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Surface tension and phase transition
for lattice systems. II

C. Gruber') and B. Wisskott?)
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Ecole Polytechnique Fédérale de Lausanne
LAUSANNE, Switzerland

(2) Départment de Mathématiques
Ecole Polytechnique Fédérale de Lausanne
LAUSANNE, Switzerland™)

(22. X.1979)

Abstract. The geometrical crlterlon previously given for the existence of phase transitions is
shown to be valid for any spin 3 ferromagnetic systems. This criterion appears in relation with a
non-local observable, the ‘surface tension’, whose general properties are investigated.

The connection with other criteria, valid however only for Z'-invariant crystal lattices, is
discussed.

1. Introduction

In a recent paper [1] (which we shall refer to (I) in this article), it was
suggested to introduce the ‘surface tension’ as a possible definition of phase
transitions, i.e. there exists a phase transition associated with surface tension 7 if
there exists some critical temperature T, such that 7=0 for T>T, and 7#0 (or
-not defined) for T<T..

The interest of such a definition is that it is expected to coincide with the
usual definition whenever the transition is associated with a local order parameter
and may give an extension when the transition is associated with non local order
parameters. In this connection we can mention a new result [2] which states that
the surface tension is always zero when the spontaneous magnetization is zero for
ferro-magnetic system with two body forces.

Now, one of the standard techniques to prove the existence of a local order
parameter is to use the ‘Peierls argument’ to show the existence of a spontaneous
magnetization m at low temperatures [3, 4]; however, there exists phase transi-
tions associated with local order parameter for which m =0 for all temperature.
This case was studied carefully in [4] where it was shown that it is possible to
reduce the system to a new system which will exhibit a spontaneous magnetization

* if the original system has a transition associated with a local parameter. This

*) Present address: Department of Mathematics, Stanford University, STANFORD CA. 94305,
USA.
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discussion was however restricted to spin 3 systems on Z” with Z”-invariant

interactions.

On the other hand the discussion of the phase transition using the surface
tension (I) was rather general (arbitrary lattice and general phase space associated
with each lattice sites); unfortunately it was necessary to introduce some condi-
tions which correspond in fact to the condition of a spontaneous magnetization (or
decomposition property in the terminology of [4]).

To be able to study the more general phase transitions (e.g. associated with a
local order parameter other than the magnetization) we introduce in this paper a
slightly modified definition of the surface tension. This new definition is exactly
the dual definition of the Wilson loop integral introduced in Gauge Theories [5];
it differs from the previous definition in the fact that it involves two limiting
procedures: first the volume of the system has to go to infinity, then the non-local
observable associated with the dividing surface. (In the previous definition of the
surface tension these limits were simultaneously taken). We should remark that in
some explicit examples, it is known that both definitions coincide.

To simplify the following discussion we shall restrict ourselves to spin 3
systems; however, some of the results have been extended to general systems [6]
using the same group structure as in (I)

As in (I), we shall first derive general bounds for this new surface tension and
prove that it is always zero at high temperature. We then show that for
ferromagnetic systems, this surface tension is well defined, non-negative, bounded
and decreases as the temperature increases; furthermore, we prove that the
criterion given in (I) for the existence of phase transitions remains valid for
systems which do not have the decomposition property.

The relation between our approach and the method introduced in [4] is
expressed in terms of HT-HT duality transformation whose properties are briefly
discussed. In the last section we compare our general criterion with the criterion
given in [4] for Z”-invariant crystal lattices and prove the equivalence of these
criteria for pair potentials; if we introduce the conjecture that the criteria are
equivalent for systems with the decomposition property, they will remain equival-
ent for systems which do not have this decomposition property.

Finally, we shall discuss some examples which lead to the conjecture that a
surface tension will always appear between distinct, quasi-periodic, equilibrium
states.

2. Definitions and notations [3]

We recall that a ‘Classical spin 3 lattice system’ (or system) is defined by

{£, B, K} where

a) & is a countable subset of R”, consisting of elements called ‘sites’
b) A is a subset of P(¥) (the set of all finite subsets of ¥) consisting of
elements B called ‘bonds’

c) K is a real function on %, defining the ‘interactions’, such that Kz # 0 for
all B in 9.

The sets P(£)={X; X< ¥} and P(B)={B; B < B} are commutative groups
for the product defined by the symmetric difference. Furthermore 2 (%) is a graph
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for the incidence relation (B, B,) if B;N B,# ¢. We denote by | X]| and |B| the
cardinality of X and .

The functions 0. Y e P(¥), and v, on g’(fl?) are defined by:

i) oy(X): P(&£)—{-1, +1} or (X} =1 X
i) y: P(&L)— P(B) Y(X)={Be®B;op(X)=—1}
and we introduce the subgroups of (%) and P(&£) given by:

I=9my T;=INP(RB) TIP=Imyls«)

%:{%e@(%); [T os(x)=1 VXe@f(SE)}

Be¥

Hy=H O Py(RB)
F=Kery={Sc¥%;05(S)=1 VBe®RB} F=FNP(L)

Let Ae P{(¥) and Y < %; the ‘Equilibrium states of the finite system A with
boundary condition Y’ are defined by the probability measure p§{¥’ on P(A)

(Y)_Z(A Y) 1 —(1/kT)H *)

1
1.7 HA,Y(X) == Z KBUB(YACX)
kT Be%,

By={BeB;BNA#d} A°=F\A Y,=YNA°
ZWA,Y)= ) ] efom®

X<A BE%A

The surface tension will be introduced by means of the function p%” on

P(BA)
(+)(B) <H e—ZKBch> Z p(”(X) H e~ 2Kp7s 0
(A.+)

BepB X<A Bep

which admits the following expansions [3]:

High temperature (HT)-expansion

Y, 0a(B)- II thKg

(+)(B) Be¥Ka Be

Y 1] thKg

BeX, Bef3
where #, ={k € P(B,); |[gc 05(X)=1VX c A} P(B,) is the HT group.

Low Temperature (LT)-expansion

1 e 2e

B:pALT™ Bed
nip)=——"—"->=

Z H e*ZKB
BeI'™ Be

where I'™ = {y(X); X c A} = Tm(y)a, = P(B,) is the LT group.

*)  For Y =4¢ we write p{”
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To discuss thermodynamic limits we shall consider only sequences {A;} con-

verging to & in such a manner that A;., © A; and we define the function p’ on
P;(B) by

pM(B)= Aim L i (B)

(we know the limit exists at least for appropriate sequences of {A;}).

Notation: We shall denote by the same symbol A a domain in R” and its
intersection with %.

3. Surface tension

3.1. Definition and general properties

To introduce the surface tension between the states p™ and p®®, Se &, S# ¢,
we decompose £ into £* and ¥4

L ={xe¥; x,>0}
=L\

and we consider parallelipipeds A with sides (L, ..., L,_;, 24() symmetric with
respect to the plane x, = 0 (we consider only infinite lattices & such for all A<R”
finite |£ N AS|=x).

Definition. The ‘Surface tension’ 7% between the states p” and p® is
defined by:

1
A(+S) — _ -
T 1171_1330 1&1m L Log 1" (BA)

Ba=v(Ss) N B, S.=SNnZ?
For a discussion of this definition, we refer to (I) where the surface tension

was introduced using thermodynamics analogies and where it was given by:

1
¢S = — Lim Lim E Log M(+)(BA)

L;—o M—©

(for lack of better name we shall still call 75 surface tension).

Theorem 1. If the surface tension 7S exists, it satisfies the following in-
equality:

H'H’S)| <2KC™S

K = sup |Kg|

Be®

+.S) _ .
C le{llffngL, Cy Ca :IEI;H [Ba - vl
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Proof. Let Ae P;(&£), Br=v(Ss) N B, and A e P:(£) such that A> A. From
the H.T. expansion it follows immediately that

MS_\H(BA) = Mg)(BA'Y) VyeI'™®
Therefore

e 2K vl < S (Bry) < e 2KIB v
implies

ILog p(BAv)|<2K min |8, - |

'yel_'(f)

which concludes the proof.

Remarks
1) The constant C** is a geometrical constant independent of temperature.
2) It may happen that C*® =0 (see example), i.e. + =0 for all tempera-

tures. This result may indicate that the state p® is identical with the state
p. Furthermore, if C* = () for all S in & there will be no phase transition
associated with surface tension.

In the rest of this section we consider ‘ferromagnetic systems’, i.e. systems
such that Kz >0 for all B in %, with finite range interaction, i.e. diam B <
R < for all B. Furthermore, the system has ‘finite density of sites’ if there
exists some 8 >0 such that |[x—x'|=8 for all x, x" in &

Theorem 2. Let {¥, B, K} be any ferromagnetic system with finite density,
finite range interactions and K <. For any S in & the surface tension 5 exists,
is non-negative, bounded above, and is a decreasing function of the temperature.

Proof. For ferromagnetic systems we have the following ‘Griffith’s inequality’
M(+)(6132) K (+)(51)M(+}(Bz) =0

Indeed, using successively the HT and LT-expansions, we have:

BB — (B P(B) =A% Y Y

Be¥X, B'e¥H,

X[0g,6,(B)— 0a,(B)os,(B)] ] thKs [] thKg

Bep Bep’

=A% Y Y [1-0,(BB)]0s,6(B)

B'eH, EEV{A

X l_[ th Kg H_ (th Kg)t'*+os®@112

Bef3p’ BeB

=B2 ) [1-05(8"] [] thK;g

B e A Bep”

| T ez

B:B BBy BeB
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with
s =Kg[1-0s(B")]
The existence of the limit

Li—o M—x

1
Lim Lim L Log u(B,)

is then established using the conditions on the systems and the subadditivity
arguments of ref. [7].

Using the HT-expansion we see that u$”(B)<1 for ferromagnetic systems
and thus #75=0. Finally

wH(B,) = < I‘[ e—ZKBch> = o—2KC;
()

Be®B,
(TB(Sd):*l

where C’ is the number of bonds which intersect simultaneously £* and £<.
For finite range interactions and finite density of sites we thus have:

0<#+9<2KC'

C’=sup o

P = maximum density of bonds

crossing the plane x, = 0.

Finally, using the same technique as above (see also the lemma Sec. 3.3.), we
have the following Griffith inequality:

nike(B)=pke(B) if KP=K§>0VB,

which concludes the proof.

3.2. Surface tension at high temperature

Theorem 3. Let £, B, K} be any system with finite denisty of sites, finite
range interactions and K <. For any S € &, there exists a temperature T, such that

268) — for all T= To-

Proof. Let A be a parallelipiped with sides (L,...,L,_;,2M), B,=
v(Sq) N By, and A e Pi(¥) such that A>A.
To establish this theorem, we make use of the HT-expansion of u4”(B,); we

note first that any graph B in % A can be unlque]y decomposed as union of
connected graphs which are also in .

As usual, we introduce the space H,={£=(By,....By); €N, B; < B, con-
nected graph} and the function G:x, — {0, 1} defined by:

GUBy,....BD=I12B.B)

i#j

if B; 1s connected to B;
1 otherwise

(8, 8)- ]
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to obtain:
Y 0,8 [ thKs= Y G© [][6(B)os, (B)]
BedH, Be@ ceXy Beg
—exp| T Gelo T 168105, 8)]
EeHy Beg

where G (&) is the truncated G-function [8], and

[T th K if Be %,
$(B) = P<F

0 otherwise

We thus have:

Log p'(8)= ¥ GT(e)[

Ee&,

o ®-1|TT 6()

Beg Beg
Let us take A such that B in %, implies B < A; then B € %, N P(AB,) implies
B e and '

05 (Ba) =g (v(Sy))=1
which yields:

Logni'Bo= ¥ Gr(®|IT ow®-1|IT 6(8)

£y Be& Beg
[ElNBA7 ¢
[£1NaA#d

where [£]MN B, # ¢ means there exists B in & such that BN B, # ¢
[£€]NMOA # ¢ means there exists 8 in & such that B¢ P(AB,)

and

[Log ni’(BAI<2 ) |Gr(®)| (th K)¥

Ec¥,

[£1NB F*d
[£1NaA=d
l€l= 2 18l
Bek _
M’ p—
ILog u{(BOI=24 Y >, Y |Gp(9)] (th K)e
d=0 x€0A E€H A
|x,,le[d&,(d+1)8[ [E]2x
diam[£]>d’

1
M'==(M+R)  d'=d

where [£]2 x means there exists 3 €& and B € 3 such that B> x.

diam [£¢] = diam (U B); IAN={xe A% y(x)NP(RB,) # P}

Beg



604 C. Gruber and B. Wisskott H.P.A.

Using Lemma 2 of (I) we know that there exist z,€ ]0, 1] such that
sup Z |§| |Gr(é)|<(C,+ Cod¥)e” G

xe€F  te¥,

[£]ax
diam[£]>d

_ Furthermore, since thKk -0 as T — oo, there exists some T, such that
thK < z,; therefore if T=T,

.
ILog n{P(BAI=24 Y. Y (G + Cud™)e Y
d=0 x€0A

Ix.,le[d8,(d+1)8[

v—1 v—1 1 o0
<26“R[] Li{4 Y 5 Y (Cy+C,8vd*)e CV3d
i=1 ji=1 Ljd=0

+2(Cy+ Co(M+ R)v)e—CstR}
= I1 LAL, M)

where f(L;, M) is a bounded function which tends to zero as {L;} and M tend to o;
therefore ,

|#%9)| < Lim Lim f(L;, M) =0
L,— M—o

3.3. Surface tension at low temperature

To establish the low temperature properties we need the following defini-
tions:

Let {x9};.;= %; be a family of generators for %, i.e.
os(kP?=1)VjeJ& BeT
The ‘dual graph’ structure on P(%) is defined by the incidence relation
‘(B;, B,] if there exists j€J such that k9’ > {8, B,}.
Let us then note that any element 8 in I'* can be uniquely decomposed into

*-connected component in I'NP(B,); indeed if B=v(X)=p UB" with XA
and B', B” *-disconnected then for all j in J

0.B(K(J')) =1 = UB'(KU)) - O.B"(gg(i))
and thus B’ and B” are in TN P(RB,).

Theorem 4. Let {L, B, K} be any ferromagnetic system with finite density of
sites, finite range interactions such that K = infg .4 Kg >0, and such that:

i) There exists a sequence of finite domains A; — & such that T N P(B, ) =TH

ii) There exists a famtly of generators {7} for H; such that supg.g |{] eJ;k® >
Bl =a <.

Then, for any S in & there exists a temperature T} such that
FES) = ACHS for all T<T),
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where C™*® is the geometrical constant introduced in Theorem 1 and A is a
positive constant.

Remarks

1) The condition (i) is exactly the condition which is needed for Peierls argument
[3, 4]. It is equivalent to I'? =T, and T N P(B,,) = '*’. This condition (i) is
expected to be always satisfied for Z*-invariant systems with T'¥ = I's; such a
result will be established in Sec. 6 for £ =17".

In the following we shall give a generalization of this theorem where
condition (i) can be dropped.

2) The condition (u) is necessary because we have no assumption on ££ and %;
in particular it is known to be verified for Z"-invariant systems with &= Z".

3) Conditions (i) and (ii) are the conditions introduced in (I),

Proof of Theorem 4

Let A be a parallelipiped with sides (L, ..., L,_,,2M), Bo=v(S;) N B4, and
A be a domain of the sequence introduced in (i) such that Ao A. If C*9 =0 it is
trivially true (Theorem 2); let us then assume C™ >0.

Using the condition (i) we see that any element B in I'® can be uniquely
decomposed into *-connnected components in

I NP(B,)=T'P

Furthermore, any graph Be€ ?(%,) can be decomposed into *-connected
components which we write as:

q i
=UBUB
where

B, is *-connected to B,
B; is not *-connected to B,

The LT-expansion of w4”(8,) yields:

Lo e

Bz(él-"é‘)-él-"ér) Beg

R (mB)BAeT;B; T ’ —2K 8]
(B = < ) e
- =By, Bo)
Y Mo
Bel'® Bepg B; *-conn. toBA

where K =infg. g |Kg|>0 (by assumption on the function K) i.e.

(+)(BA)< Z e-2KqN(q)
a=Cy
where C, =min, o |y - B4| is the constant introduced in Theorem 1 and N§ is

the number of graphs with length 9 such that all its *-connected components are
*_connected to 3,.
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Using Lemma 5 of (I) we know that

_ {4“a“ if q=|B,|
4Bl g3 if g <|B.l

where a = a? with a the constant introduced in condition (ii), and thus

|B/_\i‘1 o
pOBI= ) AMate S ), (4ae )

q=Cy a=|Bal

418\ e 2K)Ca
<= (3‘ e-23< if 4ae™28 <1
Ry

2

By the condition on the function K, e ** — 0 as T — 0 and thus there exists

T4 such that 4ae 2% <1 if T<T}.
Therefore

—Log u§”(Ba) = Cr(2K —Log o) — |84 Log 4

1 ;
and 7= AC™ with A >0 if T< T}, (note that L |B4| is uniformly bounded
1T .

since S € & and the system has finite density of sites and finite range interactions).
Let us note that for 7Z*-invariant systems conditions (i) implies that there
exists a unique symmetric equilibrium state at low temperature [7]. We shall now
see that this uniqueness property is in fact sufficient.
To derive this property we introduce the following function on %(%,)

>l e
wh(B) = B:BBed, BeB
A
¥ ] e
Bed, BeB
ba=TNP(RB,)

Lemma. Let {&, 9B, K} be a ferromagnetic system with finite range interactions.
The limit w'(B)=lim,_, ¢ wi(B) exists and defines a symmetric equilibrium state.

Proof
1) Let us first show that
wh xo(B)—ph xa(B)=0 if K@=K®>(

(Griffith’s inequality).
From the definition of w, we have:

y l’l e 2Kaa(®)
wh(B) = [] e 2o BotaBeb
Bep Z l‘[ e 2Ks

Bed, Bep
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2)

3)

Using Poisson formulae (e.g. of [3] p. 166) with
ba = P(ABA) bx = {B € P(RB4); 0 (é) =+1VBeda}

1.e.
Y f(B)=2% ) f(B)
Beda Bedh
f@=27""4" ) aa(B)f(B)
BC%A
where
fB)=T1 e Ke=K
Bep _ or
KEZKBUB(B)
and
f@=27" T (1+0s(B)e )
Be®B,
=27 I] (X +e ) J] e ™ ] th Ky
Be®, Be®, BeB
we obtain
Z G'B(B) H~thKB
uh(B) =22 =
> [[thkK,
Bednx Bef
Therefore:

‘-";&,K(“(B) o 113 K(Z)(B)
=A2 Y Y [op(B)-0p(B)]- [L thKY [] thK§

Bedi B'edi Bep Bep’

=A% ) Y (1-0,(BB ))O'B(B) I] th K@ chK‘”[thK(Z)]" u (8"
B'ed; Bedi Befip’ Bef@

=A?2 ) (1-0,(8) [] thK®  wike(B)=0
B"ed) Bep”

If thus follows from the above inequality that

1zph (B)=pi (B) if AyDA,

and thus w’(B)=1lim,_ ¢ p,(B) exists (at least for appropriate chosen sequ-
ences A — ¥).

To show that u'(B8) defines an equilibrium state we recall®) that it is sufficient
to show that:

a) u'(d)=1
b) w'(B)=p'(By) for all BeP;(£), yeT?

*)

Proposition 1 of [7].
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¢) (Di.m)(B)=(Dy p)Bk) for all B e P(F), k € H;
d) w’ defines a positive form.

a) Obvious
b) For all y=vy(X)eI'” and A > X we have yeI'™. Furthermore B"eT' N
P(RB) and yT'™™ imply B” - y € ¢, which yields:

uiA(B)=wui(By) VADX
i.e.

w'(B)=p'(By) Vyel?P

c)
Z H e-zKB H e—ZKBaB(B)
l.L' (B) _ Bed, BeB Bep
r(B) =
Z I_I e—ZKB
Beds Bep
and
e K7 ® = ch DKy + 05 (B)sh2Ky
imply
ui(B) =1 ch2kg ). [ th(-2Kp)oh(B) = (Dkol)(B)
Bep B=B BeB
with
_Z Us(é) 11 e 2K
Th(B) ="
Y e
Beds Bep
Therefore (Dy ui)(B) = oi(B)
and

oh(B)=a\(B - k) for all k € ¥;

(since 0%(B)=1 for Be p,=TNP(B,) and ¥ € ;)
d) We know [7] that u' will define a symmetric form iff

Y 0s(B)'(B)=0 VB, B,c P (B)

Bep

which is verified since

Y asBonB=—— Y Tl e Y as(8:B)

Bep e Bednr BeB BB

2“3]83115 NB.o

Theorem 5. Let {¥, B, K} be a ferromagnetic system with finite density of
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sites, finite range interaction, such that K >0 and such that the condition (ii) of
Theorem 4 holds.

1)

2)

iy

2)

If there exists a unique symmetric equilibrium state then for any S in & there
exists a temperature T} such that

FE=ACHS  forall T<TY

where C®S = Lim sup,_.. 1/(TIL,)C, CAA=min,,erleA'y|, and A is a positive
constant.

In any case if CS'>0 for some S in & there exists a phase transition
associated with a non local order parameter. (This order parameter is 7 if
the symmetric state is unique).

Proof
Since p’ defines a symmetric equilibrium state, the uniqueness assumption
implies that

1'(Ba) =1 (Ba)

We can now use the same proof as for Theorem 4 replacing w$”(Ba) by
rnh(Bs) and usmg the fact that any element B in ¢, can be uniquely
decomposed into *-connected component in ¢,.

If C*>0 the proof of part (1) implies

L;—o0 M-

7' =—lim llmﬁlL-LOgM(BA)>AC(+S)>0 if T<Ty;

on the other hand, we can repeat the proof of Theorem 3 for 7’ to conclude
that

=0 for T>T,

Indeed using the expression of p) in terms of ¢, we can repeat the
proof of Theorem 3, replacing K, by q’) As since Bed Aﬁ P(AB,) implies

0'3(31\) =0g (v(Sa)) = UB('Y(Sd NA)) =

we can conclude just as in Theorem 3.

In conclusion 7' is a non local order parameter, which is zero at high
temperature and positive at low temperature.

From the definition of w/, we have

ABY) = uir(B) Vye d,
and

Y 11 e 2Ks 10 e 2Keos(®)

Bed’/\ BGB BSB

which yields
[Log #4(8)I<2K min|B,
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and
[Log 1'(Ba)|<2K min [8,7|

therefore
]$’|£2Ké(+'5)
(Notice that CHS =S and F(f):Ff implies CHS) = ¢S,

Conclusion

If there exists a unique symmetric equilibrium state, or if TP =T, the condition
C*$>0 is a necessary and sufficient condition for the existence of a phase
transition association with surface tension 7; in all cases it is a sufficient condition.

The constant C*S? is most easily evaluated using a HT-LT duality transfor-
mation; indeed any HT-LT duality transformation defined by means of a bijec-
tion d:B— B* of # onto #* induces a bijection of T'; onto ¥} and therefore

Cy= mg} |Bxc*;  Brx={B™; Bepa}

i.e. C, is the length of the smallest graph on the dual which can be obtained as
product of B%, with a closed graph «* of finite length.

4. Examples

All examples given in (I) satisfy the conditions of Theorem 4 and the
conclusions remain valid; let us then consider systems which do not satisfy the
conditions of Theorem 4, and cannot be discussed using the results of (I).

4.1. 2-dimensional system with 4 body forces

Let =77 R ={BcZ? B =rectangles with sides of length 1 and 2} then
F=F,UF, where

Fo={SeF;|SNX)| is even VX elementary square}
={Se%;|SNX]is odd VX elementary square}

To compute the geometrical constant C®5’, we note that the usual Ising
model is a HT-LT dual of this model for the mapping d : B — B™ represented on
Fig. 1 ([3], p. 26).

It is seen easily seen that for any S in &, p=0, 1, the graph v(S,)* is of the

form shown on Fig. 2(a), and thus if p=0 we can take k*= [|  «¥ to show
ie[—L/2,L/2]

that C, =2 and C*9=0. 0,=0
On the other hand if p =1, y(S,)* is simply a broken line such as shown on
Fig. 3, in which case C,=L and C*5 =1.
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7
| ]
| |
l 1
I I
n -
gtk Sies J
I I
! S -——
B B*
Figure 1
The lattice £ ={@}, the dual ¥*={X} and the HT-LT duality transformation d.
X2 p_e. p‘eu
Yo——— X - - ==X
! 00 i i
X1 | 1
oo = e - -~
a) 6 6 b)
Figure 2

a) y(S,)* for Se¥,; 0,0"€{0, 1} and the difference are mod 2
b) element .

Figure 3
v(Sy)* for Se¥,.

In conclusion for any S in %, #* =0 at all temperatures; for any S in %,
there exists a temperature T, such that #*9=0 for T>T, and #*5>0 for
T <T,: this model has thus a phase transition associated with surface tension 7.

In the same manner, we can also conclude that for any pair of states p‘, p*”
with S, S" in #,, 757 =0; on the other hand #¢5°>0 if Se€ ¥, and S'€ ¥, at low
temperature.

Conjecture 1

The surface tension 7557
and p®” are distinct.

With this conjecture, we arrive at the conclusion that there exists exactly two
distinct states at low temperature with symmetry group &, and no spontaneous
magnetization.

Let us recall that it is in fact known that this model has a first order phase
transition with local order parameter (o), X = elementary square, with a critical
temperature given by the critical temperature of the Ising model; moreover it 1s
also known that there exists exactly two states at low temperature with symmetry
group ¥,. These known results support therefore our conjecture.

is different from zero if and only if the states p®
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4.2. Triangular system with diluted 3-body forces
This model was discussed in [9] and is represented on Fig. 4.
YN

NN
790 "’//7-05_
"’//"’ ETA LA
TV NN

L N0 Vo

XZL

X1

Figure 4
& 3-body forces,
{*}1=%> %, ={A}; {X}=dual lattice = £*.

Again in this example & is of infinite order and can be decomposed as
y - y() U yl
Fo={SeF; L' NS=0¢}
= {S ¥ Fle S}

1
a)
Figure 5
a) Se¥, b) Se¥,

(@ A B=SN{x,=0}
{&}c 'Y(Sd)-

To compute C“S we note that the usual Ising model is again a HT-LT dual
in the general sense of Ref. [3; Section 2.6] for the mapping b — b™ shown in Fig.
6.

d N N7
1> / \b/ Ny
N
X L,__._ v
x x RS e
/
\
@ Lo NNV
X x > M e e
d T
=S ron b
! " b
» Lomess N v
Figure 6

HT-LT duality defined by a bijection, i.e. b*# b"™* but gy+ = gy

For any S in &, the graph y(S,)* is a closed graph consisting of ‘double
lines;” for any S in &, it is a closed graph with ‘simple lines’



Vol. 52 1979  Surface tension and phase transition for lattice systems. IT 613

Figure 7
v(S,)* for the example Fig. 5.

It thus follows that C,=01if Se ¥, and C.=LifSe 9’1 As consequence for
any S in %, 7*9=0 at all temperatures; for any S in &, F*>0 at low
temperatures; thlS model has thus a phase transition associated with surface tension
T

Let us recall that it is known [9] that this model has a first order phase
transition with spontaneous magnetization on the sublattice #£' given by the
spontaneous magnetization of the Ising model (with th K™ = (th K)?).

Repeating the same argument, we can again conclude that #55°=0 if
S, S'e¥,, p=0,1, and 7$57>0 at low temperature if Se€ ¥,, S'e ¥,. With the
same conjecture as before we would thus be led to conclude that there exists only
two distinct states at low temperature with symmetry group ¥,.

S. HT-HT duality transformation

In this section, we shall discuss HT-HT duality transformation; this will
enable us to see that the proof Theorem 5 reduces to proving Theorem 4 on the
dual system. This will imply that the non local order parameter 7' is the surface
tension on the dual model.

We recall [3] that the system {¥*, 3% K*} is a HT-HT dual system for
{&, B, K} if there exists a surjective mapping d : B — B* of # onto %, such that
the induced mapping D: B — B* of @(B) onto P(R*), yields a bijection of
into #7 and such that e B‘_Hsed -1+ e¥s, We then know that D is an isomorph-
ism between the groups #; and

5.1. Construction of a HT-HT dual system

Let {49} ro I'; be a family of generators for ', i.e. for all y e I'; there exists
I<J finite such that y=[],.;¥y®; in the following we shall assume that the
following condition is satisfied

sup {jeJ; y"¥aB}<b<w

Be®R
(which is analogous to the condition (ii) of Theorem 4).
We then define {£*, 3%, K*} by:

a) F*=1Jie xf=j
b) d: B!—-)B*={jel;y(’)3B}

Property 1

The system {&£*, B*, K*} is a HT-HT dual for {¥, %, K} such that T*® =T};
the duality transformation d is a bijection.
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Proof. Let us first note that the condition on the family of generators implies
that for all B in 3, |B*|<b.

To show that d is a bijection let X% = £ be such that y@ = y(X%), je J; the
relation B¥= B¥ reads:

{iel;v9aB}={jeJ;v"3B,}
i.e.
{iet;05(XP)=-1}={jeJ; 0p,(XP)=-1}

Suppose now that B;# B,; then there exists x € B, such that x¢ B,, i.e.
B, e y(x), B, ¢ v(x). Since y(x) eI there exists J, < J finite such that

y(x)=[]v?
jed,
o, (x)=—1=[] 05 (X?)
i€ty

op,(x)=+1=[] 0p,(XP)

jely

Therefore there would exist jeJ, such that og (X®)# 0p,(X?) which is in
contradiction with the condition B¥ = B¥. In conclusion d is a bijection.

To show that d defines a HT-HT duality transformation, we first note that
for all jeJ, Bey® iff B*5x¥, i.e. Bey? iff B*e y*(xT); therefore the image of
v% under D is y*(x{) and the image of the product y©vy* is y*(x¥)y*(x¥): i.e.
the image of the generators of I', are the generators of I'*®. Since d is a bijection
we conclude that D induces a bijection of Iy into I'*¥ and thus a bijection of
[+ NP(B) into T*O* N P(B*). But

r* N Pr(B*)=H* N P(B*) = HF
while

I NP(B)={B € P:(B), os(y)=+1Vyely}
={BeP(B); [] o(X)=+1VX <P (L)}

BepB

thus D induces a bijection of %; into ¥} and d is a HT-HT duality transforma-
tion.

G)Finally since T;=T*% and d is a bijection then I'=T"* and thus [;=If=
=%,

5.2. Examples

1) Consider the system with diluted 3-body forces on the triangular lattice
discussed in Section 4.2 and let us take as family of generators for I'; the
elements {y%} shown on Fig. 8.
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INNADN NN NN
LR
\VAVA\AVAV @\/ \VAY,

Figure 8
Family of generators for I';.

Following then the general construction we obtain the HT-HT dual shown on
Fig. 9. We should notice that ' #T'; but I'*P =TF.

Figure 9
A dual model for the model of Fig. 4.

2) Let us consider the example of Section 4.1 and take as family of generators
for I'; the elements {y®} shown on Fig. 10. The HT-HT dual obtained by our
construction is the usual Ising model.

\ F==1
| |
d,. ]
4o 1]
Lo

*r—es e

a) b) Lo

Figure 10

a) generators for I';
b) HT-HT duality transformation

3) As last example we shall consider the 2-dimensional gauge model shown on

Fig. 11 (the 3-dimensional case was discussed in (I)).

This system has a group & of infinite order as well as a non trivial gauge
group, i.e. % #{d}. It is easy to see that for all S in &, 75 =0: there exists no
phase transition associated with surface tension; with our conjecture of Section 4.1
we are led to conclude that there exist a unique state at all temperatures.

It is straightforward to verify that the mapping d of Fig. 11(b) defines a
HT-HT duality transformation, the model obtained by this transformation is a
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Figure 11
a) 2-dim. gauge model ¥ ={e, X}
b) The HT-HT duality transformation ¥£*={X} B*={&, ®}.

model on 7> with alternating 4-body forces and external field. (It is the HT-LT
dual of the usual Ising model in field).

Since the transformation d defines also a LT-LT transformation [3], we
conclude [3, p. 214] that there exists a bijection between the equilibrium states of
the gauge model and the equilibrium states of this dual model. Using then
Theorem 2 of [7] we conclude that the gauge model has a unique Z*-invariant
equilibrium state. (Since it is the HT-LT dual of the usual Ising model in Field).
This result supports therefore our conjecture 1.

Let us finally remark that this HT-HT duality transformation corresponds to
‘fixing the gauge’ for the original model.

5.3. HT-HT duality and surface tension

We shall now show that the function w’ introduced in Theorem 5 corres-
ponds to ¥ for the HT-HT dual model.

Let {Z, 8, K} be a system and {y"’} be a family of generators for I, satisfying
the condition of Section 5.1 (i.e. the number of generators containing a given B is
always smaller or equal to a finite constant); furthermore we shall assume that
there exists a sequence of finite domains A — £ such that the condition yeI'N
P(RB,) implies that y=[];c; vy® with y®<3RB, for all ielL

Let A be a domain in the above sequence and

A*={xFeL* vV B,}
(A* is then finite)
RBE.={B*ec B*; AxFeA*st. B¥e y*(x)}
={Be®B;IjeTst.yPc B,, Bey"}
= {%A}*

PRe=T*NP(Bprs) =TFNP(B )
=T, NP(BA))* = (Pa)*
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But
dre={y*(XF); |IX*| <00 y*(X¥) < B4}

= {v*=H Y*(x); [ <o v*C%’K*}

iel

%
={7=H yP; [<w VC%A]

iel
_ *
= {v =[1v9; 1< y?c %‘A}
iel
1.e.
= {v* =[T ¥ ske A*}
iel
($n)*= ¢k =T
We have thus

Z H e—ZKB

B:BBeds Bep

_Z 11 e 2%z

Bed, BeB

uh(B) =

e~ 2Kan

(_-}*:B*é*el"*“\*) B*GE*
B o—2Kas
B*el*A" Bep*

1.
ph(B) = wi"(B*)
and

n'(B) = u* M (B*)

617

To conclude this discussion, we should remark that it follows from a gener'fll
theorem on HT-HT duality transformation ([3], p. 214) that w'(8) is a symmetric

equilibrium state for {&, %4, K}.

6. Z"-Invariant crystal lattice

A Z"-invariant crystal lattice is by definition a system with lattice £ = Z* and
Z”-invariant interactions.™) We shall furthermore consider only finite range in-

teractions.

These particular systems were studied in a very original manner in [4]; in
particular for ferromagnetic interactions it was shown that they exhibit a phase
transition associated with local order parameter if and only if the reduced system

has a non trivial symmetry group.

*)  ForallaeZ’, Be®R then 7,Be®B and K, p = Ky where 7, denotes translation by the vector a.
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In this section, we would like to investigate whether our definition generalizes
the definition of a phase transition with local order parameter; therefore we
would like to see whether systems which satisfy the conditions of [4] will also
satisfy our general criterion for the existence of a phase transition.

Let us first give some properties of Z”-invariant crystal lattices.

Property 2

Let {Z*, &, K} be a Z*-invariant crystal lattice; then

a) ¥ ={¢} ie. forall Sin ¥, |S|=0 or .
b) With A a parallelipiped with sides (L,,..., L,)

rNe(RB,) ="
(i.e. VX € P:(¥) the condition o5z(X)=+1 for all B¢ %, implies X < A).

Proof
a) Was announced in [10]; for a proof see [4].
b) Follows from the invariance under translation.

Remarks

1) Property 2b) was introduced as a conjecture in [7]; it is expected to remain
true if £ is not Z” but only Z"-invariant.
2) It should be recalled that for general lattice systems the relation

TN P(B,)=T®

implies & ={¢} ([3], p. 71).

We thus see that any Z”-invariant crystal lattice such that ' =T'; will satisfy
the condition to apply Peierls argument ([3], theorem p. 75).

3) Any Z’-invariant crystal lattice with T® =T will thus satisfy the hypothesis
of Theorem 4 and also of Theorem 5 of (I).

Theorem 6. Let {7*, B, K} be a Z”-invariant ferromagnetic system with TP =
[y. If for all B in B, |B|=2, then there exists a phase transition associated with
surface tension.

Proof. Let
S=7"AeP(¥) XcA AcA;

then
2 |[y(X) N Bl =y(X)

Indeed if |y(X)N B,|=0 then it is true; if Be y(X)NB, let x;=BNX and
xo=B\x, then B,=7,,_,,BE€B,s. If B;¢vy(X) then x,=B;\xeX and B,=
Tx,—xo)B € Ba and so on.

Since X is finite there exists n <o such that B, =17, _,,Bey(X) and
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B, & B4. It is easy to verify that B, B'e y(X)N%&,, B# B’ implies B, # B!, and
thus 2 |y(X) N B, =<y (X).

Consequently |y(X) - Bo|=1|B,| for all X < A.

Using the condition '’ =T; we have:

1
(+.8) _
G Alg%’ rﬂ'Ll CA

CA= min l'Y(X)BA|“‘BA

x P (L)

Since the interactions are Z'-invariant we conclude that C©%>(0 and
79 >0 at low temperature.

Conclusion

For pair interaction the criterion T =T for the existence of a spontaneous
magnetization at low temperature implies also our criterion for a phase transition.

Conjecture 2

Theorem 6 remains valid without the restriction to pair interactions.
If this conjecture is satisfied the criterion '’ = I'; for the existence of a
spontaneous magnetization is equivalent to our crlterlon for a phase transition.

Remark. 1t is important to notice that the criterion ' =T is valid only for
Z"-invariant crystal lattices while the criterion CH9>0 is always valid.

Let us then consider the case T’ #T,. The following property is an easy
consequence of the results in [4].

Property 3

The reduction procedure of Ref. [4] is a HT-HT duality transformation.

In other words, the HT-HT duality transformation appears as an extension of .
the reduction procedure which is applicable to arbitrary systems.

It was shown in [4] that if the reduced system has ¥* # {¢} then the original
system has a first order phase transition with local order parameter p™®(D™'x™).
(We denote by D™' the mapping which is written as D in [4] to be consistent
within our notations).

Let us note that for any X* < ¥* which is quasi-periodic, we can construct
X < & such that

Gx*(X*) = O'Dflx*(X)
In particular for all $* e ¥* we can construct S e ¥ such that
¥(Sa)* = v*(S%)

and therefore:
,i:*(+,s*) — 11(+,S) F*(f) 1"*
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Conclusion

If the Conjecture 2 is satisfied, the criterion of [4] to prove the existence of a
first order phase transition implies that the surface tension is non zero at low
temperature.
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