cos 2mwA (A real)
a ){+cosh 27Im A (A complex)
cosh[2w(E,+ E_)/a]—cosh[2@(E,—E_)/a]
E, :=[m?*+(k—eV)?]"?, E_:= (m?*+k?»"?, AA—1)=—e?V?/a?

cosh (Zn
(Nk> =

As for k —x N, — exp (—4k/a) the number density of particles is finite except in
the case m?=0, where the integral (3.7) diverges logarithmically at k=0 and
k = eV. This property is shared by w of (3.14).

(b) The temporal step potential
AF=(0, VO(1))
(E_ - E+)2 k—co e2 V2
N,)= >
(N 4E_E, k*

The convergence properties of the number density are the same as in example a),
from which b) emerges in the limit a — oc.

(c) The constant electric field A* = (0, Ft)

Since this example is the only nontrivial one as far as the problem of particle
definition is concerned, we present it in some more detail.

‘The classical action for a scalar particle (solution of the Hamilton-Jacobi
equation) which separates in Cartesian coordinates is £kx = S, (), where S is the
phase of *f, appearing in (3.2):

S, = J’ dt'[m?+ (k — eFt')*]"? —=" +(z?/4+a In|z|)
z := (2eF)"*(t— k/eF)
a:= m?/2eF

The following exact solutions of the KG equation are asymptotically quasiclassical
and orthonormal:

T fnze =27%(eF) V*e®E*(—a, —z)
t—>o00

———> z " exp[—i(z*/4+ a(In 2)]

T 1
= —+4— 2
) 4 2argI‘(2 ia)
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E is the parabolic cylinder function defined in [17], p. 693. The transformation
coeflicients of (3.5) are

a=(2m)"* exp (—ma/2)/T(1/2+ia)

B=iexp(—ma)
Hence the number of particles created, |B.|*=exp (—2ma), is independent of k
and the number density diverges. However an argument due to Nikishov [15]
renders a more detailed description of the creation process possible: If the
canonical momentum of a particle is equal to k, then its kinetical momentum
k —eFt vanishes at 7= k/eF. Hence "y, describes a particle which is created at

7(k) = k/eF and |B,|* is the total number of particles created at 7(k). Thus in our
case (3.13) can be rewritten as

|2

w= (277)*{[ dk In ¢, = (277)_1eFJ' drlnc

and we obtain
2Im £V (x)=—(2m) 'eFIn[1+exp (—2ma)]

=@2m)'eF ), (=)" 'n"" exp (—nwm?/eF)
1
With the substitutions mentioned it is easy to rederive the 4-dimensional result
21Im £V (x) = 2 F*(27)~ 32( 1)"'n~2 exp (—nmm?/eF)

([13], [18])).

4. Homogeneous electric fields periodic in time

Periodic external fields are of special interest as they do not admit a
quasiclassical behavior of the wavefunctions even asymptotically. Thus the need
for a more general particle concept than the quasiclassical one is evident in this
case. We show in the following that the “in-out” formalism is perfectly applicable
also in this situation. We consider the potential A* = (0, A(t)) with A(1) periodic
in t with period T. Our ansatz for the physical modes of the scalar field is
analogous to that of (3.1):

Yo = (27) 2 exp (ikX)f,,2z (1) (4.1)

As the KG equation 1s of second order, there are 2 linearly independent solutions
for fixed values of m? and k. Due to the invariance of the potential under time
translations by the interval T, there exist solutions % with the property

fBe(t+ T)=exp [iA(m?, k)If5=¢(1) (4.2)

This is a consequence of the well known Bloch theorem (see e.g. [19]) familiar
from solid state physics, and we will refer to the modes (4.2) as “Bloch waves”.
Usually, 1.e. in the spatially variable static analog of the potential treated here,
only the case of real A is considered. We first impose this reality condition on the
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solutions (6.2), too, but will eventually relax it. For fixed m?, the condition implies
a band structure of the k spectrum in complete analogy to the energy spectrum of
electrons in a crystal. A/T may be regarded as the “quasi-energy’’ of the Bloch
waves. Since f obeys a real ordinary differential equation, both f*® and f*®*
represent Bloch waves with characteristic phase A and — A, respectively. For fixed
k, the reality condition for A implies a band structure of the m? spectrum. Within
a band, A is a real analytic function of m?. We can continue this function
analytically into the complex m?-plane and derive the property

A(m2—ig, k)= A*(m*+ie, k) (m?real) (4.3)

The relations (4.2) and (4.3) are all we need to apply definition (2.D') to the Bloch
waves with real quasi-energy. For (4.2) and (4.3) imply that either f® of f®* is
exponentially damped in t after an analytic continuation into the lower half of the
complex m>-plane. We denote this particular Bloch wave by *f, since it is an
outgoing particle mode according to (2.D’). Denoting the other modes defined by
(2.D) in an analogous manner, we conclude from (4.3)

“f=.f="f*=_f if A real (4.4)

Thus no particles are created in the modes (4.2) with real A. This is no surprise,
since due to the strict periodicity of the external field the motion of a particle is
*quasi-free” and it is impossible to distinguish “ingoing’’ and “outgoing” modes by
a different asymptotic behavior for t — —o and ¢ — +c=.

The situation is different, however, if A is complex. There is no physical
reason to exclude the corresponding modes from our considerations, as long as
m? and k are real. Although the exponential time-dependence implied by (4.2)
excludes these modes from the generalized domain of self-adjointness of [],, the
charge form still exists and can easily be shown to fulfill

(W®, ¢*®)=0 if A complex (4.5)
As A is locally an analytic function of m? also for these modes, we conclude

yPeH NH ifImA>0 (4.6)

yBeH NH_ if ImA<0 (4.7)

Thus not only the difference between particles and antiparticles gets lost in these
modes, but also the overlap between the spaces of ingoing and outgoing solutions,
i.e. the classical S-matrix (2.19) and the Bogolyubov transformation implied by it
do not exist any more. The same phenomenon also occurs in a deep square well
potential, which will be discussed in Section 7. The only consistent interpretation
of (4.6), (4.7) appears to be that a finite number of ‘“pseudo-particles” with zero
charge is created in every “resonant” mode (A complex) in a finite time. Because
of the homogeneity of the external field, and since the resonant modes form a
continuum, the expectation value of the number density of particles created per
unit time is finite as in the case of the constant electric field treated in 3.c).

5. Static magnetic fields

It is well known that magnetic fields, although they induce various vacuum
polarization phenomena [20], do not give rise to spontaneous pair creation.
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Intuitively speaking the reason is that a magnetic field cannot separate the virtual
pairs that constitute the physical vacuum. This fact is reflected by the in-out
formalism in the following way.

Consider the potential A*=(0, A(X)). If A(X) is a sufficiently “well-
behaved” function, the negative of the minimally coupled Laplacian

—A, =(id, —eA,)(id, — eA,) (5.1)

defines a self-adjoint operator on a certain domain D < L*(R?), where L*(R?>) is
the Hilbert space of square integrable functions on the physical space. (More
specifically, from theorems of Ref. [21] one can infer that if A, is continuously
differentiable and d,A, =0 then —A, is essentially self-adjoint on the space of
smooth functions with compact support Cg(R?), i.e. D ® Ci(R?) is unique and the
completion of C3(R>) with respect to the norm

I o, = I0lP — [ & xi*20)

If —A, is self-adjoint it is also positive, and we may choose a complete system
{o5} of eigendistributions of —A, obeying

—A.px = Moz 52
[ xetex =58 1) (5.3)

As the self-adjointness of —A, implies that of the minimally coupled d’Alember-
tian
62
[, ==K 5.4
e atz e ( )
a complete generalized orthonormal basis of eigendistributions for [, is given by

Y2z = (ATE)™"? exp (FiEt) o5 (5.5)
E := (m*+\?»)'2, AZ>—m? (5.6)

The orthonormality relations are

<+ d"mZX: _ll’m'%i') = 0 (5-7)
Yoz, “Paxy = 8(m>—m") (X, ) (5.8)

For m*>0, to which we restrict ourselves, all physically meaningful solutions of
the minimally coupled KG equations can be obtained by superposition of the
modes @,.25. (This is not true in the case m?> <0, since then even in the absence of
any external field exponentially damped or anti-damped solutions exist which
signalize the well known tachyon instability.) With the observation that the modes
(5.5) diverge exponentially either as t— o or t— — as soon as m” becomes
complex, it is now easy to verify that “¢("¢) are particle (antiparticle) solutions as
defined by (2.D') and that there is no distinction between the ingoing and
outgoing modes. The latter fact implies the stability of the vacuum as anticipated.
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6. Static electric fields I: Klein’s paradox

For our purposes it is no essential restriction to consider a static potential
A* =(A°x),0) in 2 space-time dimensions instead of a 4-dimensional one that
depends only on one spatial coordinate. We assume

xX—

A'(x) == 5 A%+ F.x (6.1)

where AY, F. (the electric fields at spatial infinity) are constants. In order to
exclude bound states, which will be treated in Section 7, from our discussion, we
assume furthermore

lim eA%(x)— lim eA°(x)>2m (6.2)
A typical form of the potential A° (with F,=F_=0) is shown in Fig. 1. The
hatched region shows the energy interval which is forbidden for a classical
particle, in the dependence of x. Quantum mechanically, a particle with energy
eA’ + m <E <eAY —m (we will refer to this as the “critical”” interval) may tunnel
through the forbidden zone, however. In doing this, its current changes its
direction so that the reflection coeflicient is greater than 1. This is the famous
“paradox’ discovered by Klein [22]. Although it was recognized quite early as an
indication of particle creation ([12, [23]) (the simplest explanation being Ein-
stein’s famous argument interrelating induced and spontaneous emission of a
quantum-mechanical system), no satisfactory quantum field-theoretical descrip-
tion of this process has been given in the literature. A thorough investigation
including various numerical examples is due to Fulling [24], but remains inconclu-
sive with respect to the question of particle interpretation. Bongaarts and Ruij-
senaars [25] have even concluded that the Klein paradox ‘“corresponds to a
situation which cannot be described properly within the framework of a field
theory with an external potential”’, because a unitary S-matrix no longer exists
under condition (6.2). We feel that this latter phenomenon, which is common to
most ‘“‘creative’ external fields with non-compact support, should not be over-
dramatized, and that the Fock space description of the creation process, which we

eA’(x) + m -T _______________

crit

eAl n
m eA°(X)—m

Figure 1
Forbidden energies (hatched) of a classical particle in a potential A%(x) exhibiting Klein’s paradox.
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obtained, is completely satisfactory from the physical point of view. Mathemati-
cally it should be taken as an indication that a more general formulation of
quantum mechanics namely the C™*-algebra approach is needed [26].

As the KG equation of our problem is mathematically equivalent to the one
of Section 3 (with the sign of m? reversed), the following systems of solutions
{U e Wmee}s (Mg, {2} are obtained from (3.1) by obvious changes of
notation:

Y1) = 2m) " exp (—ENfTII)(x) (6.3)

X —»00

() =5 [2k(x)] 2 exp [+(—)ijxdx'k(x)] (6.4)
if k(x):=[(E—eA%x))">—m?]"? is (positive) real

xX—>00

———[2k(x)] "*exp [+(_)jxdx’K(x’)]
if k(x):=[m?—(E—eA°x))*]"* is (positive) real

Let T({) 2 and T(})f,.2¢ be defined in an analogous manner with “x — ©” being
replaced by “x — —o"" in (6.4). If lim,_, ... k(x) =: k, is (positive) real — the limit
may also be infinite —, then current conservation implies

flsz = asz‘]ffsz + BmE Tfm25 (6.5)
meZE = B?:tZEVLfmZE + a:’:ﬁET,fsz
|laf?=[B[*=1 (6.6)

If k., and/or k_ is imaginary, the @ and B coefficients still exist and can be
obtained from those of (6.5) by analytic continuation in E (however they do no
longer obey equation (6.6)).

We consider first the case F, =F_=0. Here definition (2.D’) can be used
directly to identify the in- and outgoing physical states in the following way: Write

E(k_,m*)==x(k>+m?"*+eA° (6.7)
k. (k_,m*)=[k2+2e(£(k>+m?)'"*+eA°)(A°—-A?)
+ (A0 — A0Y2]12 6.8)

and consider the matrix coefficients defined in (6.5) as functions of k_ and m?>.
Continue the solution ¥1,,:x(k, real) analytically to complex values of m* while
keeping k_ fixed at a real value, i.e. consider that solution ¢ of the KG equation
with complex m?, which is defined by the asymptotic behavior

X—>00

Y —— [d7wk (k_, m*)] "2 exp [—iE(k_, m*)t+ ik, (k_, m®)x] (6.9)

This solution converges to 0 as x — o, if Re (E—m)>eA? and Im (m?) <0 or if
Re (E+m)<<eA® and Im (m?)>0 (because A2 — A% <0). In both cases it van-
ishes also for t—cc. Therefore 1 is an outgoing particle mode in the first case
and an outgoing antiparticle mode in the second case. A similar discussion applies
to k, negative imaginary. In the same manner, possibly by interchanging the roles
of k, and k_, the physical character of all the solutions (6.3) and their “reflected”
versions can be determined. The complete result is listed in Table 1.
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E ¢f bl N W
>eAl+m - H* = H,—
(eA% -m,eAl +m) - H* =H4 = -
(eA2 +m, eA3 -m) H* He H™ H-
(eA% -m,eA% +m) - - H™=H_ -
<eA2-m -~ H = H —

Table 1

Classification of the solutions in the static potential (2.1), (2.2) according to their energies.

As can be inferred from Table 1, our definition predicts pair creation in the
“critical” energy region and is thus in accordance with what one expects physi-
cally. Moreover, an application of the principle of stationary phase, i.e. differenti-
ation of the phase of the wave-functions with respect to the parameter E, shows
ingoing
outgoing (o0

concentrated at large negative (positive values of x as ; " Hence the terms
__,_)_

“ingoing” and “‘outgoing” attributed to the modes of Table 1 apply also in their
intuitive meaning. The charges of these solutions will be evaluated below.

We now turn to the case where not both F, and F_ are zero. Since here k.
and/or k_ is infinite, the construction of suitable analytic continuations is not
obvious and we have not succeeded in applying definition (2.D’) directly. There-
fore we have to calculate the propagator K first and then to use definition (2.D).
There are at least two methods to calculate K. The most straightforward one is to
make use of the special relationship already mentioned of our problem to the
time-dependent case of Section 3. From this we conclude that K has spatial
propagation properties (if a “charge form” is defined on timelike hypersurfaces)
analogous to the chronological ones on which our particle definition is based.
These propagation properties can readily be inferred from (2.D’) after interchang-
ing space and time (care has to be taken however of the fact that the propagator
of this section corresponds to the antipropagator of Section 3, since the
mathematical equivalence is only established by the substitution m?>— —m?).
More specifically, “future’” has to be replaced by ‘“‘the direction of increasing
coordinate x”. The propagator is completely determined by the functions it
propagates and can be evaluated using the ““temporal charge” of these functions:

that wave-packets built from the particle (antiparticle) modes are

oo

1
K(x, y)= —ij dE'[@(xl ¥~ Wl NE)

+O(y' ) = W (R | (610

Alternatively we can start from the spectral representation of the resolvent -
(O, + m*>—i0)~", as already mentioned in Section 3, and calculate K according to
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the formula

(X)Ph2eay)
m2+i0

K(x, y)= j d(m’z)JdEZ “""nf“ (6.11)
by integration in the complex m?-plane. {{,,2,} denotes a complete system of
eigendistributions of [J, orthonormal with respect to the scalar product (2.7) (the
label a assumes two values at most). Since the calculation is rather involved, we
quote only the result

K(x, y) _rvee —lJ dE ?5[[1:(:15‘)(1:();)]})2] [B(x'—y') exp (iJ:lk(x') dx’)
k + ij Y1k)

+0(y'—x") exp (—thlk) —% exp (iJ’x
’ (6.12)

1 1

orn [ L)L

1

by which (6.10) is implied.

In order to derive the propagation properties of K in the ordinary sense we
evaluate K#* 1 and suppose at first k, and k_ to be real. As the integrand in
(6.10) is not continuously differentiable at x' =y', we separate the integral

o

(Keude)o) == | Ks )| 575+ 2ieA%y) [oey') dy

—0o0

__ L _ r (6.13)

into two parts, which we can calculate by partial integration. Let x' be large
enough so that the asymptotic behavior (6.4) of the wave functions may be
employed. Then (we postpone the E’-integration of (6.10))

1

x 1 :
L dYIEOE+E = 2eA%y)f1e(y) = 55 fE d_i =

x1

—00
1

i

"E-E {2(1(;')“2 [_B(k i )emp (’.[ (et k’))

+a*(k+ k') exp (iJX1 (k— k'))] —m

R

(6.14)

X [B*(k'— k) exp (—ij ' (k+ k')) +a*(k+k")exp (—i‘[ y (k— k'))]

Since

>

lim (k) 2% k12— g

X —>=+00 d
we could omit some terms. If k' is real, we may infer from
E+E' —2eA° J‘““ dy

k+k'=(E-E RETW R

g
= =oc, — | <<coc
k'(y)
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and the local boundedness of «, B regarded as functions of E that the contribu-
tion at y — —x is equal to s_a*(w/2) 8(E— E’) with

S, 1= sgn [E— lim eAO(x)] (6.15)

xX—>+o0

If k' is imaginary, the contribution from y— —c vanishes leaving the rest
unchanged. Analogously, we get for the second part of (6.13)

[ AEOHE+E-2eA1e(y) dy

. k—k'
=]
2(E-E
Adding both parts and performing the E’-integration, we obtain

[k'(x))k(x)] 2 exp H (k + k')] (6.16)

_ N 9 (in k)
. ,€xp [—IiE'(x"— y") —iEy"]
(K*dTe)yelx) = ’L G 2k(?  E-E+is0

={®(x0—y°)ME(x) if s.>0

) (6.17)
-0’ —x 1 elx)  ifs_<O0
It is now evident that our calculation is correct even for imaginary k = ik.
Since an exponential decay of the wavefunction can occur only in one spatial
direction, the term proportional to §(E — E’) persists if k' is real. The “action” of
the propagator on the remaining solutions and also that of the antipropagator can
be derived in an analogous manner as the one just employed. The results coincide
with those derived under the more special condition F, =F_=0 and given in
Table 1. For sake of completeness we mention that under this last condition there
is yet another method of deriving Table 1: By a suitable choice of integration
contours in the complex m>-plane one can arrive at the chronologically ordered
representation of K directly without having to make recourse to the spatially
ordered representation (6.10).
The charge forms of the solutions (6.3) and of 14, |# can be calculated by the
method used in equation (6.14). They are

(e 1) = (bl ) =20 5B B0 {[% (6.182)
(Mo i) = (Ui Vi) = 27 8 (E - ma{:g;i (6.18b)
(M, W) = (Wb, bl =2 8(E - ENs.{ % (6.18¢)
(N, ) = (e xhe)* =2 B(E - Es.{ (6.18d)
(¥1e, Ylp) =2m 8(E—-E')s_ap (6.18¢)

(Mg, L) = =2 8(E— E')s.a™B | (6.18f)
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In (6.18a-d) the upper value is valid if s, =s_, the lower one if s,=—s_.
Equations (6.18a) and (6.18b) are valid also for the solutions that describe total
reflection to the left or to the right (k, or k_ imaginary), if one substitutes for «, 8
i(hc‘a corresponding analytical continuations of the coefficients of (6.5) (in this case
al=|B)).

The formulae (6.18) enable us to construct the in- and outgoing Fock
representation according to Table 1. In the following we shall only be interested
in the critical energy region because it is only there that the two representations
differ. Denoting the physical modes normalized with respect to the charge form by
L, Ty, we have

Ty =(a*/B)—(1/B) ¢ (6.19)
“Y=(1/B) b —(a/B)-Y

Therefore an expected number of

(Ne)=|Be[™ (6.20)

particles is created with energy E. This number equals exactly the ‘“transmission
coefficient” (negative ratio of the transmitted to the ingoing current) of the
wavefunction . This is the expected relationship between induced and spon-
taneous emission mentioned at the beginning of this section. The expected
number of particles created per unit time is

d(N

_(dt_> = (2w)—1j dE(Ng) (6.21)
where the integral extends over the critical energy region. The probability of no
particles being created in the unit time is exp (—w) with

w=(2w)1jdE In (1+(NE))=2J dx' Im £V(x) (6.22)

(cf. (3.12)—(3.14)).
The canonical Hamiltonian of the scalar field,

H=%J d>x[(d +ieA°)(d"— ieA) +VdpVd + m2¢p ' +j°A°] (6.23)

= ed'(idy—2eAy)

has, after symmetrization, the following representation in terms of the ingoing
expansion coefficients of ¢:

o0 eA® +m

2
2H= J dEE Y. {,ak, +am}+f dEE{,al, ,ag}
i=1 e

eAS +m = A% —m

eA® —m
+ j dEE({, a%, az}—{_ab, _az))
eA% +m
eA° +m eA? —m 2
| dBIEICaL agb+|  dBIEIY {ahoan)  (624)
e — i=1

A% —m

X UNIVERS \ . . _ C e . ..
... Thel representation in terms of the "ag, ~ag is similar. The index i in the sums
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appearing in the first and the last integral labels two orthogonal modes with energy
E, eg. Y= qu;E, Ye>= Ylg. The contribution of the critical energy interval
eA’ +m<E<eA%—m to H is such that H cannot be made positive by a gauge
transformation as it could if eAS—eA%<2m. Thus a lower bound for H no
longer exists as soon as the Klein paradox occurs. Therefore neither |0 in) nor
|0 out) (which can be made zero energy eigenstates by normal ordering in the in-
and out-representation, respectively) are states of lowest energy. Lower energy
states can always be obtained by filling these states with particles or antiparticles
in the critical energy region.

We close this section with some exactly soluble examples. Mathematically
they are trivially related to those of Section 3. The physics is completely different,
however.

(a) Sauter’s potential A°= V(1+exp (—ax))™"

The distribution of partlcles created is

cosh [27(k_+k.)/a]—cosh [27(k_—k.)/a]

N.)=
(Ne) cosh(2 k#wk+)[—cos2ﬂ)\ (A real)
T +cosh Im 2wA (A complex)
1 (1 e*VA\1©2
=—4|——
A 2 (4 az)

It is symmetric around its finite maximum at E = eV/2 with
(Ng) =" ~(E—m)"

There is no divergence as m — 0.

(b) The step potential A°= VO(x)

(Ng)=4k_k,/(k,—k_)* —==<2 (eV/2—2m?/eV)*/(E— eV/2)?

The divergence at E=eV/2 reflects the occurrence of spontaneous emission

already at the classical level: At this energy value ¢} has no ingoing component,

and the current density is everywhere pointing away from x =0. w is finite. The

convergence properties survive the transition to 4 dimensions (k — k’>, m*—
2 2 2

m*+ki+ks).

(c) The constant electric field in the static gauge A° = Fx

flE is obtained from *f, of ex. ¢) of Section 3 by the substitutions m?>—
-m?, k— E, t— x. Hence

(Ng)=exp (—-ZWT—;)
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Introducing the “classical location of creation” £(E)= E/eF we can obtain
2 Im ¥V by a similar argument as in Section 3.

7. Static electric fields II: spherically symmetric potentials, singularities, and the
Schiff-Snyder-Weinberg effect

7.1. General Discussion

We open this section with a general treatment of the potential A" =
(A°(r), 0), lim,_,., A°(r)=0. Since we will be interested in quasiclassical modes,
we need the classical action S for the motion of a charged scalar particle in the
potential A*. Separation of the Hamilton-Jacobi equation in polar coordinates
yields

S(t,r, 9, ¢)=Et+ j dr'[(E—eA°(r)?>—m?— L?/r?]'?

4
ij d9'(L?— L% sin® 8")2— Lo (7.1)

Obviously the integration constants E, L2, L, are the energy, the square and the
third component of the angular momentum of the classical particle, and S
becomes complex for the classically forbidden values of r and 4.

The solutions of interest of the KG equation are of the form

ll’szlp. = exp (_ lEt) Xflu (ﬁa (P)fszl (r) (7-2)

(Y, are the spherical harmonics). They are trivially quasiclassical in t and ¢, and
also in 3 for $—0 and 9 — 7. However even if A°=0 there do not exist
solutions (7.2) which are quasiclassical for all values of r. Quasiclassical behavior
1s possible only for r— 0. As the radial part of S is purely imaginary for r — 0,
fmem is real. (In the free-field case f,:z is a spherical Bessel function. The
spherical Hankel functions are quasiclassical for r — o, but correspond to a point
source of the KG field at the origin.)

Quite generally there exists only one solution f,,zg of the source-free KG
equation for fixed values of m?, E, I, |E|> m. Its asymptotic behavior is

fuy s (2kr)-1[amzm exp (:j K dr)+ c.c.]
k :=(E*—m?"?, k(r)=[(E—eA°r))>*—m?]"? (7.3)

We can continue f,:5 analytically into the region |E|<m with the phase
convention

k(r)=i[m?>—(E—eA°r))*]"* =: ix(r) (7.4)

Then, of course, the ““c.c.” term of (7.3) is no longer the complex conjugate of the
first term in the bracket, nor is the analytical continuation of X, the complex
conjugate of that of «,,:z (we will go on using the same symbols, however). For
physical reasons we will consider only those solutions in the region |E|<<m which
describe bound states, i.e. for which aX.; = 0.
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As in the previous section, version (2.D’) of our particle definition cannot be
applied in a straightforward manner to the wavefunctions introduced so far. We
therefore stick to (2.D) and the evaluation of the propagator via the representa-
tion (6.11). Again we will not present the details of the latter calculation, but only
note for later reference the following intermediate results: If |E|>m,

1

= d
5 =i —_—? Zp— 2
L drr?f¥.f »=1lim o — (ffn 5 fn )

r—ow
=£ |ayz| 8(m2—m™)

If ¢, is a bound state,

aa
a( 12)

(Note that neither in (7.5) nor in (7.6) there is a contribution of the lower
boundary of integration, as we are dealing with solutions of the homogeneous KG
equation.)

The result obtained for the propagator by integration of (6.11) in the
complex m?-plane is

- o . 0 10
K(x, x)——> ‘J de=t [, II;::C x7)] Y. Y, (9, @) YE(WY, ¢)
o L

21{1 [@(r—r)exp(i r'r k)-l—@(r’—r) exp (—ij: k)+% exp(ijrk+iJ”’ k)]
(7.7)

Similarly as in (6.12) we recognize here a ‘“‘radially ordered” representation of K,
as opposed to the usual “chronologically ordered” one. For |E|<m the integrand
of (7.7) is defined by

[ amip ek
0

(7.6)

da*
e ' 7.8
o a”—1i-sgn (_a(mz)) 0 (7.8)
Proceeding analogously as in (6.13), (6.14) we obtain the “‘action” of K on 4,
Y oo T -l 0__ 1oy __ 'E 10
(K # Py, ) o X) —— Y, (9, (P)J' dE’ exp [—iE (zﬂ-k: )—iEx"]

X{E’iE [aE exp (ijr k) +af exp (—ijr k)] + [exp (-—iJr k')+z—g exp (ijr k')] )
1 exp(fjrr k') d

. ar oo (i W)+azon (=] )]}
rlf:o E_E o o [aE exp (Ij k) +akexp 1J’ k (7.9)
If |[E|>m, lim,_,,.= ma¥sgn ES8(E—E'), and the second term in the integral in

(7.9) can be absorbed into the first one by setting the denominator equal to
E'—E+sgn E -0, If |E|<m, K * ) exists only if the bound state condition af =0
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is fulfilled. Then

daE
lim =i 8gg ——
r'—oo EE aE’
Therefore the second term in the integral in (7.9) is equal to 0 if E'#0, and it
does not exist if E'=E (since then ag =0). However in the latter case it has a
unique interpretation as a distribution: Equation (7.8) implies that

aﬁiﬁ (B =B g 55 1) (7.10)
oE
with
da ™
Sm2 1= SgN ) |t g (7.11)
da™
Sg 1= sgn —— Fy=d (7.12)

Hence in the case that E is an energy eigenvalue the principal part of the pole at
E'=E due to (a¥.) ! occurring in the second term in the integral in (7.9) has to
be dropped, and the whole term is equal to

— 8,280 €XP (lj- k)frﬁ(E— E'")

This can again be absorbed into the first term by setting the denominator there
equal to E'— E—is,2" sg - 0.
Now the charge forms of the solutions (7.2) are given by

(Yep, Yerp) =8y 8, sgnE IaIZS(E E) if |E|>m (7.13a)

1 o
(Y1, Yer,)=—8p 8, 8ep = 7K ai for bound states (7.13b)

Equations (7.13) and the positivity of the right hand side of (7.6) imply the sign
q(E).of the charge of the wavefunction y:

q(E)=sgn E  if |[E|>m

q(E)=—s,,:sg if E is on eigenvalue (7.14)
Therefore (7.9) altogether is reduced to
dE' exp [—iE'(x°— x"°) —iEx"’]
27 E'-E+ig(E)-0
Finally the evaluation of (7.15) and of the analog integral for K reveals:

yee H NH, if q(E)=+1 (7.16)

Yyege H NH_ if q(E)=-1

Thus, according to our definition, no particles are created corresponding to
the modes introduced so far, although in the case sup,|eA°(r)|>2m there exist

(K * o0 = Y9, 0) | fan(r) (7.15)
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solutions of the Klein paradox type. They correspond, however, to a meson
source and will be discussed in the example below.

If the potential is “deep” enough, there will in general also exist bound state
modes with complex E, —m <Re E<m. This is the ‘“‘resonance” phenomenon
discovered by Schiff, Snyder and Weinberg [27].

The modes occur in pairs {{, ¥e+} and their charge forms are

<>

1 . d
(Yg, Y) = E*_E }EI:O tbzzi—r Y =0 (7.17a)

(g, Yex) #0 (7.17b)

It is interesting to classify also these modes according to the particle definition,
although it is clear from (7.17) that they do no fit into the construction of a Fock
space. Although the resonances do not belong to the generalized domain of
self-adjointness of [J, and hence do not contribute to the construction of the
resolvent as indicated in (6.11), they are “acted upon” by the propagator in a
well-defined manner conveyed by equation (7.9). The only difference to our
previous calculation is that now the second term of the integrand appearing there
vanishes and that the pole of the first term is situated off the real axis. As a
consequence

e H'NH™ if ImE<0
YyeeH,NH_ if ImE>0 (7.18)

Thus we encounter a similar situation as that discussed at the end of Section 4:
The spaces spanned by the in- and outgoing resonance modes have only a trivial
intersection. The only reasonable physical interpretation of this mathematical
pecularity seems to be that here much “more’ particles are created than in those
situations which fit into the usual scheme. This is also suggested by the fact that
the “resonances” constitute classical examples of spontaneous emission by the
external field (another example are the modes with E =eV/2 in example b) of
Section 6). It is plausible to interpret exp (—2 Im E) as the probability that no
pairs of quantum number E are created out of the vacuum during one unit of
time, as was proposed by Popov [28]. Because of the Bose statistics we expect the
number of pairs created to increase exponentially in time subject to the oversimp-
lifying assumption, of course, that the back reaction and the mutual interaction of
the particles are neglected. Calculations of Migdal [29] indicate, however, that the
vacuum remains stable if the Coulomb self-interaction of the scalar field is taken
into account.

In order to supplement the general framework given above by concrete
examples and to provide a more detailed physical description of the creation
process we conclude this section with a discussion of the spherical square well and
Coulomb potentials.

7.2. The spherical square well A°=V®(a—r), V<0
We consider only s-wave (I =0) solutions (7.2) with
feo(r) = (kyr) 'sin k,r for r<a (7.19)
k,=[(E—eV)*—m?*]"? (7.20)
a=(ki'k sin kya —i cos k,a) exp (—ika) (7.21)



106 H. Rumpf H.P A.

(a was defined in (7.3).) The bound state condition is
kictg kya =ik (7.22)

If the depth of the potential is increased ‘‘adiabatically” starting from V=0,
energy eigenvalues E;; separate from the positive and negative energy continuum,
respectively, at the values Vi defined by

eVi=xm—[m?+(n+(1/2)*)w%a 2] (7.23)

As V decreases, the eigenvalues E} dive into the energy gap (—m, m) until they
coalesce at a critical value V™, where E; = E,. For V< V™" both eigenvalues
become complex with E = (E;)*. These complex ‘“‘energy” eigenvalues corres-
pond to the ‘“‘resonance” modes introduced in the general part of this section.
Numerical treatments of the gedanken experiment just described can be found in
[27] and [24]. According to [28] the threshold behavior of the imaginary part of
E, is proportional to (eV<™—eW)2 if a<m™. If a»m™" then |eV]|« m,
|2m +eVi|«< m and |2m + e V™|« m. Therefore if the radius of the “well” is large
in comparison with the Compton wavelength, particle creation occurs almost
immediately after the critical depth of the potential eV =—2m is reached. This
result is plausible because of the energy balance “potential energy = negative rest
energy of a pair”. For a<m™"' this reasoning no longer applies because particles
are not strictly localizable.

Classically, the resonance modes can be interpreted as follows. Equal
amounts of positive and negative charge are continuously created at the potential
“wall”” r = a. The negative charge flows outwards, its current decreasing exponen-
tially for r—cc. Similarly the positive charge flows inwards with its current
vanishing at r=0. Thus the charges remain concentrated in the vicinity of r=a
and grow exponentially in time. Quantum mechanically, the resonance modes
represent ““pairs’’ rather than ““particles” and ““antiparticles™: The particle compo-
nent of the pair is bound inside the “wall” with potential energy—eV. The
antiparticle component is situated just outside the ‘“‘wall”. It is only in this way
that the energy balance mentioned above can be maintained.

As already mentioned in the beginning of this section there exist wavefunc-
tions with asymptotic behavior ~r~* exp [—if" k(') dr'] and showing induced emis-
sion in the critical energy region eV+m <E <—m. They are solutions of the
inhomogeneous KG equation with a point source

p(x) =exp (—iEt) 8(x) (7.24)

This could make one expect that the particle creation rate of this classical source
1s enhanced by the external field because of the Klein paradox. In the following
we show that the interplay between source and external field is different.

According to the general formalism for c-number sources (see e.g. [30]), the
presence of the source necessitates a distinction between the algebras of the in-
and outgoing fields &, ®°** (and not only of their representations):

Pout = Pin — J’ d*x'G(x, x")p(x" (1 23)

where G is the Cauchy propagator introduced in (2.4). Equation (7.25) implies
that the in- and outgoing annihilation operators will differ also by c-numbers,
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apart from the Bogoliubov transformation imposed by the external field. E.g. in
the absence of an external field the source (7.24) implies the following transfor-
mation of the annihilation operators defined by plane-wave modes:

Ao = Ain g+ (ATWE) "? 8(E—k°) if E>m (7.26)
Therefore the creation rate is

d(N) k

*—fi—tz =5 (7.27)
and coincides with the total radial current of the classical solution

Jd“x’K“”t(x, xNp(x"y=—(4mr) " exp (—iEt + ikr) if E{ Z:n (7.28)

K™* is the retarded Green’s function of the scalar field.

We now simply compare the creation rate (7.27) with that for the same
source in the presence of the external potential A°(r). By integration in the
complex E-plane one obtains

J’d“x'K‘"e‘(x, x)p(x") ————(47ra™)"* exp [—iEx0 + ij k(r') dr']

if E{ ~™(71.29)

<-m
This result is valid under the general assumptions made at the beginning of this
section. It is even valid for |E|<m with the analytical continuation (7.4).
However it diverges for energy eigenvalues E, thus indicating resonance. Since
the connection between the current of (7.29) and the quantum theoretical
emission rate is the same as in the case A°=0, the emission rate is different from
(7.27) by the factor |a|>. Therefore in our example it is enhanced for E>eV/2
and diminished for E <eV/2 (as a consequence a real source will create different
amounts of particles and antiparticles). So there is no connection with the Klein
paradox. The reason is that the source (7.24) not only creates outgoing spherical
waves, but also absorbs the waves reflected from the potential barrier (in the
critical energy region the latter is the main effect). One can imagine, however, a
source which is switched on for a period small enough so that the waves reflected
from the barrier are not absorbed but totally reflected at r=0. Since the reflection
coefficient of the potential is greater than 1 in the critical energy region, the
amplitude and charge of the reflected waves will increase exponentially in time. It
is in this way that a “resonance” comes about.

7.3 The Coulomb Potential A°=—-QJr, Q>0

It has been known for a long time [31] that relativistic quantum mechanics in
the Coulomb potential develops an ambiguity beyond a critical value of the
central charge Q. Although eventually we will not escape the conclusion that
definite predictions about particle creation in the most common potential of
physics cannot be made unless the Coulomb singularity is replaced by a more
realistic potential, a comprehensive, though not too rigorous, treatment of the
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Coulomb potential seems appropriate to elaborate the exact reason for the partial
breakdown of our formalism.
The radial part S;(r) of the classical action (7.1) has the two asymptotic limits

S,(r)—(*Q*~L>"Inr forr—0 (7.30)
S,(r)—=>kr+ EeQk™'Inr forr—o (7.31)

As in the free case the KG equation has solutions which become quasiclassical for
r— 0. However not all these solutions do belong to a generalized domain of
self-adjointness of [],. In the following we give a list of the admissible eigendis-
tributions of [J,. Eventually it will turn out that all modes exhibiting particle
creation are excluded by the self-adjointness condition and thus no particle
creation is predicted by our definition for the unregularized Coulomb potential.

A crucial parameter for self-adjointness is the coefficient A occurring in the
radial part of the KG equation for the solutions (7.2):

2 ;
[Jd_i_l'Z d +2EeQ AA+ 1) LB mz]fmzm(r): 0 (7.32)
dr rdr r r?
AMA+D)=1I+1)—e*Q? (7.33)

The following cases have to be distinguished:

(a) A(A+1)=0. Here the space of admissible solutions is unique. It is spanned
by

eQ
k

A= =3[+ - Q=0 (7.35)

fnzEr =€xp (— 1kr)(2kr)"+M( —+ A+ 1,20, 42, 21kr) (7.34)

M denotes the confluent hypergeometric function. The coefficient a of (7.3) is

T(2A, +2) exp [__EEeQ o (EeQ )] (7.36)

] In2k—A, -
2
I‘( EeQ+A 1) 2 k k

The function (7.34) is real and defined only for |E|>m as it stands, but it can be
continued analytically to values |E|<m using (7.4). The eigenvalues are

m(N+A,+1)
[ezQz_(N+ /\++ 1)2]1/2

Ein = (7.37)

(b) —1/4=A(A +1)=0. Classically, a particle with this value of the parameter A
falls into the singularity. Quantum mechanically the collapse is still prohibited
(there are no oscillations of the wavefunction for r— 0). But now the functions
(7.34) no longer define the only possible domains of self-adjointness. Instead they
could be replaced by f,.25,_ defined by

A,— A=A, -1 (7.38)

or any linear combination f,,:g,, + of,.>5_ With real parameter a. Thus there is a
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one-parameter sequence of self-adjoint extensions of the differential operator [,
initially defined on Cj(R*). However, among these the one corresponding to the
choice of the f,>g. is distinguished by the regularity property

f(r) —— r+

A =—1/2)

Moreover it is this extension which yields the observed spectrum of the hydrogen
atom (the Balmer series). In this ‘“physical” extension we have q(E)=1 for all
bound states (cf. (7.14)). The lowest energy eigenvalue is reached for Q = 1/2 with
E,200=m2 2 (If no boundary conditions at r =0 are introduced, (7.32) posses-
ses solutions lying in L[(0, «), r* dr] even for arbitrary complex values of E*—
m?’e C—R")

(c) A(A+1)<—1/4: We define A, by

A= —12+i[e2Q*—(1+ 1/2)-2]”2 (7.39)

and keep the notation f,..5., for the analytical continuations of the functions
defined originally by (7.34), (7.38).
The Klein paradox is now manifest in the ‘“‘superradiant’” mode f,, >~ with

r—0
frmrer. —> (2kr)™"? exp (—iv In 2kr)

v=ImA,

The transmission coefficient (defined in analogy to that of Section 6) of this
function is

E
exp [7w(EeQ/k + v)] sinh (27v)/cosh [ﬂ’( zQ_ )]
But since this solution corresponds to a source at the origin it is not admissible for
a self-adjoint extension. Admissible eigendistributions must behave like

r Y?sin(vinr+8) forr—0

with a universal constant 8. Thus the self-adjoint extensions can be parametrized
by the phase shift & of the total reflection at the origin. In contrast to case b) none
of these extensions is preferred physically. The boundary condition in r=0 can be
fulfilled by one bound state at most (whose energy must be E =—m). In contrast
to the square well potential there are no ‘“‘resonance” solutions obeying the
boundary condition. All the existing resonance solutions describe an “eruption”
of particles from the origin or their collapse into the origin and have complex
“eigenvalues” lying in the series (7.37).

Since the singularity in the origin certainly is an inadmissible idealisation of
the actual field of a charged particle, the negative prediction about particle
creation in the Coulomb potential should not come as a surprise. If the potential
is modified so as to remain finite in r=0, “admissible” resonance modes of the
same type as in the square well potential will occur which do correspond to
particle creation. For an extensive discussion of this process in realistic nuclear
potentials as well as of the exciting perspectives of its experimental verification
see [32], [33].
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8. Static electric fields III: periodic potentials

The subject of this last section is the potential A* =(A°(%¥),0) with A°
periodic in x', x*, x>. In virtue of the Bloch theorem (cf. 4.6) there exist solutions

Bm a= 2wy *? exp[—iE(m?, a)t]e“ uz(x) (8.1)

where u has the same periodicity properties as A°. The quasimomenta «' are the
analogs of the expression A/T of Section 4.

The self-adjointness of [, is respected only by those solutions (8.1) for which
E, a,, a,, a; are real. Eventually we shall allow E to become complex however.
Restricting E to real values yields the “energy bands” known from solid state
physics. Within an energy band, E is a real analytic function of m? if the o; are
kept fixed. Therefore, upon an analytical continuation into the complex m?-plane,

E(m?+ig, a)= E¥(m®>—ig, &) (m? real) (8.2)

Consequently, according to definition (2.D'), ¢'B.e H*(H"), if E(m?, a) is real
and if Im E(m”— ie, o) <(>)0. Moreover, if we denote by H_, the linear space of
the outgoing particle solutions with real values of E and use an analogous notation
for the corresponding restrictions of the other subspaces of physical solutions, we
have

H:.a. = H+s.a.5 H_ = H

s.a. —Ss.a.

(8.3)

Thus no particles are created in the modes with real E.

It is possible that there exist ‘“resonance” type solutions (8.1) with m?, a real,
but E complex. They are expected to occur if the variation of A° exceeds 2m/e.
The formal properties of these resonance modes are the same as those of the
corresponding modes discussed in Sections 4 and 7: The total charge is zero, and

yPeH NH if Im E<0 (8.4)
YyBeH, NH_ ifImE>0 (8.5)

Again, this modes correspond to the creation of “pseudoparticles’ at a finite rate
in every mode.

9. Conclusion

The problem of defining “natural” quantum states in ‘“‘generic” external
gauge fields is too intriguing as that formal consistency alone could be accepted as
a sufficient criterion of validity of any solution proposed. Only critical examina-
tion of the formalism in as many concrete examples as possible and, eventually,
comparison with experiment will show what the right answer is (if there exists any
at all). Therefore this article should be regarded mainly as a “test report”. We feel
that the covariant in-out formalism proposed not only has proved to be a serious
candidate for the solution of the problem of vacuum definition but has also
produced some new results of direct physical interest. The limitations encountered
in Section 7 are inherent in the external field approach itself, which, after all, is
only a semiclassical approximation.
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