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Non-regularity of the Coulomb potential in quantum
electrodynamics

by Martin Klaus

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903, USA

(21. I. 1980)

Abstract. The operator P+(A)-P° is not Hilbert-Schmidt if P° resp. P+(A) denote the spectral
projections of [0, °°) for the operators H0 ap + ß, resp. H ap + ß- \l\x\ and A £ (0, 1). This implies
that a static external Colomb field is non-regular in the sense of [1].

1. Introduction

We consider the free Dirac operator
HQ ap + ß (1.1)

in interaction with a static electric Coulomb field, i.e., the Hamiltonian

Hi\) ap + ß-r-. 0<À<1 (1.2)
[x|

In our study of the external field problem [1, 2] in quantum electrodynamics, the
question arose whether a so-called strong Bogoljubow transformation exists which
relates the free field to the interacting field. The mathematical problem is to prove
or disprove that

P+(A)-P°+eH.S. (1.3)

is Hilbert-Schmidt (cf. [1, p. 794]). Here P° resp. P+(A) are the spectral projections

of [0, œ) for H0 resp. H(A). For less singular potentials than Coulomb this
question has been studied in [1] and in more detail in [3]. The latter reference
contains both necessary and sufficient conditions on the potential V so that (1.3)
holds for the pair H0, H0+ V. If (1.3) holds we call the potential regular, if not we
call it nonzregular. It has been shown in [3] that potentials whose Fourier
transform V obeys

d3PY^r-Tl^(p)l2<°° (1-4)

for some e > 0 are regular, but if

for some e>0, V is non-regular. Hence the case of the Coulomb potential
(V~l/p2) cannot be decided on the basis of (1.4) and (1.5). In Section II we
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prove that the Coulomb potential is non-regular. This fact is due to the strong
singularity at the origin.

II. Non-regularity of l/|x|

We will prove

Theorem 1. P+(A)-P° is not Hilbert-Schmidt for any X e (0,1).

Remarks. (1) The phrase "by dilation" means that we perform a unitary
transformation

iUJ)ix) cr3l2ficrx) (2.1)

for some cr>0.
Notice that as o- —> 0

UJ-*0 (2.2)

weakly.

(2) We have

Ujap + ß~)vt -(ap + aß~) (2.3)
\ \X\/ CT \ \X\I

(3) Without going into details we mention that for k e(V3/2,1) we take for
H(A) the physically distinguished self-adjoint extension of Schmincke [4], Wüst
[5] and Nenciu [6]. We also know that this gives the operator of the quantum
mechanics textbooks. Hence the ground state of H(A) is at vT—Afr

Proof of Theorem 1. Suppose P+(A)-P° were Hilbert-Schmidt. From (2.1) and
the compactness of P+(A)-P° we conclude that

U_(P+(A)-P:)U*-»0 (2.4)

strongly as a—*0.
We will show that this leads to a contradiction. From [1, p. 795]

l/1+o£+£\ (25)
2^ Vp2+1/

so that

r*-1/. <*P + ß<r\ „ 1/, ap'UJPIUI-- 1+7== -*- 1--)-^ (2-6)
2^ Vp2 + o-2/ 2^

strongly as cr—»0.
Using

P+(A) i+ ^-hm
Z. Z.TT n—r0®

C P dr)

H(A)-iT)
(2.7)
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and (2.3) we get

(/,UCTP+(A)U*/) ^+^-lim

1 1

-+ — lim
Z Z77 p—»oo

(7

ap + crß — r—: — ìt)ct
-/ „T,

ap + crß— —-;— in
x

-rtdt,

(f.KWf) (2.8)
so that

[/<tp+(a)u*=p:(a) (2.9)

where PJ(A) is the spectral projection onto [0, oc) for ap + crß — (A/|x|). Obviously
as cr—»0

ap + crß
_A_

Ixl ap-
_A_

Ixl
(2.10)

strongly on D(H(A)) and hence also in strong resolvent sense. Therefore, if Ker
iap -(A/|x I)) {0},

taPJ(A)- as (7- •0 (2.11)P+(A)-P+

strongly where P+ is the spectral projection onto [0, oo) for ap — A/|x| [7, p. 432].
To show that ap — A/|x| has indeed a trivial kernel one can either inspect the
differential equations in the invariant subspaces of given angular momentum or
one can argue as follows: If the kernel were non-trivial it would have infinite
dimension for suppose Q were the projection onto the kernel and dim Q< °°.
Since ap-A/|x| commutes with dilations up to a factor (see Remark 2) we have
l ||Q|| ||Ql/_||—»0 since dim Q<oo. This is impossible. Hence dim Q oc in
each subspace of fixed angular momentum. But this is impossible since there
exists at most two linearly independent solutions in each subspace [8]. By (2.6),
(2.9) and (2.11)

U_(P+(À)-PÎ)UÎ->P+-PÏ (2.12)

So in view of (2.3) we need only show that P+ — P% is non-zero. Suppose P+ P°.
Then with Pi 1 -Pfr P_ 1 - P+

^)p+ Pz(ap-A)p:
\x\/ V x /

0 P_ \ap +

1

P!(ap)P:-AP°T-rP: (2.13)

where these equalities hold on Diap) <"-" Diap — A/|x|). (The latter inclusion follows
from the fact that C^iR3) is a core for ap and l/|x| is (ap)-bounded.) But
P°(ap)P: 0 and

Pi 7-7 P° * 0
\x\

(2.14)
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To see (2.14) consider for instance the matrix kernel in momentum space. Hence
(2.13) is not true. This finishes our proof of Theorem 1.
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