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Non-regularity of the Coulomb potential in quantum
electrodynamics

by Martin Klaus
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903, USA

(21. 1. 1980)

Abstract. The operator P,(A)— PS is not Hilbert-Schmidt if P resp. P,(A) denote the spectral
" projections of [0, ) for the operators Hy = ap+ 3, resp. H=ap+ 3 —A/|x| and A € (0, 1). This implies
that a static external Colomb field is non-regular in the sense of [1].

1. Introduction

We consider the free Dirac operator
Hy,=ap+p (1.1)
in interaction with a static electric Coulomb field, i.e., the Hamiltonian

A
H(/\)=ap+6—m 0<a<l1 (L:2)
In our study of the external field problem [1, 2] in quantum electrodynamics, the
question arose whether a so-called strong Bogoljubow transformation exists which
relates the free field to the interacting field. The mathematical problem is to prove
or disprove that

P,(A\)— P°cH.S. (1.3)

is Hilbert-Schmidt (cf. [1, p. 794]). Here PS resp. P,(A) are the spectral projec-
tions of [0, ) for H, resp. H(A). For less singular potentials than Coulomb this
question has been studied in [1] and in more detail in [3]. The latter reference
contains both necessary and sufficient conditions on the potential V so that (1.3)
holds for the pair H,, H,+ V. If (1.3) holds we call the potential regular, if not we
call it non-regular. It has been shown in [3] that potentials whose Fourier
transform V obeys '

P> - |
d’p——— S ‘
[ o B v <o (1L4)
for some € >0 are regular, but if
2
3 p 7 2
W S = 1.5
[ ol VP == (15)

for some £>0, V is non-regular. Hence the case of the Coulomb potential
(V~1/p?*) cannot be decided on the basis of (1.4) and (1.5). In Section II we
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prove that the Coulomb potential is non-regular. This fact is due to the strong
singularity at the origin.

II. Non-regularity of 1/|x|
We will prove

Theorem 1. P, (A)— PS is not Hilbert-Schmidt for any A €(0, 1).

Remarks. (1) The phrase “by dilation” means that we perform a unitary
transformation

(U,NH(x) = a>*f(ax) (2.1)

for some o> 0.
Notice that as o —0

U,f—0 (2.2)
weakly.
(2) We have
A 1 A
Uo(ap+B——)U’§=—-(ap+0'B—*-—) (2.3)
] o |x] |

(3) Without going into details we mention that for A e(x/§/2, 1) we take for
H(A) the physically distinguished self-adjoint extension of Schmincke [4], Wiist
[5] and Nenciu [6]. We also know that this gives the operator of the quantum
mechanics textbooks. Hence the ground state of H(A) is at v1—A2,

Proof of Theorem 1. Suppose P,(A)— PS were Hilbert-Schmidt. From (2.1) and
the compactness of P,(A)— PJ we conclude that

U,(P,(A\)-P)U*—0 (2.4)

strongly as o — 0.
We will show that this leads to a contradiction. From [1, p. 795]

1 +
Pi=—(1+ ap B) (2.5)
2 Vp*+1
so that
U(,P,‘;szl(lJrM)—»l( —“—")EP: (2.6)
2 Vp*+o? 2 p

strongly as o — 0.
Using

1 1 P dn
P.(\)==+— li __an 2.7
A)=3 2wpﬂjp H\)— in @.7)
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and (2.3) we get

1 P
¢, UL, UEH =545 - tim [ 5, T f|dn
PP aptoB-———ino
|x|
po 1
=1+i lim J‘ f, fldn
2 2 poswd_py ap+ch——)-\~—in
|x|
= (f, PZ(A)f) (2.8)
so that
U,P.(A)U%=PI(A) (2.9)

where PJ(A) is the spectral projection onto [0, ) for ap+ a8 —(A/|x|). Obviously
as o —0

ap+of — E |—>ap | I (2.10)

strongly on D(H(A)) and hence also in strong resolvent sense. Therefore, if Ker

(ap — (M|x])) = {0},
PZ(A)—P,(\)=P, as o—0 (2.11)

strongly where P, is the spectral projection onto [0, ®) for ap—A/|x| [7, p. 432].
To show that ap—A/|x| has indeed a trivial kernel one can either inspect the
differential equations in the invariant subspaces of given angular momentum or
one can argue as follows: If the kernel were non-trivial it would have infinite
dimension for suppose Q were the projection onto the kernel and dim Q < .
Since ap — AM|x| commutes with dilations up to a factor (see Remark 2) we have
1=|Q||=]|QU,||— 0 since dim Q<ce. This is impossible. Hence dim Q=0c in
each subspace of fixed angular momentum. But this is impossible since there

exists at most two linearly independent solutions in each subspace [8]. By (2.6),
(2.9) and (2.11)

U,(P,(A\)-PU*—> P, —P° (2.12)

So in view of (2.3) we need only show that P, — P$ is non-zero. Suppose B, =2
Then with P°=1-PS,P_=1-P,

- 1 -
= P°(ap)P2 - )tPfﬂP° (2.13)
where these equalities hold on D(ap) = D(ap — A/|x|). (The latter inclusion follows

from the fact that C;(R?) is a core for ap and 1/|x| is (ap)-bounded.) But
P°(ap)P° =0 and

| |
pe P70 (2.14)
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To see (2.14) consider for instance the matrix kernel in momentum space. Hence
(2.13) is not true. This finishes our proof of Theorem 1.
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