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Confining potential based on local wave equations”
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J. Jersak
Institut fur theoretische Physik, RWTH Aachen, Fed. Rep. Germany

J. Stern

Division de Physique théorique?), Institut de Physique nucléaire Université de Paris-Sud
F-91406 Orsay Cedex, France

(22. 11. 1980)

Abstract. We investigate to which extent the recently proposed local relativistic wave equations
can account for the nonperturbative part of the gg-interaction. The wave equations lead to linear
trajectories and a strong singlet-triplet splitting that survives in the limit of massless quarks as required
by chiral symmetry. We discuss the flavour dependence of slopes and intercepts and analyze
perturbative QCD contributions in ladder approximation. The main features of the spectrum turn out
to be stable with respect to these perturbative corrections. Recent data on the mass of 7, indicate that
our scheme overestimates the actual value of the singlet-triplet splitting in the cc-system by a factor
two. We conclude that a local relativistic potential is unable to account for all nonperturbative
effects - sizeable contributions on the level of mass terms are missing.

The perturbative treatment of QCD - based on freely propagating quarks as
a zero order approximation -is adequate as long as the characteristic distances
involved are small in comparison with the scale A™" of the strong interaction. For
bound states of very heavy quarks of mass m perturbation theory is a self-
consistent approximation scheme because the 1/r potential due to perturbative
gluon exchange provides for binding within a small radius a = (3m3e,)”" where
a, = g*/4m is the effective coupling strength at this scale.

If the quarks are not sufficiently heavy, a quantitative analysis of the bound
state problem requires an improved zero order approximation that includes the
main collective effects of the soft gluon cloud surrounding the quarks. Clearly, the
splitting of the total Hamiltonian Hnp = Hy+ V into a zero order term H, and a
residual interaction V is to some extent a matter of convenience. Yet, if a
perturbative expansion with respect to V is to make sense then H,, should account
for the basic properties that are believed to characterize QCD: freedom at short
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Forschung und Technologie
%) Laboratoire associé au C.N.R.S.
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distances, confinement at large distances, spontaneously broken chiral symmetry,
Lorentz invariance, a decent qualitative account of the hadron spectrum etc.
Some time ago we have proposed a zero order approximation H, in the qq sector
that does satisfy these requirements [1]. The proposal is based on a very simple
input: Locality of the effective long range gq interaction. The purpose of this note
is to discuss an interesting picture for the spin- and flavour-dependence of the
long range potential that is suggested by this model and to calculate the perturba-
tive QCD corrections.

The relevant quantity characterizing the qq bound states is the properly
renormalized gauge invariant wave function of a meson state |p)

Wan(x, y) =(0| Tg' (y) exp— igj dI*B,gi(x) [p)y = e P28 (2 p) (1)

where z=x—y; a, b are Dirac indices, ij denote fixed quark flavours, a sum over
color is understood and the integral is taken along the straight line connecting x
and y. Perturbation theory derives from an approximation in which i satisfies the
pair of free Dirac equations. The interaction modifies the free equations by terms
that can be computed order by order in perturbation theory. (The Bethe-Salpeter
equation is the product of the two wave equations.) Our modified zero order
approximation H, is defined by approximating the pair of exact wave equations
for Y(x, y) by a pair of local first order differential equations.

There are at least two reasons to investigate local effective interactions as a
starting point rather than nonlocal interactions represented by an integral
operator: i) Initial value problem. A pair of first order differential equations
uniquely determines the wave function (x, y) all over Minkowski space from
given initial data at x”=y®=0. This guarantees that the relative time variable
z°=x"—y" does not carry an independent degree of freedom and that the
spectrum contains exactly the same states as the nonrelativistic quark model. A
pair of covariant integral equations in general does not admit an initial value
problem of this type.

ii) Causality. If the time evolution is described by local differential equations
whose driving terms are the free Dirac operators then the quarks propagate in a
causal manner: the wave function at time x° = y°>0 depends only on those initial
data at x°=y°=0 that are in the backward light cone of the points in question.
Causality of the underlying field theory does of course not imply that the
equations of motion for the two quark wave function are causal in this sense:
perturbation theory leads to nonlocal interaction kernels. These nonlocalities
reflect the fact that the gluon degrees of freedom are not described explicitly, but
are included in the effective qg interaction. It is however crucial that the zero
order approximation of perturbation theory, free quarks, is causal; the perturba-
tion expansion of course insures causality on the Fock space of field theory order
by order. If we were to start with a zero order approximation to the equations of
motion for i that fails to be causal we would immediately be forced to go beyond
the gg sector to establish that the scheme does not violate causality on Fock
. space. We consider it significant that there are local effective interactions that do
retain the causality properties of free quark propagation.

The price for having a pair of local first order differential equations as a zero
order approximation is amazingly high: In order to be compatible the two
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equations have to satisfy a set of integrability conditions, whose solution deter-
mines the form of the potential essentially uniquely (a complete list of solutions of
the integrability conditions is given in Ref. 3).

In the case of quarks with the same mass, the resulting wave equations
describe two spin 5 particles confined by a harmonic force [1]. They read

{Za++éAp+,u,sz+— iKP_]tlt(z |p)=0

{Aa —%Ep-l— i(m— MAE)PJ,}qb(z Ip)=0

(2)
2u¢=%(7u¢+754’757p)a Ap¢=%(7plp_75¢Y5’Yu))
0 d
U=dWtysdys), a4 =Mz,  al=————Az,
az* oz"

+

where a,, a, are the annihilation and creation operators of the relativistic
oscillator. The spring constant A of the oscillator is related to the parameters «
and pu by A =«ku. The model involves three independent constants k, m and pu
which should be fixed by the scale A of QCD and by the quark mass. The free
Dirac equations are recovered if one sets w=0 and k=m (the free limit
corresponds to A=0).

The wave equations (2) have two striking consequences: i) The leading long
range part of the interaction (viz. the terms A%z and AAz) forces all states to lie
on linear trajectories with a common slope, M*=8An+4km, (n=0,1,...). ii)
The structure of the constant mass terms in equations (2) leads to a nontrivial spin
dependence of the intercepts: n =1+s+2k, where [, s, k are the orbital angular
momenta, the total quark spin and the radial quantum number respectively. In
particular, equations (2) lead to a strong hyperfine splitting related to the spring
constant A:

M2-M2=8ry =3(Mi-M3),  Mi—M: =8\, =3Mi-M}) - (3)

and likewise for higher orbital and radial excitations.

The strong hyperfine splitting is intimately related with spontaneously broken
chiral symmetry: the parameter m is the current quark mass that measures the
strength of the divergence of the axial current. In the chiral limit m—O0,
M2 =4km—0 while A, and, consequently, the p mass stay finite.

To study the dependence of the model parameters « and p on the scale A of
QCD and on the quark mass we note that in the chiral limit m =0 the quantities
k and p have some finite values k, and p, related to A by yet unknown numerical
constants. To increase the quark mass by m one adds a mass term to the
Hamiltonian which amounts to the change m—m + ém, k— « + 8m (no change in
p or A). This modification of the parameters is however inconsistent with locality:
either w or A have to be renormalized if one wants to avoid a clash with the
integrability condition that requires A = ku. The simplest choice is to keep u fixed
(i.e. flavour independent) and to renormalize A:

K =Ko+ m, K= Mo, A= po(ko+m) (4)

Once kq, and p, are known this information fixes the value of all parameters of
the model as a function of the quark mass which of course remains arbitrary: In
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particular the slope a’=(8A)"' becomes a known function of the quark mass: it
decreases with increasing quark mass in agreement with the experimental fact
(note that for the oscillator the spacing of the daughters is given by the slope of
the leading trajectory)

(M2 —M?2): (M2, — M2): (M2, -~ M?)=1:2:6 (5)

Neglecting the effects of the residual interactions for the moment we obtain a
qualitative test of the relations (4). From A, +A,;=2 one finds «,+ mcc ==
2(ko+ mgy). Since the light quark mass is neghglbly small we obtain k,=m, =
1.2 GeV. From the slope we then get w,= 120 MeV and from M2 =4km,, one
obtains m,, =3(m,+m,)=4MeV, in reasonable agreement with the current
estimates in the literature [4]. Once the universal constants u, and k, are
determined, one can calculate the mass of the b quark from the position of Y and
predict the magmtude of the radial splitting M>.— M. One obtains m, =
4.03 GeV and M3 —M2=10.04 GeV? to be compared with the experimental
value 10.83.

The relations (4) imply that the frequency of the oscillator @ =2A/m rather
than the spring constant 3mw? tends to a universal constant for sufficiently large
quark mass. (Note that for m « k, it is rather A that will appear universal). Had
we instead assumed A to be flavour independent (necessitating an awkward
renormalization of w) we would have to conclude that the pattern (5) cannot be
understood in terms of our zero order approximation. (It may of course be the
case that Regge trajectories are in general curved at their low energy end such
that the experimental values (5) cannot be taken as indicative of their true slope;
the masses of the states ¢” and Y” indeed indicate some curvature).

We now turn to the residual interaction V. According to asymptotic freedom
the short distance behaviour of V is determined by the one gluon exchange
diagram (note that the oscillator Hamiltonian H, exhibits free short distance
behaviour). We separate this leading short distance contribution V,; from V and
write V=V_,+ R. If the zero order approximation H, indeed describes the
leading long range behaviour of the Hamiltonian, the remainder R is negligible
both at short and at large distances — it behaves like an effective mass term. In the
following we neglect R all together; this amounts to the assumption that the local
mass terms in the oscillator wave equations approximately describe the nonper-
turbative effects of intermediary range.

The first order contribution of the gluon exchange diagram to the mass of the
bound state was analyzed in [2]. The corresponding covariant formula can be
integrated over relative time and written in the rest frame as

M2=%asj &2 (3) Vi (3) 6)

where ¢(Z) is the adjoint of ¥(z) (see [2]). In the “gauge” y=1 the gluon
exchange potential reads

I
V=Vi= o5 2270 (7)

where r=|Z|, v,,¢ = y,¥v,. For a, = g*/4m=0.55, the first order formula fits the
known charmonium triplet states [2]. The strong splitting (3) between the singlet
and triplet states however results in a very low mass for n. (2840 MeV), in
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disagreement with the recent experiment [5] (2976 MeV). Also the masses of all
other singlet states lie about 250 MeV below the triplet partners.

The relatively large value of a, necessitates a check of the stability of this
result against higher order contributions. As a further motivation to investigate
the exchange of more than one gluon we note that for very heavy quarks the
bound states should to a good approximation be described by the ladder graphs —
for heavy quarks it is of course not permissible to treat gluon exchange only to
first order. A proper treatment of the ladder graphs in the presence of the
harmonic long range force should provide us with an interpolation between the
pure oscillator (¢, =0) and positronium (A =0).

We have suggested a simple prescription to iterate the gluon exchange graphs
in [2]: solve the eigenvalue equation

Heﬁ lvb = Ed’ (8)

where H.;= H,+3%a,V and H, denotes the rest frame Hamiltonian associated

withoour model (obtained from the wave equations at p=z°=0 by eliminating
0/0z°):

Hy=2i(Zo2;+Ag A,) 8, — 2Xi(303; — Ag A) 2 + 2k Sy P_ +2(m + uA3) AP, .
9)

In fact, this simple recipe does not work: the gluon exchange term is too singular
at r—0. The problem is not particular to our model, but occurs even in the
positronium limit (u—0, k—m). For positronium a proper analysis of the BS
equation [6] also shows how to solve this problem: one has to project the effective
Hamiltonian on the positive energy eigenstates of H;... Accordingly we write the
effective Hamiltonian in the form

4o

H.s=H,+ 3

I, VII, (10)

where Il projects onto the positive energy timelike eigenstates of H,. Explicitly,
II, is given by Y, 2M,) "¢, (") (Z). The eigenvalue equation (8) with H,4
given by (10) simply requires us to diagonalize the matrix | d*z¢. Vi, where n
and m run over a complete set of positive energy time-like solutions of the model.
(Note that matrix diagonalization of H_; accounts for the spin dependent piece of
the gluon exchange force nonperturbatively, in distinction to the standard non-
relativistic procedure which treats this piece only to lowest order in v*/c*. For
excited states the difference between the two procedures can be substantial [7].
we have worked out the eigenvalues of H.; numerically. The results for the
spectrum [8] of charmonium and upsilon are given in the table. Column a)
contains the results of the first order calculation taken from Ref. 2. (In this
column the mean square deviation AM includes the 8 states m,, ¥, X0, X1 X2> M
¢/ and ¢*). Column b) is based on the Hamiltonian (10) with V given by equation
(7). The parameters A, M, and «, are fitted to the 6 states ¢, xo, X1, X2, ¥ and ¢™*
with a mean square deviation AM =23 MeV. The masses of the singlet states
remain low as the multigluon exchange does not change the large singlet-triplet
splitting substantially. The spectrum of bb states is shown in column d). The quark
mass was adjusted to reproduce Y(9460). The values of the model parameters are
fixed in accordance with the discussion given above with k,= m_ taken from b).
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Charmonium Upsilon
Exp a) b) c) Exp d) e)
1'S, =m. 2976 2840 2832 2833 920  9.20
1°S, ¢ 3097 3105 3127 3133 Y 946 946  9.46
1'P, 3272 3270 3271 9.61 9.60
1°P, x, 3413 3399 3381 3382 9.80  9.79
1°P, x, 3508 3502 3497 3497 9.84  9.82
1°P, x, 3554 3534 3532 3532 9.85  9.84
218, 7’ 3430 3412 3415 9.77  9.76
1'D, 3608 3586 3584 9.90  9.89
238, ' 3686 3704 3707 3707 Y’ 10.018 10.02 10.00
1°D, ¢* 3773 3795 3782 3779 10.12  10.10
338, ¢ 4030 4202 4197 Y” 1041 10.52 10.48
2°D, ¥ 4256 4249 10.59 10.55
438, Y 4645 4636 10.98 10.93
3*D, ¢* 4689 4676 11.04 - 10.99
A[GeV?] 267 252 .248+.020 616 593
M,[GeV] 3.27  3.19 3.182+.090 9.582 9.57
m[GeV] 1.16 1.13  1.13x.04 426  4.25
o, .55 .39 36+.06 26 .25
AM[MeV] 17 23 24

Numerical results for the spectrum of ¢¢ and bb bound states.
a) First order formula. b), d) Spectrum of the Hamiltonian (10) with V given by
(7). ¢), e) Same as in b) and d) respectively, however with V given by (13).

The values of the strong coupling constant for the bb system may be scaled up
either by renormalizing with the factor In M}/M3 or with In A /A,. In the first case
we get a, = .26 (which is the value which we used in column d), in the second case
we instead have «, =.32. The prediction for Y'— Y is stable within 40 MeV.

The treatment of the residual interaction given above has the following
shortcomings:

i) The matrix [ d>z¢, H.z,, is hermitean with respect to a positive norm
only if the quarks are sufficiently heavy (m>2u). A suitable norm is given by
¢ = Ny with

Nye= P+ P+) wv o Ngr= (P Kz“’P ) g (1)
K
For light quarks (m <2u), in particular, in the chiral limit m —0, it is inconsistent
to assume that the residual interaction is dominated by the leading short distance
contribution (7). A proper solution of this problem presumably requires an
analysis of quark self energy effects which are ignored here.
ii) In the limit of very heavy quarks the effective Hamiltonian does not fully
reproduce the instantaneous limit of positronium theory, described by the Fermi-
Breit potential

1
V,= _;J"_“‘(r 87+z'z )'YO()’Y;, (12)
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It is however not difficult to cure this defect by adding a suitable term to the gluon
exchange potential, V=V, +AV. We have investigated two solutions to this
problem. a) The simplest prescription is to take V=V, instead of V=V,. We
have shown in [2] that this modification has only a very small effect on the first
order mass formula — the same applies to the higher order corrections. b) Alterna-
tively, as advocated in [2] one may insist that the first order mass formula is given
by the diagonal matrix elements of V, i.e. that the diagonal matrix elements of
AV vanish. This condition by no means contradicts the requirement that V, +AV
reduces to V, at short distances: the wave equations imply that the diagonal
matrix elements of V,— YV, are the same as those of the ‘“mass term”
iLYoo>;z' P./r. This guarantees that the potential

V= V2+{l§’$ 'YooziZiP++h.C.} (13)

(hermite conjugation with respect to the norm N) not only leads to the same first
order mass formula as V, but also has the same leading short distance behaviour
as V,. Columns c¢) and e) contain the numerical results for the eigenvalues of the
effective Hamiltonian corresponding to the potential (13). The eigenvalues are
barely affected; the main effect of the modification is to renormalize the parame-
ters My, A and «,. The errors quoted on the values of A, M,, «, are an educated
guess of the stability of the fit. (The errors amount to allowing AM to increase by
3 MeV)) '

We conclude with the following remarks:

i) Within a covariant framework the oscillator equations define the simplest
(because local) zero order approximation to the effective qq interaction. If the
leading long range force should turn out not to be harmonic the idea of a local
zero order approximation would have to be abandoned.

ii) In this paper we have investigated the hypothesis that the wave equations
not only describe the leading long range behaviour of the confining potential, but
account for all nonperturbative effects involving the scale of the strong interac-
tions, including mass terms. In this case the residual interaction V is fixed by
asymptotic freedom and we are able to calculate the mass spectrum in terms of «
and the parameters involved in the wave equations. We obtain a decent descrip-
tion of the splittings within the triplet states of charmonium. The mass values are
stable with respect to higher orders in a, within about 40 MeV.

iii) The large singlet-triplet splitting is contradicted by a recent experiment
[5]. From a small splitting we conclude that the wave equations do not properly
describe the nonperturbative effects on the level of mass terms. Even if such terms
could of course be tolerated in the residual interaction V we see no simple way to
pin them down; within a covariant framework a small hyperfine splitting requires
a more complicated structure of the interaction violating the strong locality
requirement underlying our model.

iv) there are two theoretical arguments for the presence of mass terms in V:
a) It is not possible to introduce mass asymmetries into H, without spoiling its
locality. If one insists on a local zero order approximation, the flavour asymmet-
ries caused by QFD via quark masses have to be incorporated into the residual
interaction. b) Our treatment of the residual interaction spoils the chiral symmetry
of the wave equations (see remarks above). On the phenomenological side, the
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fact that our description of the ¢ and bbh spectra does not seem to correctly
reproduce the high radial excitations (", Y") may also indicate that we are
missing an important contribution to the residual interaction.
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