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Decay electron spectra of bound muons

by F. Herzog and K. Alder
Institut fiir Physik, Universitit Basel, CH-4956 Basel, Switzerland

(20. II. 1980)

Abstract. The decay electron spectrum for a bound muon in the ls,,, state is calculated for
several elements and for the (V—A), S, P and T weak interactions. Dirac wave functions have been
used for the muon and the electron. The finite nuclear size and the nuclear recoil as well as the
vacuum polarization are included in our computations. The influence of the bremsstrahlung emitted by
the final electron on the electron energy spectrum is discussed.

I. Introduction

In the framework of modern gauge models for the electroweak interaction
attempts have been made to estimate the strength of possible muon number
violating processes [1]. In connection with the lepton quark generation problem
the question of lepton number conservation is crucial. Thus, experiments looking
for lepton processes which are strictly forbidden in the widely accepted scheme of
lepton number conservation (additive lepton number conservation) have been
proposed recently again. One possible test, where the additive muon number law
is violated, is the study of the muon electron conversion. Experiments to investi-
gate this type of process have been performed several times. The best known
upper limit for the branching ratio of the muon number violating process relative
to the ordinary muon capture was measured by the Bern group at SIN and found
to be for sulphur [2]:

o(pn **S — e *§)/a(u™ **S — capture) <7x 107"(90% C.L.)

In order to interpret a possible signal for muon electron conversion correctly one
has to know the backgrounds very accurately. Besides radiative muon capture
followed by internal or external y-conversion, bound muon decay is the most
important background entering into muon electron conversion experiments.
The decay process of a negative muon bound in the ground state of an atom
is known to be modified relative to the free muon decay. The first difference arises
from the momentum distribution of the bound muon and results in a reduction of
the phase space accessible to the particles in the final state as well as in Doppler
broadening of the bound muon deday electron spectrum (BOMES). This phase
space effect diminishes the decay rate of bound muons relative to that of free
muons. A second reduction takes place because of the time dilatation of the muon
lifetime in the restframe of the muonic atom. The Coulomb force acting on the
outgoing electron is responsible for the third difference; this final state interaction
leads to an increase of the bound muon decay relative to the free decay rate,
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because of the greater overlap of the muonic and electronic wave functions in the
case of bound muon decay. For a more qualitative treatment of bound muon
decay physics the reader is referred to Refs. [3], [4], [5] and [6].

From an experimental point of view it is still impossible to exclude satisfac-
torialy few precent admixtures of scalar (S), pseudoscalar (P) and tensor (T)
couplings to the well-known V —A weak interaction [7]. Therefore, we have
calculated the BOMES also with these couplings, in the hope that future experi-
ments on this subject will give more exact information.

In section II we derive expressions for the BOMES assuming (V—A), S(P)
and T Fermi couplings. Numerical results of the BOMES for several elements
which have been and are in discussion for muon electron conversion experiments
([8], [9], [10]) are listed in Section III. Section IV is devoted to an estimate of the
bremsstrahlung effect of the emitted electron on the shape of BOMES. The
discussion of our results is the content of the last section.

The notation as well as the electron- and muon-wavefunctions used in our
calculations are presented in appendices.

II. Exact expressions for the electron spectrum resulting from muon decay in the
ground state of an atom with charge number Z.

We are looking at the process shown in Fig. 1. The bubble therein means an
effective electromagnetic as well as weak coupling. Since the ratio of the muon to
W-boson mass is thought to be very small, we take as weak effective coupling the
Fermi four fermion interaction. The contributions to the effective electromagnetic
coupling are given graphically in Fig. 2.

In order to derive BOMES expressions for the (V—A), S, P and T interac-
tion, the general starting point is the weak charge retention ordered Lagrangian
LF® ([7], [11] and appendix A).

g.

L{= \/5 W2 (x)v0Oub, (X)W, (x) Yo O'th, (x) + hermitian conjugate (D).
The g; are the coupling constants where the index i refers to the four different
- e (p..Se)
KBy .plpu).s,) e
to TR D Sn vulk,.t)
Ve(ke-Te,
c.t i o n
Z(pg (r).py) Z(pg (r)py)

Figure 1
Diagram of the weak decay of a 1s,,, muon. The muon w is characterized by its momentum
distribution p(p, ), its energy eigenvalue in the ground state —Bis,, and its polarization s,. The other
leptons are all characterized by their four-momentum (p, for e”, k, for », and k, for v,) and their
polarization (s, for e, 7, for v, and 7, for 7,). We treat the nucleus with charge number Z as spinless
particle, parametrized by a Fermi charge distribution p§'(r) (c, t = Fermi parameters), with initial
four-momentum p, and final four-momentum pZ.
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Contributions to the effective electro-magnetic coupling, which are incorporated in our calculations.

interaction types (V—A), S, P and T.') The O, are the corresponding interaction
operators, given as combinations of Dirac matrices. The s, (x) is the field operator
of particle « at the point x of the spacetime continuum. _

We are interested in the matrix elements (e, 7, ¥, |Ti.,| p) of the pure
leptonic decay operator T}ep which can be derived from equation (1):

(€7, Uy v, | Thep| 1) =

j; d*x0? (PerSer X) Y600 (Big, s P, 8, )07, (s T X)¥00'05, (s 7o X) (2)

Here ¢, (B, ,, p(P,.), S,., x) is the wave function of the groundstate muon charac-
terized by the energy eigenvalue —B,, , the momentum distribution p(p,) and the
polarization s,. ¢,.(p.,S., x) is the electron wave function with asymptotic four-
momentum p, and polarization s,. According to Fig. 2 the neutrino wave
functions ¢, (k,, 7,, x) and ¢; (k,, 7., x) are Dirac plane waves. For plane waves
we choose the standard momentum normalization as in Ref. [12]. With the

') (Since we are only interested in the electron energy spectra, there are no mixing terms between

parity conserving and parity non-conserving couplings; therefore parity violation is of no
importance in this connection).
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notation x = (t,r) equation (2) results in

(e, Vs ulTiepl-‘*> \/5(21)2 (gg ) ’

Xu, (k YoO'v;, (k., 7.) 8(E, —E.—E; —E,))

(1] M)

% J e (pe’ se, r)'Y() "P.U- (Blsuz’ p(pu) SLL’ r)e ik, tk )1' (3)

From equation (3) one deduces the transition probability per unit time d® W/dt

from the initial muon state to final states (the index 3 in d®® W/dt indicates, that in
principle all three final state particles are detectable):

d(3)Wi g 1 mm, 1

dt 4 2m)® E, By, E

— d’, d’k, d°p, 8(E, —E,—E; —E, )

X u:u(kp.a T,J.)'YOOivfze(ke: Te)

2

5 J 102 (Per S0 0 ¥00:0, (Bu, 2 p(B,), 5, D)€ THr @

where E,, a =e", v,, 7, is the total energy of particle « and E, the total energy
of the bound muon, E, = m, — B, _ (m, =reduced muon mass=m,. We use the
fact that the nucleus has a nearly nonrelativistic motion).

Since no neutrinos are dedected in nowadays muon decay experiments, we
sum over 1., 7, and integrate over the two momenta k,, k. (thereby we take both
neutrinos as massless particles):

de ZJ J‘dsk dPW, gt d’p
“dt 2*Qw)* E

d’k, [ d’k,
x [ [ S5 (O (00 %) 8(E, ~ E.~ E, ~E,,)

X J& (Pes Ses Bisyr PB,), 805 PVIG T (Dey Ses By (D), S P) (5)

We have used the following notation
P=k, +k,

—iPr

J?)ﬁb(pes Sea B},s”zr p(pu)a SM, P) = J r(Pe (pe7 Se, l-)‘YOOM’L (Pu (Bls,,za p(pu.) Su,: l')e
0
(1 S interaction operator

Vs P interaction operator
(O)re..=§ Va(1—7vs) V—A interaction operator with vs=iYoY1Y2V3

(N
"

" T interaction operator

To proceed in the evaluation of d‘VW/dt given by equation (5) we have to treat
the calculation for the different coupling types separately.
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II.1. Bound nuon electron spectrum assuming (V — A)— interaction

In this physically most important case the trace in equation (5) is simple. We
evaluate the integrations over k, and k, and find

d® Wy_a _ g%’A d3pe
dt 6(2 Y E
A(pea Se, Blsuz’ p(pp.) Sp,) P)JVA(pe') sea Blsl,g’ P(Pp.): TR} ) (6)

j dQ(P) j d |P| [P|*{P,P, — g\,P*}

where P =|P| P.

The upper limit of the |P|-integration is given by P™>*=E, —E, = P,. We
insert now the exact muon - and electron wave functions (appendlx B) and choose
a coordinate system with Pin z- -direction, so that the integration over Q(P) can be
done. Since we are not interested in the direction of p, we also perform the (p.)
integration. Both integrations can be done analytically. We average over the

initial polarization s, and sum over the electron polarization states; we get for the
BOMES:

AV "*(p +Z s e +Z+v,+v,)
dE,

2 Pmax
gval, 2u —1 j 4
= — 1) dPP
3(271-)3 Ke,g::,su ( ) 0

X {(PZ—P?) [+ P2 |Jo|> +|P3|>— P,P Re (JoJ*)} (7)

- where P=|P| and
Jo=va4m Y (=i*V2r+ 1 J drr?j, (Pr)
A=0
X {(gxeg1 + fKé.fl)(Kelu’e | Y)\OI - 1S[J.> - i(gkefl - fx¢g1)<Ke,“’e ' Y;\O | 1sp. )}
Y=ami{d_ +3,+3..)

Ji=- Z ant \/M(/\—l : A)J. drr*j,_(Pr)e,
A 0 [ LA

A=1,...
w=0,%1

X {[(Ke + 1)(fueg1 . gxl,fl) "/\(gge.fl—fxegl)]('(ep‘e ‘YA—LL\ —1851.)
- i[(Ke - 1)(fK¢f1— gxegl)_{_A(gxeg1+fxzfl)]<KeMe tY)\—l-l‘ 1Sl-l->}
o 2AHL AT AN, .
Jo= ]t=Zl (i) m (0 2 “‘M)L drr=j\ (Pr)e,

w=0,%+1

X4k, = D(fe, 81+ B S Kebte | Yaopl —18.)
— il + D(ff1 = 88— Kebte | Yo, — 15,0}

ry AFEAAL 1 AN .
Jo1=-— Z (it 1 ( 0 " —M)L drr®j, .1(Pr)e,

A=0,u=0

X {[(Ke + 1)(.fl<egl + g«,fl) ia (A- = 1)(8.<j1 - fxegl)](’(elu'e | Y)L—u.l - 1Sp.>
—i[(k, — 1)(f.<f1 - 8.<E81) = (o 1)(gxeg1 + fKefl)]<Ke“'e |Y?L—p.,| 18, i
with r=r| and Pr=|P||x|.
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The result of the angular matrix element (ks | Yy, | ;) is given in appendix
C. The formula (7) was already given by Hinggi et al. [13], but it can be
remarkably simplified: Using the triangle relation of the 3j symbols in the angular
matrix elements, the summations over u, and s, can be performed:

drV*(p +Z—e +tZ+v,tv,)

dE,
- gsz,; rmxdppz{(Pa ~PX,_ (P, E.)+ P*Y, (P, E,)+2P,PZ_(P,E,)} (8)
327y = b *
with
2k ([2k-1 . (k=17 .
X (P B = g | (e AP+ 3 0
k-1
+—|(A+1) |2)(1 611<)"'|(A+1) |2}
2k (1 L (2k+1) - .
* e (B P+ (Bo P+ (Bl P

1
Y. (P. )= 2] (@0 P+ (B0l P+ s (A ), = (1= 8,,0(A ).

1 2
ka1 Bride — (B | }
2P, E) = 2kim [ {Be g (B, - 100 qax), ~(1-5,,04%).3),

where k =|k,.|. The functions (A +1)c. (Box1)s (@), and (Bo),, are defined in
Table 1.

The expression (8) does not include the recoil 4-momentum of the nucleus.
Héanggi et al. [13] have proposed to include this quite complicated effect in the
following manner: calculate in a first step the BOMES in Born approximation,
once without inclusion of the nuclear recoil and once with inclusion. In a next
state form the ratio of Bomes including to BOMES excluding the nuclear recoil.
With this ratio, called recoil factor, the expression (8) has to be multiplied in
order to get an energy spectrum including the nuclear recoil. Next we calculate
the BOMES in Born approximation excluding the nuclear recoil effect.

BOMES in Born approximation excluding nuclear recoil

We assume that the initial muon is described by a nonrelativistic Is wave
function and that there is no final state interaction between the nucleus and the
outgoing electron, i.e. the electron wave function is a Dirac plane wave. Because
of misprints in formula (13) of Ref. [13] we give the result of this calculation once
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Table 1
Functions (Aq .., (Bo, «1)., (@0)., and (By), used in equation (8).
k=|«k,| Kk, >0 k, <0
A [ariceoa-ofs i j dr?j, (P2 - K)g 1}
(A(})x, ‘dn'sz—l(Pr){(l_k)(fk&+gkf1)} iJ.d”'kaq(Pr){(l_k)(fkf1_gkg1)}
A,  [dri @i -200g.8 - fif —ijdrﬂfk(?r){(zk— fg,— gefi}
((XU)Ke “ijdrrzjk_l(Pr){gkfl—fkg]} jd"rsz_l(Pr){gk&"'fkh}
(B_,).. j drri_ (PO{Ck + Df, g, + g.f1) = j drrj,_ (PO + gy — fif i}
(Bo).. j drrj (POH(L+ k)8 — fuf ) ijdrrzf,{(Pr){mk)(fkg1+gkf,)}
(B+1).<, —J- drrzij(Pr){Z(k + 1)gkf1} —iJ drr2jk+1(Pr){2(k + 1)fkf1}
(Bo. —i j drrj (Pr){gegs +fufs) jdrrzf'k (PrYifg, - g}
again:
dlV" 2w +Z > e +Z+0,+v,) F24(Zamu)5g%,AE
dE, b M e T e
27— + + — 2P0pe — +
X 3P0{Iz(x)"Iz(x)}"*“Il(JC)‘"Il(x)"' E {13(x)+13(x)}
PO 3 . X = pmax
M- Ly ©

where

Ii(x)z_{(x2+ab*x+2a2) 1 +3abi (b*‘+2x+ 4 it b*+2x)}
1 A A Z(R:n:)z 2A AR* A312 g Al/z

o [2a+b*x 3b*(b*+2x) 6b*  b*+2x

EO=" At 2a'rs AP ¥R

() = {ab*+ (b*" — 2a)x+(2a + b*z)(—b*+2x)+4a +2b* - b*+2x}
g 2A(R%Y? 20%(R™) aE TR TR
i [2a+b*x 2b* b*+2x

L(x)=— { AR= +A3’2 arctg N }

with

a=(Zam,)*+ pz, b*==+2p,, A=(2Zam,)?,
R*=a+b*x+x> and p,=|p.|
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In order to calculate the recoil factor Ry,_A,(E,) we have to evaluate the BOMES
in Born approximation including nuclear recoil.

BOMES in Born approximation including nuclear recoil

Treating the motion of the recoiling nucleus nonrelativistically our starting
equation is

(1) 2
d WV—-A___ gvAS d3pe j d3pfz J’ d3ke J d?’k,uL
dt (2m) E; B,
X {‘IQ/A(pe’ S,, Blsuza p(pu.)s sp.s P)J‘{D/i(pe’ Ses B]S],‘2’ P(pp,), S,__,_, P)}
X {(ke))\ (kp,)qp + (ku))\(ke)(p - g:\(p (ku.ke)
+i(k, )" (k.)"€npent 8(p, + P2~ pe — k. — k, — p) (10)
where pY is the four-momentum of the nucleus in the intital (i) and final (f) state,
respectively. Evaluating the two neutrino three-momentum integrations one gets

dTV~"*(u +Z - e +Z+9,+v,)
dE Born with

€ nuclear recoil

2 2
) %‘?z(;—r P [ a0 | apl|[are mninore-zom
¢
X {p2pe+ p¢pL - p.p. g “HP\P, — P?g,} (11)

with C, = (Zam,)*?/7"* and P= pL—(pZ+p.).
If we put p+p, =0 and (p,)o+(p2)o= E, + Mz, we arrive after performing
the two solid angle integrations at the final result:

dlV "M pu +Z - e +Z+v,+v,)

dE Born with
€ nuclear recoil
25(Zam, ) g2 E, <|1+E2 |
_ ( am“) 38VA E, u.{fl( e) for e{ } (1)
372 £.(E.) > | 2E,

with p, =|p.|, pL.=|p}| and

_ (7 2a(ph)’dpk > (ph)*dpf b,
ME= [ a5 LT | zames R 12+ D45 )
(> (ph)dph b ,

_ 2P P " (ph)?
a=3Pi-(hP —piv gt b=2(p-1)ppk  Po=E.E—ye
E —E 1 Y
o= L e € =2p., =p?>—(E,—E,), =——(a f+—)
M, B=2p, y=rp.—(E, ) @ B P oL
_IBIVB*—4ay
X1 = 5
2 2a

M is the mass of the nucleus with charge number Z.
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We define the (V- A) recoil factor R, _4,(E,) as the ratio of equation (12)
and equation (9). In order to eliminate the coupling constant gy, we normalize
equation (8) by the free decay rate

v gvam, (13)
'V *u —e +p+y,)=————F_ 3
e Pt )= 3
The final result for the BOMES, resulting from bound muon decay via (V—A)

interaction including the nuclear recoil is

dI'V"*(u +tZ—e +Z+v,+v,) e 3 93
- dE, =Ry-a(ET" " (u"—e +ve+vp,)m—

[

P max
x ). J dPP*{(P;— P*)X, (P, E,)+ P*Y, (P, E,)+2P,PZ (P, E,)} (14)
ke =0 »

where the functions X, (P, E,), Y, (P, E,) and Z, (P, E,) are given in equation (8).

I1.2 Bound muon electron spectra assuming S- and P-interaction

All the arguments used for the calculation of the (V—A) BOMES are also
applicable in this case. Therefore, we do not repeat all steps done earlier, but give
directly the results:

dl*(w+Z > e +Z+v,+v,) o o 3-2°
dEe _Rs(Ee)r (“‘ — € +Ve+vu-) mi(m“+4)

r Pmax oo 2
{ Y K. dPP*(P5—P?) || drr?. (Prig.gi—f.fu

K. >0 “0 Y0
» Pmax (oo 2
+ Z |K | dPPZ(Pg_PZ) drrzjiKJ‘l(Pr){gKggl_fKe.fl} } (15)
ke <0 Y0 J0
where
2m*(m, +4)
D(p™ = e+, +y,)=t—t
b = et ) = oy

and R,(E,) is the S recoil factor defined by analogy with R _,(E,).
For completeness we give here the formulae relevent for the determination of
R,(E,), using the same arguments as in the (V— A) interaction case:

i (p " +Z —» e+ Z+3,+p,)

dE Born without
£ nuclear recoil

2(Zam Vg2

3a(2m) (B + D)m P35 (x)— IO+ I (x) = IT (0)hZ (16)
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The functions I7(x) and I5(x) are defined in equation (9). For the Born BOMES
including the nuclear recoil we get:

dl'*(p +Z—e +Z+v,+v,)
dE Born with

< nuclear recoil

_ 2*(Zam,)’g? fi(E.) <|1+E.
- — ) p.(E, + Um”{fz(Ez) for Ee{ _ } 2E, (17)

where the functions f,(E,) and f,(E,) are the same as in equation (12), but the
expressions for a and b must be changed as follows

a=P;—p2-(py)*  b=-2p.pL.

The recoil factor R,(E,) is now given as the ratio of the result of equation (17)
and equation (16).

The P interaction leads to the following expression for the BOMES:

dTP(u +Z—e +Z+7,+v,) b Bs2°
dEe' _Rs(Ee)r (u‘ — € +Ve+vl-'~) mi(mu_4)
e oo 2
AT k[ arrei-p |[Carienie it e
Ko =0 0 0

-
+ 2 lxe!j dPP*(P%- P?)

K, <<0 0

| driPrte i+ I ag

The free decay rate I'"(u~ — e~ + ¥, +v,) is given by

_gpmy(m, —4)

FP(M— — e_+176+v“) 3. 27(271_)3

In formula (18) we have used the fact that R,(E,) and R,(E,) are equal up to the
order of 107® in the entire energy range.

I1.3. Bound muon electron spectrum assuming T-interaction

In this case equation (5) results in

d Wy g} dp, J d’k, J d*k,
dt 22(2m)® E, E;, K.

X JT2(De» Se» Bis, o PP 8 PYIP* (. 8., By, ., p(P,.) S P)

x4k )ad(ke)r8os — (ke )s8ar}— (k) a{keIngas — (Ko )sBor} + (k)

X {2a58en — 8an8ps )t — (K {(K.)e8as — (ko) o8ps)

+ (ku)ﬁ{(ke)ﬂga)\ - (ke)agB)\}}a(Eu ~E, — E; — Evu) (19)
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Doing analogue steps as in the former cases we find:

AT (W +Z - e +Z+p,+v _ o 2
(. - .u)=RT(Ee)FT(LL > et )T

13

pmax
0

) J dPP*{(P;+P*}{A, +B, }-2P¥C,_+D_ }+4P,PE_} (20)

where the functions A, , B, , C,., D, and E,_ are given in Table 2. The functions
G and F are defined in Table 3. '

In formula (20) I'"(u™ — e™+ 1, +v,) is given by
gTm,
242m)?

The recoil factor Rr(E,) can be calculated with the help of the two following
exXpressions:

I''(w — e + v,tu,)=

dT(w +Z > e +Z+7,+v,) 24(Zam, ) g2
2 = P{I;
dr, s it = 3oy Ee PR R
4Pop, e

~ OO TG0~ T )+ o2 {50+ 0} — o (T ()~ TS}

E,

x=0
The functions I7(x),i=1,...,4 are the same as in equation (9).

Al +Z - e +Z+v,+v,)
dE Born with

€ nuclear recoil

P Ggl E, <)1+E2
2z g (D) g p[SIEEL o
3w(2m) fo(E,) =) 2E,
Table 3

Functions G%*! and F%*! used in the expressions of Table 2.
k =|k,| Kk, >0 k, <0
G! Jdrrz i (PO + 1)fi g, — o f 1} 2(k—1) J drr?j,_(Pr){g.fy}
G° jdﬂsz_l(Pr){(k = D(gf;—fig)} Jdrrzjk (Pr){(k + 1)(f g, — & f)}
G*' =20+ 1)J’ drrsz+1(Pr){gkfl} _jdrrsz(Pr){(zk -Dfegi + gkfl}
F! —2(k— 1)J dr?j,_(Pr{ff,} J‘drrzjk_l(Pr){(Zk +1)gg, +fifi}
F° Jdrrzjk(ﬁ){(k+1)(gkg1+fkf,)} —Jdrrsz—1(Pr){(k_ 1)(g.g, +fif )}

F*i - J drr?j, (Pr{(2k — 1)g, g, — fif1} 2(k+1) J drr?jy  (Pr){fifo}
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The functions f,(E,) and f,(E,) are still the same as in equation (12), but the
expressions for a and b are given now by

5 4P (2P
a=3B3+ (L -+ 2 b=2(204 1)l

€

II1. Numerical results

For the numerical evaluation of the BOMES (equations (14), (15), (18) and
(20)) we have chosen the following procedure:

— Calculation of the electron- and muon-wave functions (appendix B).

— Calculation of the spherical bessel functions j;(Pr) by means of well-known
recursion relations [14].

— Evaluation of the radial integrals.

— Integration over momentum transfer P.

—Summation over k,: The summation procedure has been finished at the point,
where the amount of relative increase was smaller than 107>,

— Determination of the recoil factors R,(E,), where i is the coupling type
index.

In Table 4-Table 9 we present decay electron spectra of various muonic
atoms which are of some importance for present or future muon electron

Table 4
Decay electron energy spectra of "**Mg (¢ =3.045fm, t =2, 3 fm).
E;ota) V_Ab) Sc) Pd) Te)

10 1.249-01 2.575-01 2.213-01 8.659-02

20 4.382-01 8.277-01 7.824-01 3.158-01

30 8.814-01 1.555 1.517 6.631-01

40 1.410 2.311 2.289 1.113

50 1.981 2.967 2.967 1.652

60 2.549 3.395 3.415 2.264

70 3.068 3.463 3.500 2.931

80 3.487 3.047 3.090 3.627

90 3.706 2.040 2.074 4.256
100 2.683 5.859-01 5.966-01 3.380
110 1.751-01 2.244-02 2.286-02 2.259-01
120 6.056-03 8.555-04 8.715-04 7.787-03
130 4.440-04 6.389-05 6.512-05 5.705-04
140 5.008-05 6.580-06 6.711-06 6.457-05
150 6.846-06 7.476-07 7.631-07 8.878-06
160 9.704-07 8.012-08 8.185-08 1.267-06
170 1.237-07 6.882-09 7.037-09 1.626-07
180 1.158-08 3.683-10 3.769-10 1.532-08
190 5.112-10 6.935-12 7.097-12 6.794-10
200 1.632-12 4.412-15 4.505-15 2.169-12

E°': Total energy of the electron in units of [m,].
®)  V-—A: BOMES according to equation (14).

) S: BOMES according to equation (15).

iy P: BOMES according to equation (18).

) T: BOMES according to equation (20).
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Table 5
Decay electron energy spectra of 32S (¢ =3.352fm, t=2.3 fm).
Eteot a) V_ Ab) Sc) Pd) Te)
10 1.359-01 2.784-01 2.400-01 9.463-02
20 4.682-01 8.781-01 8.319-01 3.391-01
30 9.265-01 1.621 1.583 7.011-01
40 1.463 2.373 2.353 1.163
50 2.036 3.008 3.009 1.711
60 2.560 3.396 3.419 2.330
70 3.109 3.413 3.450 3.001
80 3.505 2.936 2.978 3.688
90 3.616 1.888 1.919 4.187
- 100 2.321 5.543-01 5.643-01 2.909
110 2.607-01 3.932-02 4.004-02 3.344-01
120 1.492-02 2.225-03 2.267-03 1.914-02
130 1.281-03 1.867-04 1.903-04 1.645-03
140 1.518-04 1.985-05 2.024-05 1.957-04
150 2.095-05 2.257-06 2.304-06 2.718-05
160 2.944-06 2.383-07 2.434-07 3.845-06
170 3.670-07 1.992-08 2.037-08 4.827-07
180 3.309-08 1.021-09 1.045-09 4.378-08
190 1.355-09 1.775-11 1.816-11 1.801-09
200 3.184-12 8.293-15 8.463-15 4.236-12
The meaning of the colums ?), ..., °) is the same as in Table 4.
Table 6
Decay electron energy spectra of [3*Ar (c = 3.625 fm, t =2.3 fm).
EZO( a) V_Ab) Sc) Pd) Te)
10 1.418-01 2.896-01 2.501-01 9.902-02
20 4.846-01 9.052-01 8.586-01 3.520-01
30 9.515-01 1.657 1.620 7.225-01
40 1.493 2.407 2.388 1.192
50 2.066 3.028 3.031 1.745
60 2.626 3.393 3.417 2.367
70 3.127 3.378 3.415 3.037
80 3.501 2.865 2.906 3.707
90 3.534 1.801 1.831 4,107
100 2.159 5.342-01 5.438-01 2.699
110 2.892-01 4.645-02 4.731-02 3.700-01
120 2.008-02 3.068-03 3.126-02 2.575-02
130 1.852-03 2.709-04 2.761-04 2.378-03
140 2.238-04 2.913-05 2.971-05 2.887-04
150 3.088-05 3.295-06 3.363-06 4.007-05
160 4.289-06 3.429-07 3.503-07 5.604-06
170 5.244-07 2.807-08 2.870-08 6.899-07
180 4.592-08 1.397-09 1.430-09 6.077-08
190 1.786-09 2.313-11 2.367-11 2.373-09
200 3.430-12 9.060-15 9.241-15 4.566-12

The meaning of the columns ?), .

.., %) is the same as in Table 4.

H. P. A
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Table 7
Decay electron energy spectra of 39Ca (¢ =3.720 fm, ¢ = 2.3 fm).
Ezota) V— Ab) Sc) Pd) Te)
10 1.481-01 3.013-01 2.606-01 1.037-01
20 5.021-01 9.337-01 8.866-01 3.659-01
30 9.783-01 1.694 1.658 7.456-01
40 1.525 2.442 2.424 1.223
50 2.099 3.048 3.052 1.781
60 2.654 3.388 3.412 2.406
70 3.144 3.337 3.375 3.073
80 3.490 2.787 2.827 3.718
90 3.435 1.711 1.740 4.005
100 2.009 5.127-01 5.220-01 2.507
110 3.098-01 5.255-02 5.352-02 3.953-01
120 2.550-02 3.989-03 4.064-03 3.265-02
130 2.531-03 3.722-04 3.794-04 3.249-03
140 3.144-04 4.074-05 4.156-05 4.055-04
150 4.368-05 4.614-06 4.710-06 5.669-05
160 6.043-06 4.761-07 4.864-07 7.898-06
170 7.296-07 3.828-08 3.914-08 9.601-07
180 6.231-08 1.846-09 1.888-09 8.248-08
190 2.289-09 2.852-11 2.918-11 3.042-09
200 3.285-12 8.066-15 8.224-15 4.372-12
The meaning of the columns ?), ..., ) is the same as in Table 4.
Table 8 ‘
Decay electron energy spectra of 38Fe (¢ =4.118 fm, t = 2.3 fm).
E:’ta) V_Ab) Sc) Pd) rI‘e)
10 1.691-01 3.394-01 2.953-01 1.195-01
20 5.594-01 1.025 9.764-01 4.122-01
30 1.066 1.813 1.778 8.228-01
40 1.629 2.548 2.534 1.325
50 2.203 3.102 3.110 1.902
60 2.740 3.353 3.380 2.531
70 3.183 3.187 3.226 3.175
80 3.416 2.530 2.567 3.705
90 3.089 1.452 1.476 3.631
100 1.638 4.459-01 4.538-01 2.034
110 3.314-01 6.322-02 6.438-02 4,206-01
120 3.938-02 6.515-03 6.638-03 5.031-02
130 4.703-03 6.984-04 7.119-04 6.037-03
140 6.273-04 7.992-05 8.152-05 8.095-04
150 8.835-05 9.016-06 9.204-06 1.148-04
160 1.198-05 8.985-07 9.179-07 1.567-05
170 1.375-06 6.772-08 6.925-08 1.811-06
180 1.070-07 2.922-09 2.989-09 1.418-07
190 3.190-09 3.562-11 3.642-11 4.241-09
200 1.330-12 2.742-15 2.790-15 1.769-12

The meaning of the columns 2), ..., °) is the same as in Table 4.
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Table 9
Decay electron energy spectra of §5Zn (c =4, 440 fm, t =2, 3 fm).
Et) V- AY) $°) pe T)
10 1.850-01 3.677-01 3.213-01 1.317-01
20 6.014-01 1.090 1.040 4.467-01
30 1.129 1.894 1.860 8.795-01
40 1.702 2.617 2.605 1.400
50 2.274 3.130 3.140 1.987
60 2.794 3.315 3.344 2.616
70 3.196 3.072 3.110 3.231
80 3.336 2.353 2.388 3.658
90 2.849 1.296 1.317 3.363
100 1.441 4.017-01 4.088-01 1.786
110 3.236-01 6.473-02 6.592-02 4.097-01
120 4.500-02 7.621-03 7.765-03 5.743-02
130 5.888-03 8.735-04 8.905-04 7.557-03
140 8.128-04 1.018-04 1.038-04 1.050-03
150 1.145-04 1.135-05 1.159-05 1.489-04
160 1.518-05 1.095-06 1.118-06 1.987-05
170 1.666-06 7.801-08 7.977-08 2.195-06
180 1.195-07 3.062-09 3.132-09 1.583-07
190 2.952-09 3.041-11 3.109-11 3.927-09
200 2.690-13 4.944-16 5.022-16 3.570-13
The meaning of the columns 2), ..., °) is the same as in Table 4.

conversion experiments (Refs [2], [9] and [10]). The decay electron energy spectra
for the four different interaction types (according to equations (14), (15), (18) and
(20)) are listed at twenty points in the energy range 10[m,_]<E, <200[m,], where
E, is the total energy of the outgoing electron.

The two Fermi parameters, ¢ and ¢, used for the description of the nucleus
with charge distribution p&'(r) are taken from Ref. [15]. There pg'(r) is defined as
follows:

c,t Po Po
e o = 22
pE(r) 1+exp[(r—c¢)4In3/t] 1+expl(r—c)/al (22)
where a is given by a = t/4 1In 3.
The normalization
4derr2p;"(r) =
determines py:
37 { (wa)z (a)3 - e_"“"“}‘l
— S [Py e w0 23
P~ Ac® 1 C > ¢ ,Z‘l( 1) n? 22e)

IV. Estimate of the electron bremsstrahlung effect on the BOMES shape

We are looking at the bremsstrahlung graphs drawn in Fig. 3. Since the
emitted electron is influenced by the nuclear Coulomb field, one may ask for the
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Z Z Z Z

Figure 3
Bremsstrahlung graphs, which give rise to a change of the shape of the bound muon decay electron
spectrum according to equation (24).

effect of the electron bremsstrahlung on the BOMES shape. We assume that the
energy of an electron lies at the energy point E{” within an interval AE,, given by
the experimental resolution. We determine the probability, that this electron
radiates off a photon of energy w>AE,, so that the electron leaves the initial
energy interval at E!Y and populates an interval at a lower energy E®=
E"—AE,/2.

Taking this electron bremsstrahlung effect into account we have found for the
bremsstrahlung corrected rate I''(E{") at point E{" the following estimate (the
index i refers to the four different interaction types, i=(V—-A), S, P, T):

. ; oo 1 do(E®, ED)
—[H(E® +J dEQT (E®) — F0Ze 2 e

B s BT ET aED
1 do(EQ", E?)
F  dE?

The expression do(EY, EX)/dEY is the differential cross section for emission of
a bremsstrahlung quantum with energy w = E’— E{ from an electron of energy
E®. In the high energy limit E”>»1 and E’ > 1 this differential cross section is
given by Ref. [16] as

mu_Bls 1/

I'(E)

with bremsstrahlung
correction

E(W—AE,/2
_J dE(eZZ)I‘i (Eil)) (24)
1

do(E®, EP)  47%°
dES  (EP-EQ)(ELY
. ‘ B (E®)? EQED
<UEL? - (BPP-3ECEL) | In (1832) + ot f(Za) + =5 |
(25)

where

. S 1
fze)=(2a) L ST Zap)

and « is the fine structure constant. The area F, originating from the incoming
particle flux, is not uniquely defined here, but the simplest area one can 1imagine
in this context is given by the surface area of the sphere with radius (r), defined as
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the mean value of the 1s,,, shell radius, the possiblest origin of the electron:

(r)= Jd3r lr| @ (Bis,,, PPL), S, N, (B 15,0 P(PL), S, > F= An(r)?

With the choice of F, formula (24) gives not a precise correction procedure for the
various BOMES, but an upper limit for the change of the shape of the spectra. In
Fig. 4 we have drawn this maximum correction for sulphur **S assuming (V- A)
interaction. Formula (24) in context with the expression (25) should not be taken
too seriously in the low energy region E, <30[m.], because equation (25) is not
valid in this form: the effect of screening cannot be incorporated in a simple way
in this energy region. For further reading on this subject the reader is referred to
Ref. [16].

V. Discussion

Our calculations of the BOMES neglecting electron bremsstrahlung are in
agreement with similar calculations performed earlier by several authors ([6],
[13]). In addition we have calculated the BOMES in various coupling schemes for
several elements, which will probably be chosen for further muon electron
conversion experiments ([9], [10]) and also for experiments on bound muon decay
([8]). In an estimate we have shown that the electron bremsstrahlung effect on the
BOMES shape may play an important role.

Our calculations are compared with three experimental results: In the first
experiment (Ref. [17]) the ratio

AP =T(u~ +%Fe — e~ +Fe+ i, + v, )/[(n” — e+, +v,)

has been determined; one has found the value A%, =0.972+0.042 in agreement
with our theoretical value Aff=0.984. In the second experiment ratios of the

form

AZZ=T(p +Z > e +Z+ vty )T +Z2" — e +Z'+v,+v,)

have been measured. The only ratio we can compare is A™“" where one has

foFunZd experimentally AL =0.94+.05 [18]. Our calculations predict a ratio
w " =10.990.

The only experiment on the BOMES was made by the Bern group at SIN in
connection with their muon electron conversion experiment [2]. The measured
high energy tail of the BOMES for sulphur S agrees with the two theoretical
bremsstrahlung non-corrected curves of BOMES,,_, and BOMES. The brems-
strahlung correction leads to a slightly better agreement. In this experiment it was
not possible to resolve the tensorial spectrum and the usual V— A spectrum,
because the experimental uncertainty was 35% [19], but the pure scalar and
pseudo scalar spectra are, as was to be expected, clearly excluded.
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Appendix A: Notation

As units we have the system of natural units, i.e. Ai=c=m, =1, where m, is the
electron mass.

If not otherwise stated, four-vectors are written as normal letters, whereas
three-vectors are written bold face. The metric tensor g,, (Greek indices range
between 0 and 3) and the Dirac matrices vy,, ys are exactly the same as of
Bjorken—Drell [12]. The normalization of the Dirac spinors corresponds also to
that of Ref. [12]. The interaction operators and the corresponding coupling
constants are defined in the following table:

Interaction S P V—-A T
Interaction
operator 1 ¥s Yu(1=75) T = il 1,112

Coupling con-
stant of this

paper 8s gp 8va 8T

Connections of
our coupling
constants to gi= gr= g2 .= g5 =
that of Ref. [11]  2{CsP+|C4B 2{CelP+ICHR  HIC,P+ICLR+ICLP+ICWB  HICP+|CA

Instead of taking the charge retention ordered expression (¢,(C, + Clys)Iid,)
(qb,, I'y; ) where T, =1, _¥s». Yus, Yu¥s OF a,, we could also take the charge
exchange ordered term (tbe(C + CGys) T ), T',). The coefficients G, C? how-
ever can be expressed by the coefficients C, and C! (see e.g. Ref. [7]); we choose
therefore for our case the technically simpler charge retention ordered Lagrangian
of equation (1).

Appendix B: The wave function of the electron and the muon

Electron wave function

The relativistic continuum wave function of the electron with total angular

momentum j, = |k,|—3 in a central symmetric potential is given by Ref. [20]:
- & (r)xi:(®) : .
Ku(l')=(.‘ : A) with r=rr
Ve D= it (Dx
I 1
and  x®) = LV AL T2 Ty e @)
T “"e _T T - e

Here [, =j,. +3sign(k.) and |37) is the two-component Pauli spinor. The radial
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tunctions u, (r)=rg,.(r) and v, (r)=rf,(r) are solutions of the differential equa-
tions:

d (u, () _ —K/T E, +1-V(r)\(u.(r)
dr (er(r)) (—(Ee —1-V(r)) K/r )(er(r)) (B2)
We have used the following potential V(r):
—Zalr r>Ry @
Vi(r)= Za r? (B3)
- —2'}—2; (3 — R—l'zv) r< RN @

Ry is the radius of the nucleus with charge number Z and « is the fine structure
constant. In the case where V(r) is given by equation (B3) (D the solutions ug (r)
and vfe(r) are well known [20]; we give here power series solutions for u,i(r) and
v<(r), because they are useful in the case where E,~1[m,]. Thus they are
suitable for giving start values in order to solve equation (B2) with equation (B3)
(D numerically; using the notation p, = |p.| one gets:

E, + 1)1/2 27e™?2|[(y +in)|

u (r)=u,(r,y)= ( — r2y+1)

X (y cos @ —m sin @) ) a,(p.r)"™ (Bda)

n=0
E, — 1\2 2™ |T(y + in)|
G = ey | 8
R e e e
X (y cos  —m sin @) ), b,(p.r)"* (B4b)
n=0

 The coefficients a, and b, are given by the following coupled recursion relation:

(an+1) - 1
b, . (n+D(n+1+2vy)

—Zo[(E,— D)/(E, +1)]V? (n+1+vy—k,) a,
% ( —(n+1+vy+k,) —Zao[(E,+1)/(E, —1)]1’2)(bn) (B
: C(B+D niy+x,)
D=1 b= T

The functions 'y, 7n and ¢ are defined as follows:

y =[kZ—(Za)*]'?

n = Zalp, (B4d)
_ —k.—in/E,

C y+in

eZi(p
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lrreg irreg

For later use we write u (r) =u (r,¥v), v MOE v,.(r,¥v). In the case where

V(r) is given by equatlon (B3) @ the solutlons are ([20]):

i

PENCA Z Cu (/R )" K, <0
U.(r= (ﬁ—) xq"° (B5a)
N Y a,(f/Ry)>™ 1 k,>0
. n=0
NN 2. d, (R K, <0
V.(r)= (R_) x4 "0 (B5b)
" Y. b (r/Ry)*" ke >0
\n=0
The corresponding coeflicients are determined by the recursion relations
1 _ _
d, = +1)+(3)Z,)— %) Zab,_
a, (2iKe|+2n+1){bn(RN(Ee ) (2) a) (2) A0y, 1}
= 1
bns1= s 1) {=a,(RN(E. — 1)+ () Za) + (3) Zoa, 4}, (B3c)
B 2 k. |+1
® Ru(E, +1)+(3)Za

The coefficients ¢, and d,, are given by c,(E,, Z)=b(—E,, —Z) and d,(E,, Z)=
a,(—E,, —Z). The general solutions of equations (B2)-(B3) are thus given by

5 (r):{NKeUKe(r) r<Ry

e A WE(r)+ BKeuif:eg(r) r> Ry (B6)
v, (r)= {N"“ VelD) ; r<Ry
A () + B, v (r) r>Ry

The coefficients N, , A, and B, are determined by the continuity conditions of
u,(r) and v, (r) at r= RN and the postulated asymptotic behaviour of the general
radlal functlons u,(r) and v, (r). One gets ([21]):

A.=c.B,, N =k M Ry) + U™ (Ry) B
e U..(Ry) .
o = U, (Rn) 0¥ (Ry) — ui™*(Ry) V., (Ry)
" “ig(RN) VKE(RN) - UKQ(RN)U::g(RN) ’
B, =[1+c,(c, +2cos (88— i) 172
reg

irreg

6, ~=—arg F(Ey+im)+oe(xy)+n(l +1Fy)/2

(B6a)

The nuclear radius R, of a muonic atom, whose nucleus is described by a
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two-parameter Fermi charge distribution pg'(r) (equation (23)), is given by Ref.

[22]:
_\1/m
Ry = (m +3 r’")

" (B7)

P = j drr"‘”p}i-"(r)/J‘ drr*pg(r) where m=2-0.014456x2Z

The general distorted plane wave function ¢.(p.,S,.,r) can be written as an
expansion into total angular momentum eigenfunctions ¢, (r):

Pe(Per Seo 1) = Al wllp |17 ), €Pe(—i) o2+ 1(=1)% 12

Kelle
l = ¥
% ( K, 2 fxe
‘Le - Se Se a l’l‘
In order to test the numerical procedure for calculating the exact BOMES, it is
necessary to examine u, (r, y) and v, (r, y) in the case Z =0. One finds:

E, +1

oo @) (BS)

(4

1/2
u (ny=«)= [ ] % (=D 5 (p,r)

E.—-1

1/2
vy =r)==| =2 | i, () (B9)

e

where j,_ (p.r) is a spherical Bessel function [14].

Muon ground state (1s,,,)-wave function

The ground state wave function of the muon is given by

81(r)x % (f) )
uw(Bis, ,s,r=(. . - (B10)
@ ( sy p(pu) L ) lfl(r)xigl(r)
The equations for the real functions g;(r) and f,(r) are given by
i(gl("))z m,ilz( 0 Eu+m,,,—V(r))('g1(r)) (B11)
dr \fy(r) —(E,—m, — V(r) —Zfr f1(r)
In all the ‘exact’ calculations we have put ([23])
471- " tf I\ 12 ! - (RO | '
V(r)=—-Za - pe(r)r'e dr +417J pst(r)r dr
0 .
Za - c,t ’ ! ' ! Il
+§ pe(rYyr'{F,(f' —x|)— F,()r' +x|)} dr It (B12)
o
°° Vy?-1 1
Fr= [ e P (11 L)
1(x) e N e

The charge distribution pg'(r) is given by equation (23). The differential equations
(B11) with the potential (B12) are solved numerically. We have often used the
nonrelativistic point nucleus 1s muon wave function; therefore we write down
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here the explicit formula of this wave function:
‘Pu. (B139 p(p.u.)s Su.’ l') |non = 2(Zamp,)3lze*zamurxill(i') (B13)

relativistic
Appendix C: The angular matrix element (k. |Y,,.| ki)

e [ 5. = jx::(f) Yo Bx® dO

(21'.<f+1)(2/\+1)(21'.(£r1)]”2(j.<r A f.(i)
4 My By

A (__1)uf+1/2[

X (];(f A jK ){1+(_ 1)!«i+le+)‘}/2 (Cl)

1
2 0 —3

where j, =|kid—3, L., =], TG sgn (ky) and x&(F) is defined in (B1).
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