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function of disordered conductors
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W. Baltensperger and J. Blatter
Theoretische Physik, ETH; 8093 Zürich

(20. XI. 1979)

Abstract. For an electron gas which interacts with disordered scattering centers, the dielectric
function e(fl) is rederived with phenomenological arguments. Elastic and inelastic scattering centers
are considered. The derivation makes use of the dielectric function e0(q, o>) of the unperturbed
electron liquid.

Introduction

The dielectric function e (fi) of an electron gas in interaction with static or
dynamic scattering centers has already been derived quantum mechanically by
several authors. Hopfield [1] found the imaginary part of e (ft) for static scatterers
in second order perturbation theory. Helman et al. [2] used the Green's function
technique to obtain e (ft) for static scatterers. As Dyson's equation was applied, the
expression e (ft) is valid even for low frequencies. Pethick [3] solved the problem
also with dynamic scattering by developing Kubo's formula up to second order in
the scattering potential. In this form, the formula applies to high frequencies.
Recently, del Castillo [4] extended the Green's function treatment to include
dynamic scattering.

On the one hand the Green's function technique goes further in the perturbation
treatment. On the other hand it assumes a static screening of the ions from

the beginning, which is doubtful at high frequencies. Hopfield and Pethick obtain
a dynamic screening. In all these results e (ft) can be expressed [5] in terms of the
dielectric function of the unperturbed electron system. This circumstance suggests
that e (ft) could be obtained by an argument which is phenomenological in the
sense that it makes use of the dielectric function e0(q, eo) of the unperturbed
electron system without calculating it. This work presents such a derivation. It
leads to an expression which combines the advantages of the previous treatments.

The case of static scatterers

As a first step consider the electron gas without scatterers under the action of
a homogeneous field É(f) É exp(-iftl). The resulting motion of the electrons
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against the fixed positive background is transformed away using an oscillating
coordinate system with origin x(t) -(e/mft2)E(t), where e and m are the charge
and mass of the electrons.

The electrons interact with a static, disordered bare pseudo potential [6]
eVb(f). In the oscillating frame of reference this has the form eVb(f-x(t)). Since
the electron gas with the field is a resting gas without field in this new frame of
reference, the screening of the pseudo potential is determined by the dielectric
function e0(q, w). From the Fourier transform

Vb(q,eo) d3r dt exp [-i(qr- eot)]Vb(f - x(t))

dtexp[-i(qx(t)-wf)]Vqb (1)

the screened potential follows:

V(q,eo) — -.e0(q, ea)

From the Poisson equation the screening charge is

p(q,w) j-Vb(q,eo)
4tt

1
1

(2)

(3)
_e0(q, w)

The bare potential produces a field -VVb(r-x(t)), which interacts with the
screening charge leading to a force between the electrons and the scatterers. Its
sign is such that it damps the motion.

-ïd3rp(r,t)VVb(ï-x(t))

1

e0(q, o>)
-1

x exp [iq(x(l)- x(('))] exP [-ieo(t- (')]• (4)

The field E(t) and thus the factor (x(t)-x(t')) in the exponent are arbitrarily small
in a linear response theory. In the development

exp (i q(x(t) - x(t')) 1 + iq(x(t)- x(t'))

the first term gives no contribution in the angular integration over q for an
isotropic system. The second term gives

F(t) Nmx(t)f(il)
with

/(ft)
1

3(2Tr)3mN J dqlVflV
1 1

e0(q, ft) e0(q, 0)
(5)
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The number of electrons N in the normalizing volume which is put equal to 1, has
been included in the definition of /(ft) to make this an intensive quantity. In the
absence of scattering the relation between the outside field E and the polarization
P0 is given by

4TrP0=(e0(ft)-l)E (6)

where e0(ft) 1 - (ftp/ft)2 with ft2 4irNe2/m. In the presence of scattering an
additional field Esc F/Ne acts on the electronic charge Ne. Then the polarization
becomes

4TrP (e0(ft)-l)(E + Esc).

The dielectric constant in the presence of scattering is defined by

4irP (£(ft)-l)É.
Since P Nex, the relation

e(ft) l
ft2

ft2 -/(ft)

(7)

(8)

(9)

follows. The correction term /(ft) is related to a memory function [7]. When the
bare potential is a superposition of localized pseudo potentials

V»ir)=ïivbiï-Rs),
i

where R, is an ion position, then equation (5) becomes

/(ft) 3(2Tr)3Nm J
dq \vb\2 ST(q)q(

1 1

¦£o(q, ft) £oiq, o)

(10)

(ii)

Here SI(q) X,,n<exp (iqjR,) exp(-iqR„)> is the static structure factor of the
scatterers. To order \vb\2 this result coincides with that of Hopfield [1] and
Pethick [3], whereas it differs from the quantum mechanical results of Helman [2]
by order [eL(q, ft)- eL(q, 0)]2 in the integrand, where Lindhard's function eL(q, co)

is used for e0(q, cu). This discrepancy arises from the fact that in the Green's
function method static screening is used from the beginning. The logical consistency

of starting with a statically screened potential is doubtful, but on the other
hand a bare potential may not be a small perturbation.

Dynamic scatterers

We assume a time-dependent scattering potential

Vb(f,t) Zvb(r-R\(t)) (12)

where the Rt(t) are now ion position operators in the Heisenberg picture. Then
the Fourier transform of the scattering potential in the oscillating frame becomes:

Vb(q,eo) dt ug exp [-i(qx(t) - o>f)]pg(f) (13)
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where Pg(t) Z.e",R,(t) is the time-dependent ion density operator. The two
quantities in equation (4) pir, t) and V • Vb(r, t) involve in this case ion densities
at different times which do not commute. The order of the factors becomes
relevant; it is therefore not granted that a classical argument will lead uniquely to
the correct expression. The previous reasonings have indeed to be supplemented
by appropriate quantum mechanical considerations. The problem is to determine
the correct statistical factors, which contain Planck's constant. This question does
not occur in the high temperature limit for the ions. Then it suffices to replace the
time-independent potential in (4) by (12) to obtain instead of (5)

deoS'iq, en)/(ft):
1

3(2ir)4mN
dqq \v\

e0(q, ft-w) e0(q,-w)_

(14)

where Sz(q, co) is the dynamic structure factor of the ions. Using the relation [8]

1 2 rre2
Im

e0(q, o) q2
[Se(q,-co)-Se(q,ft))] (15)

and Kramers-Kronig relations, (14) can be expressed in terms of the structure
factor of the electrons Se(q, co):

W)
2e2

dqq4Kf3(2it)4mN J

x[SYq,eo)-Se(q,-eo)]

deoSI(q, v-eo)

1 1

v — ft— ir\ ¦vn
(16)

Note that (16) holds only in the ionic high temperature limit, when SI(q, co)

SI(q, -eo). The first term in the integrand is proportional to

r(q,v)=\A deoSI(q, v — eo)Seiq, eo)

which is the structure factor for a virtual or real photon absorption with momentum

and energy transfer q and v respectively. The second term describes the
corresponding emission which, generalized to all temperatures, must be written as

cr(q, -v) do)SI(q,eo-v)Se(q,-oj)

in order to satisfy the detailed balance condition

tr(q, -v) e"ßV(q, v).

The form of /(ft) for all temperatures is therefore

2e2

(17)

/(ft):
3(2Tr)4mN

1

V— ft— IT)

dqq4
0

1
"

K\2

v — it].

dv(l-e-ßv)er(q,v)
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Equation (18) used in (9) gives the dielectric function corrected for inelastic
scattering of the electrons. It agrees to order /(ft)/ft2 with Pethick's [3] result and
extends it to low frequencies. It corrects the Green's function result of del Castillo
[4] by including dynamic screening.
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