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Currents and local currents in
Galilean quantum mechanics

by
J.-P. Amiet and P. Huguenin

Institut de Physique de 1'Université de Neuchitel, Rue A.-L. Breguet 1, CH-2000 Neuchétel
(Switzerland)

(13. XI. 1979)

Abstract. We give a general expression for the probability current of a non-relativistic quantum
system characterized by an arbitrary Hamiltonian. This current satisfies the continuity equation and is
linear in both velocity and probability density. Locality, characterized by the vanishing of j in domains
of vanishing probability, is discussed. These topics are also discussed for the phase space quantities
quasi-current and quasi-probability.

1. Introduction

It is well known that self-adjoint generators give rise to a unitary time
evolution of states. In these circumstances the total probability is conserved and
there exists an infinity of different currents of probability that obey the continuity
equation. In spite of this large manifold, it is not a trivial matter to give explicitely
a single example in the general case. We first solve here this problem and give a
general expression for the current that reduces to the usual formula in the case of
the ordinary Schrodinger equation (Galilean particle in external electro-magnetic
fields). In the classical limit #— 0 this current is exactly the classical one.

The calculation method is based on the Weyl-Wigner transcription [1] of
quantum mechanics in terms of phase-space functions. The quasi-probability
current in phase space is first defined. Then, the projection into configuration
space by integrating over momentum variables yields the wanted expressions for
the probability density and current. This enables us to define dynamical locality in
the sense that the current must vanish in domains where the probability is zero. It
is shown that locality exists for a specific class of Hamiltonians only. There exists
in this case a preferential polarization of phase space into the ordinary configura-
tion and linear momentum spaces.

2. Geometrical framework and Wigner-functions

The phase spaces E of the dynamical systems considered in this paper are affine
symplectic manifolds homeomorphic to R*". Points of E are labelled by their
position vectors x=(x",..., x*"). The components x* form a frame of linear
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coordinates, which are moreover canonical when the symplectic 2-form | of E
reads explicitly

0 -1 .
Iey)=x-Ly, L= ") 2.1
(x,y)=x" Ly i B @.1)
The inverse A=L'=—L of L will be frequently used. We shall only need
Galilean polarizations of E; they split up E into the particular isotropic sub-
spaces

E,=3(1+T)E, {2.2)
the configuration space, and

E,=3(1-T)E, (2.3)
the momentum space. Accordingly, only Galilean canonical coordinates will be

1,
0
true position coordinate and x**" =p, (k=1---n) a true linear momentum.

In this framework, the Wigner-Weyl isomorphism ® maps the set & of
operators on # = LZ(Eq) into the set M of functions on E:

®:F— f=d[F]

f(x)=f(q, p)= J d"q'e"™i"?q—3q' |F| q+3q"). (2.4)

E,

0 ]
used in order to have T = ( _q ); in other words, x*=q* (k=1---n)is a

f=®[F] is the Wigner function of the operator F, and w = ®[|¥)(¥|] the Wigner

function of the pure state |¥). The term function must naturally be taken in a

large sense since many images of operators are in fact kernels of functionals.
The product of operators goes over to the Moyal product of functions:

P[FG]=®[F] - P[G]=f° g. (2.5)
The Moyal product is a particular case of the product [2]

(fgg)(x)=j 4y 42

e (ma)" (ma)"

e—(2i/a)l(y——x,z—x)f(y)g(z). (2'_6)

The parameter « labels the continuous set of all associative, non-commutative,
involutive and symplectic-invariant products. The limit « =0 is the ordinary
product,

fsg—fg (2.7)

a—0
and the Moyal product is by definition®)
fog=f38glan (2.8)

The integral of f° g over E, whenever it converges, no longer depends on a:

j Prx(f3 90 = " xfg). 2.9)

* Also called twisted product.
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The Moyal bracket is, up to.a factor, the image of the commutator:
1
ih

In particular cases, Moyal and Poisson brackets coincide; for instance:

{x*, fie=1{x*, flp = A“"—a’i. o (2.11)

ax’

{F & == (fog — g°f) == B{[F, G @10

For many purposes, it is useful to know the rule

h 9
e} ._.:xl»t —_ Ap.v
xtef 2i ax”

1, (2.12)

which is a direct consequence of the definition (2.6).

3. Current and quasi-current densities

Time dependent states of quantum systems are described in phase space E by
functions w, on E parametrized by the time t. The quasi-probability w, is for each
t:

real: w¥=w, (3.1)

normalized: Tr w, =J' d'x w,(x)=1 (3.2)
e Q@h)"

M-positive: Jv, suchthat w,=uvo0v¥. ' (3.3)

In consequence of (3.2-3) and (2.9) w, is L*(E) and satisfies Tr w,ow, <Tr w,. The
equality holds for pure states: w,°w, = w,. Given a Galilean polarization x =q®p
of E, the usual probability density in configuration space is obtained by

n

. |
PD=| a0, 6.4

In order to satisfy the conservation law (3.2) one can try to find a vector field 7,
on E whose divergence yields the time derivative of w;:

aw,+V- T, =0. : (3.5)

J, is interpreted as a quasi-current density and (3.5) is a continuity equation in
phase space. For any compact domain % of E the relation (3.5) implies

j xow()=6 ds- 7. (3.6)
D

b

Whenever the left handside of (3.6) converges uniformly when %9 — E, the time
derivative 4, and the integral are permutable. From (3.2) it follows that this
expression vanishes in the limit & — E. So does the right handside of (3.6) with
the consequence that J, must be asymptotically a divergence free field.



624 J.-P. Amiet and P. Huguenin H.P.A.

The current density j, in q-space is obtained from J, by

@)= | G TNa, k=10 67)

A consequence of (3.5) is the usual continuity equation
ap,+tV, j=0. (3.8)

For a given w,, new solutions of (3.5) are easily obtained from a known one. For
instance

I'=9,+AVf, (3.9)

where f is any differentiable “potential”’. But the physical quasi-current has to
fulfill further requirements bound to the dynamics of the system. The dynamics
are governed by the von Neumann equation

1
oW, = {ha Wt = E (how,—w,° h) (3.10)

and by the equation of motion for the observable x
x ={x, h}p,;=AVh, (3.11)

where h is the Hamilton function of the system. For physical reasons, the
quasi-current must be linear in the velocity X and in the density w, these
properties persisting after the reduction (3.7). The most general expression is a
vector valued functional of both quantities. Before stating the result, let us remark
that the integral over E of both sides of (3.10) vanishes whenever how, € L'(E)
because the integral of the Moyal product hew, is equal to the integral of the
ordinary commutative product hw,.
We prove below that the linear functional of w, and x

7,0)=3

1 d2ny dznz
J’ dsJ' R j () e~ PPy (y 4+ x)(AVh)(sz + x) (3.12)

satisfies the continuity equation (3.5). By performing the integration variable
substitution z — z’'= sz and introducing the product g (2.6) one obtains the more
transparent form

1 (" "
g;:-z-;lL dawtgAVh=%IO daz(w, g X +xgw,), (3.13)

X being naturally supposed to satisfy (3.11). It is now obvious that 7, is a real
field on E. In the limit #— 0 the functional (3.13) becomes a function and 7,
coincides with the classical expression:

1 #
g}—-—alim—J’ daz(w, g x+x2w,) =3(W, 3 X+ X 3 W,)|azo= Wi (3.14)

The last equality holds because the product g reduces to the ordinary product of
functions for a =0.
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The proof of our assertion follows directly from the mathematical identity
V-T,={w, h}y (3.15)

which holds when 7, is defined by (3.12). Indeed, (3.15) is equivalent to the
continuity equation if w, satisfies the state equation (3.10). Proceeding from
(3.13) one gets

1 h dZny d2nz .
Vg (x)=— ———— g @Gy . 2 +
(x) Zhj_h daLXE o e V. - (w(x+y)AVh(x+z))

1 h 2n 2n _
1 j da[vx, AV, J 47YA"z ey, (x4 y)h(x+ z)]

“2nl, exe  (ma)?"

The last equality is a consequence of A being skew-symmetric. The substitutions

z—z'=z+x and y—y'=y+x yield

1 h dZnyf dZnZl
. _— d @Sy = “ ' h '
V-9 2hL, “LXE (o MY IR(Z)

% [V'x' . AVx Ve-(2i/a)l(y'—x',z'—x)]xt:x

By means of the identities

. —Q2ifa)l(y’'—x',2"—x)
V, - AV e =V —
=V.., AV ,e—(2i/a)1(y’—x,2’—x)
y z

Z\2 e ey dni . e i
- (_ l(y’_x, z’_x)e Qi/a)l(y'—x,z x)+_ e—(2;/a)l(y x,z'—x)
(84 (84
=z. aZn i a—Zn‘ef(Zilcz)l(y"x,z'wx)
l oa

one finally obtains

1 h d d2nyr dZnZI -
V . g-t =—J _j -7 = = —QRila)l(y'—x,z'—x) ' '
=%, ) Tar ¢ w,(y)h(z)

1 _ 1
=7 W W@ =— (weh—how)(x)
={W,, h}M(x) |

This proves (3.15).
The current density in g-space derived from the quasi-current (3.12) reads
after some computations

J'I‘(q)=%j1

-1

dSJ d"q'f(q+(s—1)q’,q+ (s +1)q")x*(q+s9’, q") (3.16)
E, ‘
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where
d"p . .o Oh
k(g+sq', ’=I —— @M d __(g+s5q' p), k=1:+"n. (3.17)
x“(q+sq',q) .. (i) o, (q+sq’,p
The function f, is related to w, by
W:(q, p)zsz dnqre—i(Zlh)p-q'ft(q__ql, q+qr) (318)

E,

and also describes the state of the system. It can always be written as

f(q1, @2) = J' d"q:8,.(41, 43)8(q, 4)* (3.19)

Eq

and must fulfill the normalization condition

J d"qf(q, q) = J d"qd"q'|g.(q, 9’ =1. (3.20)
E, E,xE,

q

In this way, the parametrization (3.18) yields a function w, which satisfies
automatically the three requirements (3.1-3).
For pure quantum states, w,cw, = w,, the kernel f, becomes separable

(g, 9") = ¥(q)¥(q')*. (3.21)

The factor ¢, is the Schrodinger wave function. In any case the density of
probability is equal to

() =fi(q, q). (3.22)
If p, vanishes at q = q,, then
fd', 4 =f(40,4)=0 V¢’ (3.23)

because of the special form (3.19) of f.

Remark. The validity of (3.15) is in fact based on a general property of the
Moyal bracket. The function {a, b},,(x) remains unchanged if one adds constants
to the functions a and b because a°b=ab when « is a constant. This suggests
that the Moyal bracket may be written as a functional of the first derivatives of a
and b (supposed differentiable). One finds indeed that

2n 2n
{a, bhe(x) = J d7yd"z K(z (y—x,z— x)) Va(y) - AVb(z) (3.24)
with
! A
K(A)= j dit™=" cos—t- ) (3.25)
0

The kernel k(y, z)=K(2# 'I(y, z)) is obviously invariant under homogeneous
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symplectic transformations and satisfies the ‘“d’Alembert” equation in EXE

V, - AV.k(y, z)= ﬁ% sin % l(y, 2). (3.26)

The following properties of k will be useful in the next section

[ @nakiy, )= 82" (3.27)

1 (a)\"
J d*zz™ - 2%k (y, 2) =51+ (1)) —— (E)
(AV)" - - - (AV)"= 8@ (y)y;=1- - - 2n. (3.28)

'I'h’ey indicate that (3.24) is valid for a larger class of pairs a, b than merely w,, h
pairs.

4. Locality and E-locality

The notions of locality introduced here are dynamical properties which allow
a classification of quantum systems and their Hamilton functions. They are
meaningful for localizable systems only, like those we consider here. (The
characteristic functions of compact domains of configuration space form a com-
plete set of commuting projectors [3]). Definition of locality:

“A system is said to be local in configuration space, or simply local, if for each
physical state the current density j,(q) vanishes in every point g, where the
density p,(q) vanishes itself:

Pi(qo) = 0= ji(qo) =0.” (4.1)

A local system never makes ‘“ghost apparitions” in successive disconnected
domains.
Definition of E-locality:

“A system is said to be local in phase space, or simply E-local, if the implication
wi(x0) = 0= T (x0) =0 (4.2)
holds for every physical state.”

The meaning of E-locality is certainly less concrete than that of locality.
Nevertheless, it leads to an interesting comparison with classical systems as we
shall see.

Assuming that the quasi-current 7, is defined as in (3.12) the property of
being local or E-local depends only on the form of the Hamiltonian h. More
precisely:

Theorem 1. A system is E-local if and only if its Hamilton function is a
polynomial of degree 2 at most in the linear canonical coordinates x*.

Theorem 2. A system is local (in configuration space E,) if and only if its
Hamilton function h(q, p) is of degree 2 at most in the linear momentum p.
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Proof of Theorem 1

The quasi-current written in condensed form reads

7.0= | S a0
with
2n 2
A(y, x) = J (‘ih; K(—f; Iy, z))AVh(x+z).

E-locality requires first that the domain of the kernel A, be punctual. With the
help of (3.27-28) one sees that h must be polynomial to satisfy this condition.
Secondly, 7, cannot depend on derivatives of w, which are not supposed to
vanish in x,. This limits the degree of h to 2. QED.

Proof of Theorem 2

From the relations (3.22) and (3.23) one sees that the current &, vanishes at the
same places as p, only when the kernel x (3.17) has a punctual domain. This
implies that h be polynomial in p. Supposing this is the case, x is a finite sum of
8"(q) and its derivatives, multiplied by some functions of g+ sq’, the order of
the highest derivative being equal to the degree of h minus one. Integrating (3.16)
by parts, one can easily integrate over q’, and the result is a j, equal to a sum
over partial derivatives of f. The terms with mixed derivatives like
(8*/0q 09")f(g, q')| ;=4 dO not systematically vanish when (3.23) holds. Therefore,
j:(qo) =0 only when h is a second degree polynomial in p at most. QED.

E-locality clearly implies locality. E-locality is a specific property of linear
mechanics, which is characterized by Hamiltonians of degree 2 at most in the
linear coordinates x* (free motion, oscillators, ...). The definition of E-locality
does not depend on a polarization of E into isotropic manifolds and is thus
invariant under any coordinate transformation. The class of E-local systems
contains exactly all systems which have the same classical and quantum dynamics
[4]. For these systems, the only difference between the two theories lies in the
type of initial states wy(x) that one is allowed to postulate: A classical w, must be
a positive function, interpreted as a true density of probability on E. A quantum
w, must be an M-positive function; it satisfies the uncertainty relations. The
quasi-current of an E-local system is exactly given by the classical expression

T, = xw,. (4.3)

On the other hand, the locality restricts the p dependence of h only. Its definition
is only invariant under coordinate transformations in g-space, enhancing the
physical significance of this isotropic sub-manifold of E.

In conclusion, the most general Hamiltonian allowed by locality has the form

n

h(x)= 2, Tq)(p. + A(@)(p + Alq)) + V(q)

k,l=1

= 3 e+ AT+ )+ Via) - (5) a0r@), @4

kil=1
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It is remarkable that this result coincides precisely for one particle with the most
general Hamiltonian having the full passive Galilean invariance [5, 6]. The current
density of a local system reduces to the simple form

k dn » k
i@ = L (277;:)” G“(q, p)w.(q, p)

_(8h, o R & &h |
_(apk (q,O) 1213 al Il)ft(q q q+q)|q =q° (45)

5. Examples of probability current densities

a) Schrodinger equation with magnetic field and local potential

The Hamilton-function is
h=5-(5-24@) + V@

21” (pqu) (p~-A)+V 6D
Equation (4.5) together with (3.21) gives for pure states

@ = (== A5 9, )0 @- DG+ Dle-s

or
it T o e o © B 1
@) =5— (W¥@) V(@) — (@) VE@d)) ch(q)ldft(q)l- (5.2)

This is the well known form of the probability current. Our expression (3.16) is
obviously a generalization of this case. ~

b) Kisslinger equation

The Kisslinger equation [7] is a traditional tool used for the phenomenological
description of the pion-nucleus interaction. This is a Schrodinger equation mod-
ified by the introduction of an effective mass depending on the nuclear density.
The Hamilton-function has the form

F e P h 1
W@ p)=p o5 p+ V(@)= -—-—-—2m(q) = (5.3)
The current density reads
i(q) = ( )(tlf*(q) V(@) — (@) VG))- (5.4)

It is a trivial extension of the previous case. The customary interpretation of ||

as the probability density is preserved here, in contrast to propositions by D. Pai
and E. Vogt [8].
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c) One band approximation

In solid state physics, the effective mass is a function of p and does not
depend on position. One expects a periodic function of p in the description of a
single band. As an illustration, let us consider the one-dimensional model

h(g, p)= zpr;(, (sin -;-’(;) + V(q). (5.5)

The system is no longer local and we must start from expressions (3.16-17) to
calculate the current which reads finally

“‘”%E T {‘#i"(q—(sﬂ)fg)w(q—(s-1)%)
_nb’f(q+(s+ 1)%)&,(q+(g—1)-§;}' 5.6)

The non-locality extends as far as Aq=+2hp,'. The non-local relation (5.6)
between j and ¢ is not a particular case of (4.5). The physical meaning of the
quantities j, ¢ and ||* will need some more thought to be really understood.

d) Non-local potential contribution to the current

The contributions to the current (3.16) coming from different terms of h can
be isolated by linearity. In nuclear physics one frequently makes use of so called
separable potentials as an approximation of non-local ones. The Wigner images in
phase space of such potentials are complicated functions of q and p simultane-
ously. A simple example is given by the projector onto the ground-state of the
harmonic oscillator. A potential proportional to this projector reads

V(q, p) = a2e_(”h“’)(kq2+(”'")p2), w?= —, (5‘7)

where « 1is its strength. Its contribution to the current is easily calculated from
(3.16-17):

3 . maw
Jpot (@) = —icx VW

1 oo
X J’ dSJ dq'q'e”(meM @@y (g + (s — 1)) (g + (s + 1)q).
. —
(5.8)
This part of the current vanishes outside the interaction region.

Note added in proof. We learned recently of the works of R. E. Collins [9] on a
related subject. His starting point is different and we think that the time evolution
defined by the potential (5.7) above exhibits a counter example to his conclusions.
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