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On the unique continuation property
for Schrodinger hamiltonians

V. Georgescu'?)
Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

(19. XII. 1979)

Abstract. We prove a unique continuation theorem for differential operators in R" of the form
—A+Y" | WD, +V, where the functions V, W, ..., W, are locally unbounded. For example, we can
allow WeLix 'and VeL, if n=2,3, Ve L{;?"V? in n=4. We can also treat N-body Schrodinger
operators with two particle potentials in L, (R>) for p>2.

1. Introduction

With the great progress made in the spectral analysis of one-body
Schrodinger hamiltonians the last years we are left with, essentially, only one
obscure point: the question of (strictly) positive eigenvalues for locally unbounded
potentials (see [1], Remark after Theorem 3.1). More precisely, one would like to
show that the equation (—A+ V)u=Au does not have a nontrivial solution
ue L*(R") if A>0 and V is a real function in the SR class (see [1]), or to give a
counterexample to this proposition. The result is known to be true if V is locally
bounded in the complement of a compact set of measure zero with connected
complement and satisfies a condition of decrease at infinity (see [12], Theorem
XIII.58 for example). The proof of this assertion involves two steps: first one
shows that u must be zero in a neighbourhood of infinity and then one proves that
the differential operator —A+ V — A has the (weak) unique continuation property
(see below), so that u must be identically zero. Both stages use the local
boundedness of V. The purpose of this paper is to relax the condition Ve L[, in
the second stage, i.e. to prove the unique continuation property for a class of
differential operators with locally unbounded coefficients.

Let Q<=R" be open and connected; we denote by H*({}) the usual Sobolev
spaces and by Hj, () their local counterparts (s can be any real number). We
adopt Hormander’s [7] notations and conventions; in particular, D; = —id;, ;=
dlox, j=1,...,n Let P=P(x, D)=}, /=m 0,(x)D* be a differential operator on
Q, a, being complex valued functions on ) such that PV is well defined for any
¥ € Hi~.(Q) (in the sense of distributions) and PW e L (). We say that P has the
unique continuation property in Q if: ¥e HZ.(Q), P¥ =0 and ¥ | U =0 for some

') Permanent address: Department of Fundamental Physics, Central Institute of Physics (IFIN),
Bucharest, P.O. Box 5206, Romania.
%) Supported by the Swiss National Science Foundation.
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open, non-empty U < (), imply ¥=0. Let:
H(Q)={¥e H(R") | supp ¥ is a compact subset of (2} (1)

We say that P has the weak unique continuation property in € if: ¥e HZ'(€}),
PV =0=W¥=0. Remark that ‘unique continuation’ is a local property (i.e. it is
enough to prove it in the neighbourhood of each point) while ‘weak unique
continuation’ is not. 4

Several authors have proved that various classes of differential operators
have the unique continuation property: see the references given in Hormander [7]
Chapter 8. For counterexamples see Plis [10], [11] and Hérmander [8]. The most
general results are those obtained by Aronszajn-Krzywicki-Szarski [4] and
Hormander [7] Theorem 8.9.1 (in this theorem, if P, is elliptic, it is sufficient that
the coefficients of P, be Lipschitz). For second-order elliptic operators in n=3
dimensions, Plis’ counterexample [11] shows that these results are optimal from
the point of view of regularity of the higher order coefficients a,, |a|=2. For
n =2, there are much more general results due to Bers and Nirenberg [5]. The
lower order coefficients a,, |a|=0, 1, are required to be bounded but, as we shall
show, Hormander’s estimates (see Appendix 1) allow even locally unbounded a,
(Ja|=<1). The conditions are not optimal however (for any n = 3), which motivated
us to try to improve Hormander’s estimates. This is done in Section 2: we show
that HOormander’s inequalities can be improved only ‘in certain directions’ and
that our final estimates are optimal (from the point of view of the method used in
this paper). In Section 3 the unique continuation theorems which follow from the
estimates of Section 2 are presented. For n =3 they are quite satisfactory, but not
for n=4. We think that they can not be improved by the method of this paper
(since the estimates in Section 2 are optimal). We consider only the case

P=-A+) WD+V,
i=1

which is the operator appearing in non-relativistic quantum mechanics, but
exactly the same method works in general.

W. O. Amrein and A. M. Berthier found a general method of proving weak
unique continuation property, based on the spectral properties of differential
operators with periodic coefficients (see [2] and [12] page 355). However, it seems
that the results obtained until now by this method are weaker than ours (in higher
dimensions; in fact, it requires Ve L ;?if n=5, but only Vel p>n/2,if n=2,
3, 4; cf. [3]. '

Remark. After the completion of this paper (a first version was presented in
a seminar at the Central Institute of Physics, Bucharest, in the summer of 1978)
we have learned from W. Amrein of a preprint by M. Schechter and B. Simon
treating the same problem and leading to unique continuation under local
conditions on V similar to those in [3] cited above. Their method is different from
ours, being based on inequalities containing L?-norms of the function. Our
inequalities involve only L*-norms, but of the function and some of its derivatives
of fractional order. Our method has the advantage that it works for elliptic
operators of any order (even with variable coefficients in the principal part),
perturbed by operators of lower order with locally unbounded coefficients.

The proof of the unique continuation property given in this paper is based on
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Carleman’s remark that the problem can be reduced to that of proving an
inequality. We shall present his idea as a lemma, extracted, together with its
proof, from the proof of Theorem 8.9.1 in Hormander [7]:

Lemma 1. Let UcR" be open and let P: H2.(U)— L}, .(U) be a linear, local
operator (i.e. supp Pu <supp u for any u). Let ¢ : U—R be a continuous function
such that there exists a function ¢ : (T, ) — (0, ®) with £(1) — 0 for T— * and an
integer j€[0, m — 1] with the property: for any ve H(U) and any 7> T:

| 2|‘ le™ D*v||pz) < &(7) [le™ Pol|2u, (2)
a|sj

Let ue Hi (U) be such that |Pu| <k}, |D%u| (a.e. in U) for some constant
k <o, If xoe U and u is zero in the intersection of a neighbourhood of x, with a

neighbourhood of the set {x € U | ¢(x)= ¢p(x,), x# xo} then u is zero in a neighbour-
hood of x,.

Proof. Let w = U\ supp u, it is an open subset of U such that x,€ ® N U and
u|lw=0. Let U, be a neighbourhood of x, in U such that u is zero in the
intersection of U, with a neighbourhood of {xe€ U | ¢(x)=d(x,), xF xo}. It
follows that if xe U,, ¢(x)=¢(x,) and x# x,, then x € w. We choose an open
neighbourhood V of x, such that V= U, and 6e Cy(U,) with 6| V=1, we
denote v =0ue H(U). Then:

le™Poll 2y <le™ Pol|p.2v) +[le™ Pollp 2 vy
= kl ZF: ”ewDaU“LZ(V) +||eT¢PU”L2(U\V)
a|=<j
since v =u on V. Hence:
(1—ke(7)) Z "er)DaU”LZ(U)S (1) “ewPUHL’(U\V)
ee|=j

If x¢ V and x esupp Pv, then x€ U\w (since P is local) and x# x4, s0 ¢(x) <
¢(xp). But (U\V)Nsupp Pv is compact and ¢ is continuous, thus there exists
>0 with the property ¢(x)<d(xy)—e if x (U\V)Nsupp Pv. Let U, =
{xeU| d(x)>d(xy) — &}

(1—ke(7))e™®==9 Y | D0| 2y,

lae|=<j

<(1-ke(7)) ) le™* D0l 20, < (1) [le™*Poll2 v,

lee|=<j

<e&(1)e™ | Po|| 2w

But Pv e L{ (U) and has compact support (P being local), therefore ||Pv||p 2, <.
We make 7—oc and get ||v|| 2y, =0. Since U, is a neighbourhood of x,, we
obtain the result. Q.E.D.

2. The estimates

The purpose of this section is to improve the estimates given in Theorem 2,
Appendix 1, in the case P=A. The ideal would be to have these estimates with



658 V. Georgescu H. P. A.

m—3=3 replaced by 2. But this is impossible, as Theorem 1, Appendix 1, shows.
However, the following lemma indicates that one could be able to obtain better
estimates ‘in one (and only one) direction’. In this section U will be an open,
bounded subset of R", n=2, and ¢ : U—R a function in C*(U) (see Appendix 1)
such that grad ¢(x) %O for any x € U.

Lemma 2. Let Q be a first (resp second) order differential operator in U with
continuous, bounded functions as coefficients. If there is w >3 (resp u >—3) such
that for some constants ¢, 1R and any ue Cy(U), 7= 7,:

™]|Q(e™u)|=c|e™ Aul (3)

then there is A : U—C (resp A;: U—C, j=1, ..., n) such that Q=3%7_; A(x) 9;p(x)
D, + zero-order term  (resp Q=) _, A{(x) 8,¢(x)D,D, + lower order terms).
Moreover, if u>1(resp u>0) then A =0 (respA; =0, j=1,...,n).

Proof. We follow Hormander’s proof of the Theorem 8.1.1. from [7], thus we
will not give all the details. Let x,€ U; we can suppose x,=0 and ¢(0)=0
Denote N =grad ¢(0)#0, take any £écR" with |¢|=|N| and ¢éN=0 (scalar
product in R") and choose w e C*(R") such that w(0)=0 and grad w(0) = ¢ +iN.
It follows that ¢(x)—Im w(x) = quadratic form in x + O(|x|*) for x— 0, in particu-
lar lim,_.. 7(¢(7 ?x)—Im w(7'?x)) exists, uniformly in x if x runs over a
compact set. Suppose e CJ(R") and 7 is big enough, then take u(x)=

e™ Xy (vrx) in (3). Since Die'™ = e™™(D; + 7 8,0), if Q=Y 42 d,(x)D* we ob-
tain:

eT@Ime) Y g (D+1 grad (o — id))*Y(~T - )H

loe]=<2

e mey (D, + 7 8,0 Y/ - )l

p=1

Now, make the change of variable x =7 "y and then let 7—oc. Taking into

account that (grad w(0))>=(£—iN)*=0, it follows that we must have
721 a;(0)&=0 (resp Y, -2 a,(0)¢*=0), if Q is of the first (resp second) order
(see Hormander, loc. cit., for details). In the first case, clearly we get a(0)=
(a;(0),...,a,(0))=A(0)N. Let us consider the second case, with a slightly
changed notation: Q=}7,_; a, DD, +lower order terms. We have obtained
Yik-1 a5 (0)g& =0 for any £éeR" orthogonal to N. We can suppose a; = a;.
Clearly Zﬁkzi (Re A (O))gjfk =0, E;:kzl (Im ajk(O))gjgk =0. Let A =(Re a;,(0)) be
considered as a selfadjoint operator in R". Then (£, An)=0 for & n €R" such that
(&, NY=(m, N}=0. It follows easily that there is [€R" such that Re a;(0)=
LN + [ N,. Similarly for Im a;, (0), and we finally get a; (0) :-;-()\I-(O)Nk + A (O)N))
for some (A,(0), ..., A, (0))eC". But then:
Y ap (DD = ), A(0)NDD,

k=1 k=1

The fact that we can not have u>1 (resp. u >0) unless a;(0) =0 (resp a; (0)=0)
1s also easily shown. Q.E.D.

Our next purpose is to show that one can effectively obtain the best possible
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estimates permitted by Lemma 2 and Theorem 1 from Appendix 1. It will be
convenient to express these estimates in terms of the operator:

_l(gadd , pemde) 130 % 9% -
¢ 2(|gradd>|D+D|grad d)l) 2Z (\gr:;d¢|Dj+Df|grad¢_l) @

considered as a (symmetric) operator in L*(U) with H!(U) as domain.

ji=1

Theorem 1. Let UcCR", n=2, be a bounded, open set and ¢ € C°(U) a real
function such that grad ¢(x)# 0 for any x € U. Then the following assertions are
equivalent: _

1) For any xe U, ¢ eR" such that & - grad (x) =0 (scalar product in R") and
|&| = |grad ¢(x)| we have:

S 8, 0k ()(E +i 8,0()E — i 30 (x)) >0 5)

k=1

2) There are constants ¢ <=, 7,< R such that for any real s €[0, 2], ue H(U)
and T=1,!

7275 |le |+ |[pP (e w)|| + 7 p(eu)|+ Y, pD, (e *u)|<c [le™ Aul (6)
=1

I

Proof. Each differential operator P with coefficients in C*(U) will be consi-
dered as an operator in L*(U) with C5(U) as domain; the restriction of its adjoint
(in the Hilbert space sense) to C3(U) will be denoted P* and Re P=3(P+ P¥). If
Q is another such operator, then P= Q means (P— Q)v, v)=0 if ve C5(U).

Let ®; be the operator of multiplication by d;¢ in L*(U) and A, =D, + ir®,.
Clearly e™D, = Aje™. If A>=37_, A?, then 4) of Theorem 2, Appendix 1, gives:

T2 olly-<c |A%0|| (7)

for some constant ¢ and any s€[0, 2], 7=1,, ve C;(U). From now on we shall
denote by the same letter C all the constants. We show now that if Py, Py, ..., P,
are differential operators of orders 0, 1,...,4 with coefficients in C*(U), then
there is a constant C such that for any 7=1,:

4
Y 7% Re P, <cA**A?2 (8)
k=0

It is enough to consider P, = fD* with |a|= k. Let B, y e N" such that |B|, |y|<2,
a =B +1v. Then if ve Cj(U): o

775 |(fDv, v)| = 7°7* [(Dv, D (fo))| < > M| D0|| - 2 ¥ |DP (fo)|
<c[A%] - c[|A%v]<c(v, A A%D)

(where we have used Leibniz formula) which proves (8).
We shall use vectors whose components are operators, with the usual rules
for multiplication, etc. For example: D=(Dy, ..., D,), ®=(®,,...,®,), D=
", ®D, etc. Then A’=(D+ir¢g)’=D>—-7°®’+ir(PD+D®). Let a=
®D+ D®, it is a symmetric operator in L*(U) with C3(U) as domain. Since
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A?=D?—7?®*+ira, A** = D*— 72®* — ita, we get:
A A?=(D?*—7*®*? + 1%a’ + 7i[D?, a]— 7*i[®?, a]
=(D?— 2®?*)? + 720> — cA?** A?

where we have used (8) and the fact that [D?, a] (resp [®?, a)) is a second (resp
zero) order operator. Thus:

CA*A2=(D? - 7@ + 120> > r°a’ (9)
Let b=®D and L*=Y,_, (D,®, — D, ®;)*. One can easily obtain the follow-
ing relations:
D-®*-D=pbp*b+L?
D - ®*- D=|®|- D*- |®|+|®| div grad |®|
which imply:
D*=|®| ' b*b |D| " +|D| ' L |D| - || A|D] (10)

The interest of this decomposition is that the first term contains only derivatives in
the direction of grad ¢, while the second contains only derivatives in directions
orthogonal to grad ¢; the third term is unimportant, being of zero order. From
(10) we get (with the notation [A, B], = AB+ BA):
(D? = 7202 = (| L2 ]~ — 720?) + ||~ b*b |@] '~ || * AP
=(|®| " L?|®| ' — 2P+ (|®| ' b*b | D)+ ([P A |P|)?
F[|D| L2 || - r2@2, |® 1 b*b || 1],
—[lo|" L* @' - @7, |@[ " A |D]],
—[ @] b*b|@", @ A @]
Using (8), we obtain that the last two terms are =— cA** A*, On the other hand:
7?[@%, |®|" b*b | D] '], = 7(P| b*b | D'+ |®|' bFb | D))
= 72(2b*b + (terms of order=<1))
<27°b*b+ cA**A*
=47%a*+ 7% (terms of order <1)
+ cAT* A< cA*A?

where we have used (8) again and the second inequality from (9). Accordingly:
(D~ @27 = (@' L2 @] ' — 727+ (| b*b |®])?
+(|®| P ADDE+[|@| L2 D], |®] b*b [P '], — cATFA?

We use this inequality and (9) in order to get:
CAF A2= (@ b¥b | D)2+ L2 |D| T,
But:

®"'b*b | D[], (11)

(|®| ' b*b |®| ') = b*b |D| * b*b + (terms of order <3)=A(b*b)>*— cA**A?>
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where A =inf |®|™*>0 is a strictly positive constant. And:
(@' L?|®|", |®|7' b*b |®|'].=2|D[ " b*|®| ' L*|®| ' b |D|!
+ (terms of order <3)
=2|®" b* @ L2 B! b | D] - cAZ* A2
Then, from (11):
cAZ* AZ= (b*b)2+ @' b* |® L2 |d[1 b |®] ' = (b*b)? (12)
since L*>=0. Applying (10) again we obtain
D] b* @ L2 |®| ' b |®| =D b*D?*b |®] — || b* D] b*D
|7 b (B D b* [ A D] b [
=b*|®| ' D*|®| ' b
—b*b |®|* b*b + (terms of order <3)
=b*D - |®"2- Db—b*b |®|* b*b
+ (terms of order <3)
=VAb*D?b — u(b*b)* — cA>* A2
where p =sup |®[7*>0. Using (12) (two times) we finally get:

cA**A?=(b*b)*+ b*D?b (13)
Notice that a =2 |®| p+ (terms of zero order), thus:
7°a*>=47%p |®|* p+ 7*(terms of order <1)=4u""*1°p* - cA**A? (14)

because of (8). Also, since b=|®| p+ (terms of zero order):
(b*b)*+ b*D?b=p*|®|* p>+ D - p*>- D+ (terms of order <3)
=u'p*+D-p*- D-cA**A* (15)
From (9), (14), (13) and (15) we get:
cA**A’=p*+D - p*- D+71°p? (16)

This is equivalent to: for any ve Cj(U) and any 7= 7,:

Ip*vl*+ »Zl lpDyl* + 72 |lpol* < c |A20]|
e
Taking v = e™u, ue Cg(U), we obtain the part of the inequality (6) which is not
given by HOrmander inequalities (Theorem 2, Appendix 1). Q.E.D.

Remark. By Lemma 2 and Theorem 1 from Appendix 1 show that the
inequality (6) cannot be improved from the point of view of the powers of 7 and
of the differential operators which appear in the left-hand side.

We shall use this theorem only in the case of radial functions ¢ = ¢(|x|). It is
clear that in this case p becomes the radial momentum (x =(x,...,x,), =
operator of multiplication by x;):

X

1( x) ,(a n—l)
=g | x| D|x| “\or " 2r (17)
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Corollary. Let UcR", n=2, be a bounded, open set, such that 0¢ U. Let
a =inf {|x|| xe U}, b=sup{|x| | x € U} and let ¢:[a, b] >R be a function of class
C” such that ¢'(r)#0, Vre[a, b]. Then the following statements are equivalent:

1)
¢'(r)

¢"( )+—>0 if rela,b] (18)

2) There are constants ¢ <=, t,€R such that for any s €[0, 2], ue HX(U) and
T=To!

727 e ully (e wll+ L IpDy(ewll+ rllp(e™w)<cle*Aul  (19)

ji=1

where p is the radial momentum (17) and we have denoted by & the function
U>sx—o¢(|x|) also.

Proof. We have only to see what condition (5) looks like in this case. Since
grad ¢ (|x|) = ¢'(|x])(x/|x|) the conditions on £ are & - x =0 and |£|=|¢'(|x])|. Then:

w i

3 hd(x)=o

\Iz

and the left member of (5) is:

, (x grad qb)2 b’ 2 g (x grad ¢)*
o) |x|2 | | |§+l grad¢| ‘x|3
= () + |"’ 26~ |‘f’ (@
- (¢~+%)(¢’)2 Q.E.D.

3. The main results

This section contains two unique continuation theorems: the first is based
only on Hormander’s inequalities and gives an ‘almost good™ result for N-body
Schrodinger operators (cf. Corollary 2 to Theorem 2). The second theorem, which
is based on inequality (6), improves this result in the case of one body hamilto-
nians.

Theorem 2. Let QA<R" (n=2) be open and connected and let V, Wy, .... W,
be some complex, measurable functions on Q such that:

For each UEQ (i.e. U open, with compact closure U, and U<(})
multiplication by V (resp W,, j=1,...,n) is a bounded operator from (20)
H>*(U) (resp. H'*(U)) into L2(U) wzth norm convergent to zero when

the diameter of U goes to zero.

Then, if Y€ Hp (Q), (A+Y"_, W.D,+ V)=0 on Q and ¢(x)=0 on an open,
non-empty subset of €, it follows that ¢ =
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Proof. Let P=-A+}"_; W,D;+V, such that P: Hy (Q)—L{.(Q) is linear
and local. Let ¢ be any functlon satlsfymg all the conditions of Theorem 1. We
denote by N(U) (resp N;(U), j=1, ..., n) the norm of the operator of multiplica-
tion by V (resp W)) defined on H3’2(U) (resp H.*(U)) and with values in L*(U).
Then, if v EHZ(U)

le™ Pol|=(le™® Av]— 2. [le™ W,Dju|~[le™ Vo

i=1

=>le™ Av]l— 2 N(U)le™ Dyollera— N(U)le™ vl

j=1

=>le™ Avl|- Z N, (U)(le™*v]lgs+ cr [le™ o)

i=

~N(U) e ollon = 1- c(; NW+ND)) |- ool

where we have used (6) for s =3, 3. Accordingly, if U is small enough we obtain:
lle™v||+|le™ grad v||<cr V2 |le™ Po)| (21)

for any 7= 17, ve H2(U) (see Theorem 2, Appendix 1).

From now on the proof of the unique continuation property is standard; we
give the details for completeness. It is enough to prove that if | is zero in some
open ball B €(}, then ¢ is zero in a neighbourhood of B (£} being connected). Let
Xo be a point on the boundary of B. Take another ball B, such that B,<B,
xo€ B, and radius (B,)<radius (B). Take the center of B, as origin of the
coordinates in R". Let ¢:(0,%)—R be a C”, decreasing function such that
¢'(r)#0 and ¢"(r) +[o'(r)/r]>0, ¥Vr>0 (for example ¢(r)=r ¥, >0). Let U be
a small, open neighbourhood of x,, such that (21) is valid (we have the corollary
of Theorem 1). Since ¢ is zero in B, which is a nelghbourhood of the set
Bo\{xo}={x | ¢(x)= ¢(x,), x# x,}, Lemma 1 implies that ¢ is zero in a neigh-
bourhood of x,. Q.E.D.

Conditions which assure the validity of (20) are given by Schechter [13]. For
example:

Corollary 1. Let V, W,,..., W, e L} be such that for any (small) compact
K <) the expressions (j=1,...,n):

sup J IV(xX)]? o§(x —y) dx;
veK VK

(22)
sup ’( |W,(x)]? o (x—y) dx

yeK

are finite and go to zero when the diameter of K goes to zero (where »{(x)=|x|"™
foranyn=2, and w${’(x)=1ifn=2; =|ln|x|| ifn=3; =|x]? " if n=4). Then all
the conditions of Theorem 2 are veriﬁed.

Proof. We use Theorem 7.3 of Schechter [13], more precisely the inequality
(7.14). It U€Q and U=K, then the norm of the operator V| U:H.*(U)—
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L?*(U) is smaller then the norm of the operator Vyy : H*(R")—L*R") (xx is
the characteristic function of K). The norm of this last operator is dominated by

CN;(Vyxg) (Schechter’s notations) where C is a constant depending on n only.
But (B(y; 1)={xeR" |x—y|<1}):

yeR"

NV =sup | VP wf(x—y) de
KNB(y; 1)
Thus, if K, ={x| there is z€ K such that |x — z| <&}, we get

H(Vx)<sup | VP 0§ y) dx

yeK. VK

+ sup | V(x)]? §"(x —y) dx

yéK. J.KﬁB(y; 1)
In the integrand of the second term w{’(x—y)<C(g), where e—>C(e) is a
decreasing function near zero; therefore the second term is bounded by
C(e) || VllL2x)- The first term is smaller then in (choose some n >0) if diameter
(K,)=<2e+diameter (K)<8(n). Fix £>0 such that £<38(n) and then take
diameter (K)<8(n)—2& and such that C(g) ||V|_2x <3m. It then follows that
N(Vxx)=<m. The case of W, is treated similarly. Q.E.D.

Using Sobolev 1nequa11t1es we see that (22) are verified if W, e L{.(Q2) (any
n=2) and: Ve Lfo'::”(ﬂ) for n=4. In the case n=2, 3, one must use Holder
inequalities, which give Ve L .(Q) for n=2 and Ve Lioc(ﬂ) for some q>2, if
n =3. We see that Hormander’s inequalities do not give a good result in any
dimension, the result for n=3 being however, ‘almost good’ (the potentials
VelL; (R’ constitute a standard class in the quantum mechanical scattering
theory). In the following we shall improve the preceding results. Notice, however,
the following consequence of Corollary 1 (use Lemma 7.7 of [13] in the same way
as in the proof of Lemma 7.4, [13]):

Corollary 2. Let V;; € L},.(R’) for some q>2, i, j=1,...,N, and let:

H= Z A + Z ij(fi—fj)
I=si<j=N
where A, is the laplacian with respect to the ith variable X; R’ in the cartesian
product R*™ =R’>x - -+ XR’. Then: l[lEHloc(R?’N), Hy=0 and ¢(x)=0 on an_
open, non-empty subset of R*™, imply =

The following theorem improves, in a certain direction, the result of Theorem
2

Theorem 3. Let Q<R" (n=2) be open and connected, let Ve L1 () for
some q=2 with q=2n—1)/3 and W,,...,W,eLI'(Q). If ¢eH,[(Q),
(—A+Y" WD+ V)g=0 (as a distribution on Q) and $(x)=0 on an open,
non-empty subset of (), then =0 on S).

Proof. From the regularity theorem for elliptic equations it follows that
€ HL.(Q2). Then, as in the proof of Theorem 2, we see that it is enough to prove
the inequality (21) for U of the form U= U,, ={xeR" |a <|x|<b}, where 0<



Vol. 52 1979 On the unique continuation property for Schrodinger hamiltonians 665

a<b<o andb - a is assmall as we want, and for ¢ having the properties stated in
the corollary of Theorem 1. Let p be defined by (17), fix some 0 <a,<b, <o and
denote U, ,, by U,.

It follows from the lemma proved in Appendix 2 that if

1 1 1 o~ 1
—+—== q;max(Z, 3 ),

r q 2
then there is a constant ¢ <oc such that for any v e C3(U,):

n=2,3,4,...

Jollcwo=e{lolhen+ . o) 23
j=1

Taking U= U,,, ay<a<b<b,, we get for any ue C3(U):

||eT¢V““<||V“Lq(U)“e Uy = C”V"L‘*(u)we P Ul

+ Y, IpDy(ewl) < e IVllay leaul - 24)
i=1

where we have used (19) with s =32, the constant ¢ being independent of U
(= Uy), 1(=70) and u(e C5(U)).
Applying again the Lemma from Appendix 2 we see that, if

1 1 1

r 2n—1 2
then there is a constant ¢ << such that for any v e Cg(U,):

[0lle- ey =< c(ollez=+ ol (25)
Thus, if U is as before and ue Cj(U):

le™® W,Dul|<||W,D;(e™u)||+ cr | We™ul|
<|l“/1| L2 Y(U) (”Dj(ew“)uf_’(uo) +er lle™ullLwy)
= C_”‘Vj“Li’"*l(U) (”Dj(ewu)“}rm+”PDJ‘(€T¢U)“
+ 7 [le™ullgp=+ 7 Ip(e™u))
=cC ”vv,i”Lz"*l(U) (7 le™ ullggr= +[|le™ u| g2
+7[lpe™w)||+[pDy(e™ W) < ¢ W[l le™ Aul| (26)

where (19) was used again and the constant C is independent of U; 7, u as before.
Using (24) and (26) we obtain (P is the same as in the proof of Theorem 2):

le™Pull=lle™ Aull - 3, [le™* W,Dul~le™ V|

j=1
= (1 Y Z ” W;‘||L2""(U)_ c ”V”L"(U)) “er’A”“
j=1

for any u e C5(U) and 7= 1,. Accordingly, if b—a is small enough, we get (21),
which finishes the proof. Q.E.D.

Remark. It is easily seen that in the above proof there is no need to put a
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restriction on the size of U if g>(2n—1)/3 in the case of V and

in the case of W. In particular, for n =3 one obtains the following nice inequality:

Corollary. Assume that all the assertions of the corollary to Theorem 1 are
verified and n=3. Let Ve L*(U) and W,, W,, W5e L"(U) for some r>5. Then
there are constants ¢, To€R such that for any s€[0,2], r=1,, ue H:(U):

7275 e ullg-+[[p*(e™u)||+ |Ip - grad (e™u)|
+1|ple™u)|<cle™(—A+ W grad+ V)ul|.

4. Appendix 1: Hormander’s inequalities

In this appendix we shall state some of Hormander’s results. The first
theorem is a slightly strengthened form of Theorem 8.1.1 from [7] and, in fact,
follows from the same proof. The second is essentially Theorem 8.3.1 from [7].
Let Q<R" (n=1) be an open, bounded set and P=}, -, a,(x)D* a differential
operator of order m such that a,eL*(Q) for any |a|<m and a, e C'(Q) if
lee] = m (C*(Q), k eN or k =, is the set of functions on € which can be extended
to functions in C*(R")). Let P, (X, {) = Yjaj=m Ga(x){*, x€Q, {€C"; we use the
notation

) 21 . zi
PROCO= 50 Pa 85 Puylx == Pu(x 8)

Theorem 1. Suppose that for some function ¢ : Q—R of class C*, some integer
j€[0, m] and some real number . there are constants ¢, 1,€R such that for any
ue Cy(Q) and any v=1,:

i
w2 ¥ LleDulP<c [lePul?
[e|=j &+
Then pw<m—j. If, moreover, there are xcQ and £€R" such that grad ¢(x)#0
and P,,(x, £+ i grad ¢(x)) =0, then u <m — j—3. Suppose now that the inequality is
true for w = m—j—3. Then, if xeQ, ¢€R", o eR\{0} are such that P,,(x, {) =0,
where { = ¢ +io grad ¢(x), we have:
n 2 g ooy
¢ lofnp<2e] 3 222 pos, PG 0
k=1 axj- 00Xy

1 & Py
+z;,§1 Im (P, (x, {)PE(x, 0)] .

Theorem 2. Assume P, (x,, D) elliptic, for any x,€Q, ie x,€{), £€€R",
P, (x5, £)=0=>¢£=0. Let ¢ :QQ—R, ¢ € C°(Q)), such that grad ¢p(x)# 0 for x € ().
Then the following statements are equivalent:

1) For any x€Q, £€R”, oecR\{0} such that P,(x,{)=0, {=¢+io
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grad ¢(x), we have:
i FP(x)

ik=1 axjaxk

n

PR(x, ¢ 1IPP(x, £)+é Im P, (x, O)P{(x, £)>0

k=1

2) There is an integer j €[0, m] such that for some constants ¢, o€ R and any
ue C5(Q), r=1,:

ks Z le™*D*ul|<c |le™Pul|

lee|=]

3) There are constants ¢, To€R such that for any 7= 1, and uec C5({)):

Y, w2 [ Deul < c e Pul

|ai-€m

4) There are constants ¢ <cec, 1, R such that for any real s€[0, m], any
ue H*(Q)) and r=1,:

Heﬂbu“Hs = C,rs+(1/2)—m HGTd’PM”

We must prove only 3=>4. Recall that for ue L*(R")=H°(R") and seR:

lulfe= | (1€ laP ae

where i is the Fourier transform of u; ||ul|=||ul|ze. The space H((2) is defined in
the introduction. Clearly:

loal g =< ||l | ue 1

for any ue H(Q)) and 0<s=<1, which shows that it is enough to prove the
inequality from 4 for s =0 and s = m. In order to do this, we use the inequality
from 3 and Leibniz formula:
!

“lalpe(emty= Y X _—lelpa-B,rb . B

T D*(e™u) = D> Fe™ - DPy
Bzéa B '(C\! - B)‘

=77l Dy + ) O(r7l)e™DFy
B<a

Remark. Tt would be interesting to find a characterization of type 1) for
functions ¢ which give rise to inequalities of type 4) but with 7*~“"~"? replaced
by 7°7% a<m—2%. An example of such a function for P=—A, is ¢(x)= +In|X|
(e™™ = |x|*7). It does not verify 1) but it verifies 4) with 7> replaced by 7°7".

5. Appendix 2: an inequality of Sobolev type

The inequality which we shall prove here is similar to the inequalities which
appear in the theory of anisotropic Sobolev spaces [6]. Let 0<a <b <cc and
U={xeR"|a<|x|<b}. We denote by S the surface of the unit sphere in R" and
do its usual volume element. We introduce polar coordinates p = |x| and o = x/|x|,
therefore x+—(p, w) is a diffeomorphism of U onto Ix S, I=(a, b)cR. L*(IXS)
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will be the space constructed with the product measure dp@dw of the usual
Lebesgue measure dp on I and the above measure dw on S. Then the operator
T:L*(U)— L*(IxS), (Tf)(p, ) = p" V"*f(pw) is unitary and TpT ' =—i(3/dp) (p
is defined by (17)). The operator TL>T ', L*>=Y,_, (D;X, — D, X;)?, acts only on
the variable w, bemng the usual spherical laplacian. We shall identify p= TpT'
and L>*=TL*T"'. Moreover, we denote by the same letter p the self-adjoint
extension of p (which has been considered until now as defined only on (%)
defined by periodic boundary conditions (one can also work with +/p*p instead of
p, or with the square root of the Friedrichs extension of p?). More generally, if K
is any Hilbert space, then p is identified with the operator p®1 in L*(I; K)=
L*(I)@K. Similarly for L?: it will be considered as a self-adjoint operator in
L?*(S) (i.e. we identify TL*T~" with 1®L? in L*(IxS)=L*(I)®L*(S)) and we
shall use its square root A=+/L2.

If K is any (separable) Hilbert space, the spaces L'(I; K) are well defined,
Isr<w. Let LXI;K) be the domain of |p|° (s=0) provided with the graph
norm. Then Sobolev inequalities tell us that L2(I; K)< L"(I; K) continuously if
1/r=3— s, with strict inequality if s =1 (re[1, ] always).

Let K=L*S) and K, be the domain of A' (t=0) provided with the graph
norm. Applying again Sobolev inequalities we get K,< L'(s) continuously if
1/r=3—1t, with strict inequality if t'=3 (' =t/(n—1); re[1, <]).

Let 0=s5,<s;<%¢, o<{,<t;<oo, we want to say something about the
L'-properties of functions in L2(I; K, )NLZ(I; K,). We shall use freely the
results of interpolation theory as given, for example, in Lions-Magenes [9]. If X,
Y are Hilbert spaces with X < Y continuously and densely, then:

Lfo(l; X)N L?,(I; Y)<= Li(I; [X, Y](s;—p.)/(sluso))
continuously, for any w €[s,, s;]. In particular:
LfO(I’ Kfl) n L521(I’ Kto) & Li(I’ K[(Sr'l-'-)/(sl—So)]tl+[(M—50)/(31—So)]t0) (27)

continuously if w €[s,, s;].
On the other hand, if 1/q+1/r=3 and q=max (1/s, 1/t), with strict inequal-
ity when the right hand side is 2, then the Sobolev inequalities stated above give:

"v"L'(IxS) = ” ”U”L'(s) HL'(I)gC “ ”U”K ”L'u) =cC ”U”L'(I;KJ =cC ”U L2(I; K)

such that LZ(I; K,)< L" (I xS) continuously. Using (27) we obtain for any u €
[SO> Sl]:

L2(I; K)NLZ(I; K )= L' (IxS) (28)
if 1/g+1/r=3 and

1 (s,— -5 \7!
q = max (—,( L B t§+p“ g t{)) )
KA T 8o §1— 8o
with strict inequality when the right member is 2. Now we shall vary u such as
to obtain a minimum value in the right member. If:
ST K ,+M_So tﬁ.)

g(p) = min (M, 1y
S17 8o S§1— 89
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this is equivalent with finding max, ., .,, g(n). Let:

>0, p=-1-00
$1— 8o $17 %

o=

then g(u)=min (u, —ap +B). Since —as,+ B =1}, if 11 =<s, then max, -, g(u)
= g(so)=t,. Similarly: —as,+ B =t), therefore if s,=< t’ then max g = g(s,)=
s,. If t;<s; and t] <s,, max g is obtained at the point of intersection of the two

lines p—p and pw——ap + B. This point has coordinate:

Slt;. - Sot6

Mint = =g(win) = max g(u)

t’l_t,0+81_50 So=<p=<sq

In conclusion, the conditions on q under which (28) is true, are:

1) tls(n—l)s{):}qzn_

1

1 -1
(strict inequality if — =2)

h

1 1
2) (n—1D)s;=< toéq?zs— (strict inequality if o= 2)
1 1 L (20)

1 n—1

t t s N
=1y i — 1y $1— %o $1— 8

(strict inequality if the right hand side is 2)

>q=

Now, we go back to R", using the remarks made at the beginning of this
section. We state only a weaker result than that which follows from (28), (29).
Clearly || Tvll 2. k)< ¢ |[v|lz-w;, for any ve Cg(U). And, for any Hilbert space K
and any s=0, there exists A >0 such that | |p|* U”Lza o = A ||ollp 2.k for any
ve LI, K)—closure of Cj(I;K) in L2(I; K). These two remarks give the
following:

Lemma. If U and p are as in the beginning of this section and 0<s,<s, <o,
O0=t,<t; <, and if q is chosen such that (29) is verified, then there exists a
constant ¢ <o such that for any ve C;(U), with 1/r+1/q=5

[oller oy =c |P|S"”"H'1(U) +c |l Pl
We obtain (23) if 5,=0, s;,=1, t,=1, tl 3 and (25) if 5,=0, s;,=1, t,=0,

t1=2.
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