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On the group-theoretical foundations of classical
and quantum physics: kinematics
and state spaces

by N. Giovannini and C. Piron

Département de Physique Théorique, Université de Genéve, 1211 Genéve 4, Switzerland

(20. VIL. 1979)

Abstract. Elementary physical systems are analyzed from the point of view of the kinematical
symmetry groups which are defined by their action on a set of corresponding observables. The
properties and structure of the corresponding possible state spaces are investigated in detail and we
exhibit how, by a necessary generalization of the usual frame of quantum mechanics we obtain a
framework allowing a complete classification. The theory is applied to the relativistic and non
relativistic particles and it is shown how our theory leads in both cases to the quantal as well as to the
classical particles as solutions in a unified way, exhibiting thus a new scheme of quantization.

Introduction

Poincaré and Galilei invariance and their relationship to the group theoretical
concept of elementary particles [1, 2] are so often emphasized and so well
accepted by most physicists that it might seem obsolete to come back to some
aspects of the very bases of this approach. Nevertheless, as is well known, beside
great successes, the corresponding theories describe in fact only free particles and
are even then not completely lacking of difficulties and ambiguities. In view also
of the role of cornerstone they play in the dynamics and in field theories, we find
it not useless to try to formulate the corresponding basic principles under a
slightly different light.

For this reason we shall begin with an elementary discussion of the essential
features of a physical system with respect to the ones of its mathematical
description. The basic point of view thereby is that a physical system, e.g. an
elementary particle, has to be described in terms of its properties, that implies in
terms of some chosen set of observables.

Physically this means that the type of the system is characterized by the
existence of a particular set of observables. The results of the corresponding
measurements will be assumed to be plotted in some subset of a n-dimensional
real space (as is true for real numbers, or intervals, but also for matrices or other
objects). On the set I of these spaces, the usual physical equivalence principles
will then naturally correspond to the action of a group, the kinematical symmetry
group G. Any set of such principles will thus lead to such a group which we call
kinematical in order to emphasize that up to now no dynamics enter the play and
that the introduction of interactions does not change the representation nor the
interpretation of the chosen observables.
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Mathematically, we want to find realizations of the above physical properties,
this means that we have to represent a physical system by triples (K, U, P) where
K is some state space, U is a representation of G in K and P is a mapping from
each possible outcome of the measurements to a projection in K, that is to an
operator on K having as range the subset of K that contains the states having the
corresponding property in actuality. These three kinds of objects and their
interrelations are just the ones that we want to precise and study in the present
paper. This paper is thus a contribution to a field whose essential developments,
starting from the paper of Birkhoff and von Neumann [3], can be found e.g. in [4]
and [5].

The paper will be organized as follows. In the first part we shall discuss the
structure of the space I' and specify it as an example both in the contexts of
relativistic and of non relativistic elementary particles. In particular we shall then
be led to symmetry groups which, although based on usual physical equivalence
principles, will slightly differ from the Galilei and Poincaré groups, thus giving rise
to slightly different representations as well as to a better clear-cut distinction
between the kinematical and the dynamical aspects of the theory. In part two we
shall briefly discuss the realizations (K, U, P) within the usual frame of quantum
mechanics, in the spirit of the approach of Mackey [4]. This frame not only
excludes classical mechanics (whereas the above ideas are independent of the
particularities of both theories) but it is also shown to be in a way too restrictive
even for quantum mechanics. In the third part, which is the main one, we
therefore analyse in detail an extended frame and in part four we apply our
results to the (spinless) relativistic and non relativistic particles. In both cases we
are led to two distinct solutions, a classical one and a quantal one. The unified
way in which we treat and characterize elementary systems thus provide us a new
scheme of quantization. Let us finally mention here that parts of the results of the
present paper have been announced elsewhere [6].

1. Spaces of observables and kinematical symmetry groups

In usual classical physics states are represented by points in the phase space
) or, better, by point valued functions on ). Observables are themselves
functions on these states with values in subsets of ). Hence () can be identified
with a set '={I',} of values of a collection of observables {A}. In quantum
physics, if states are rays in Hilbert spaces, their structures can be characterized
by the same set of physical observables, via a collection of spectral families
defined on the same T'.

Our point of view is thus to start from this (real) space I', which is naturally
equipped with a Borel structure. We then define on I' a kinematical symmetry
group G by usual physical equivalence postulates, i.e. as a set of (continuous)
transformations relating co-ordinations of I' that are equivalent in the sense that
they are all as good as each other for the description of the system. The space I
has thus the structure of a G-space, i.e. of a Borel space with an action o of the
group G in the sense of an (anti)-homomorphic mapping o from the group G into
the automorphisms of I' [10]. The problem then is to search for the various
possible realizations of the physical system in the following sense: an elementary
system is assumed to be an irreducible representation of G in a state space K that
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admits covariant projections defined for each Borel subset E of each I'y,
corresponding to the subset of states having as property a value within E for the
observable A. The subject of this paper will just be to make all these notions
more precise. |

As an illustration, we shall consider throughout the paper the following two
examples:

Example 1. The non relativistic particle: the space I' consists of the values of
the observables position momentum and time. Its elements are denoted {g, p, t}
and so I is isomorphic to R’. The group G then follows from the following
postulates: there exists no privileged frame for position, momentum nor time,
and the group is generated by the following operations:

() {¢, p, 3 —>{G+a,p,1}, deR’
(i) {g, p, }—{g, p+w, 1}, WeR®
(iii) {4, p, t} —{q, p, t +a"}, a’eR
(v) {G, B, } —>{ad, ap, 1}, @eSOE)

The group so generated will be termed the Newfon group and it will be
denoted by N.

(1.1)

Example 2. The relativistic particle: the observables are the 4-position g*
and the 4-momentum p* and the group G will be generated similarly as above,
by .

(i) the space-time translations: {q*, p*}+—{q* + a*, p*}a eR*;
(ii) the momentum translations: {q*, p*}— {q"; p* + w"}, weR*; (1.2)

(iii) the Lorentz transformations (there exists no absolute Lorentz frame):

{q*, p*} —{AZq", Aip*}, AeSO(3, 1).

This group will be termed the Einstein group and will be denoted by E.

It is worthwhile to note here that these groups are not isomorphic to the
usual Galilei and Poincaré groups even though they contain essentially the same
covariance postulates.

The groups we just defined are purely kinematical, as they do not depend on
the dynamics. They thus do correspond to the properties of the state spaces and
not to the possible evolutions in these spaces. Let us insist in this respect on the
fact that the physical time has two different meanings that need to be carefully
distinguished. In the above discussion it is an observable, and as such it corres-
ponds to a property (the date), which can be measured by a clock. This meaning is
different from the one of an evolution parameter, the latter being, by definition,
not even an observable: indeed an observable must correspond to potential or
actual properties and an evolution parameter that labels the changes of the state
does not correspond to a property.

Let us now briefly discuss the structure of the above two fundamental groups.
(i) The Newton group

As follows from its definition (1.1) this group can be parametrized by
(W, a°, d, a) eR*XRXR*x SO(3) (1.3)
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with product |

(W, a°% d, a)(W', a”, d’,a")=(W+aw', a’+a® d+ad’, aa’) (1.4)
The unit element being (0, 0,0, 1), the inverse is obtained as

W, a’% d,a)'=(a'w,—a’ —a'da?) (1.5)

It is useful for visualization and for the sequel to illustrate its structure as follows.
Let A, T and*W denote the normal subgroups of space, time and momentum
translations respectively, then N appears in the following complex of group
extensions’)?)

A
7 \
/R< v EQ) (16)
WeT— 'so@)

with E(3) the Euclidean group. All exact sequences in (1.6) can be seen to be split
(i.e. correspond to semi-direct products). The corresponding actions are all
directly obtained from the following two ones:

¢@1: SO(3) = Aut (A), e(a)-d=ad
¢ EQ)—> Aut(WQT),  ¢u(d, a)(W, a’)=(aW, a’)
The Lie-algebra s of N is then easily obtained: denoting the generators, in the

same order as in (1.3) by V,, P,, P, J,, i=1, 2, 3, respectively, the commutators of
the algebra are given by

[‘/iy ‘I}] = Egvk
[P, J]1= &Py (1.8)
[Jia I]] =€ i;‘Ik
all other commutators vanishing, including [V;, P,], in contradistinction to the
usual Galilei group commutators.
Other properties of this group that we shall need in the sequel are given in

Appendix A (central extensions) and in Appendix B (irreducible (projective)
unitary representations).

(1.7)

(ii) The Einstein group
From the definition (1.2) the elements of the group can be parametrized by
(w*, a*, A¥)eR*XR*x SO(3, 1) (1.9)

with product
(w,a, A)(W',a’, A )=(w+Aw',a+Aa’, AN") (1.10)

1) >> denotes a monomorphism —» an epimorphism.
%) For a simple introduction to this useful extension language we refer to [7] and for more details to

[8].
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hence with unit (0, 0, 1) and with inverse

(w,a, A) ' =(-A"w,-A"a, A7) (1.11)

Similarly as in (1.6), and denoting by A and W the (normal) subgroups generated
by space-time and momentum translations respectively, E can be decomposed as
follows

(1.12)

with @ the Poincaré group and where all sequences are again split and completely
characterized by the two following actions

Y1: SOB3, )= Aut (4),  (dy(A)a)* = Ata”

Yo: P — Aut (W), (Wa(a, Ay w)* = ALw” (1.13)

Analogously as for N, we also give here the commutators of the Lie-algebra e of
E: denoting by V,, P, and M, the generators of momentum and space transla-
tions and- of Lorentz rotations respectively, these commutators are given by

[Vcr: Mp.v] == g,u.a' Vv + Bvo Vp.
[Pa-s M.uv] = _gp.a'Pv * gvchp. (1'14)
[Mp,w Mpcr] = gp.var: + gvaMy.p - gva,u. Mvp

o gua'
all the other commutators being zero. The central extensions of this group and its
(projective) unitary representations, needed for the purpose of this paper, are also
given in the Appendix A and in the Appendix B, respectively.

We now come back to the general discussion of our approach.

2. Observables and systems of imprimitivity

In the state space, that we denote by K, we first ask the covariance postulates
to be represented, that is K will be some carrier space of a representation U of
the kinematical symmetry group G. Before specifying K further, let us ask which
other conditions it should fulfill, in view of the philosophy of our approach.

By definition we have to require the existence on K of a set of operators that
correspond to the set of observables we have chosen to characterize the physical
system. This means that for each observable A, there should exist a set of
operators {P2 | Ac B(T' ,), the Borel sets of I} that project onto the states in K
having for A a value within A. In other words we ask for a mapping in the
projections of K?)

P%:A— Ple P(K), VAe BT A) (2.1)

3 For a justification of this notion and a precise definition of observables see [5].
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where the operators P are required to have the following properties, for all
observables A

(i) PZ=0g, & the void set, and

A ﬂ
T'a K
(i) Pa,na,= P2, - P4, (2.2)

(iii) Py, AFZ P2, for A, NA; =, and i€l a countable set.

These mappings naturally extend to I', with %(I") the Borel structure generated by
the direct union topology of the I',. In the sequel we shall thus only consider
these extended mappings.

In addition, we have to require that these mappings should be covariant
under G, i.e. the following diagrams

B() — P(K)

(2.3)
l o(g) l U(g)

B (T) —> P(K)

should be commutative, for all g€ G, with o(g) the defining action of G on T'. In
equations, (2.3) reads:

| U(g)PRU(g) '= P?(g)A (2.3)

In the particular case where K is a separable Hilbert space #, these sets are just
the well known systems of imprimitivity (short s.0.i.) introduced by Mackey [9].

Definition. An ordinary (or quantal) observable is a set of projectors in a
separable Hilbert space # that forms a system of imprimitivity as above for the
corresponding kinematical symmetry group G.

Our problem is however slightly more general, as can be seen in the following

Definition. An elementary G-particle is a triple (K, U, P) with U an irreduci-
ble representation of G in a state space K such that there exists a set P of

covariant systems of projections satisfying (2.2) and (2.3), one for each observable
A.

Beside the precisions that it needs and that will be studied in the sequel, this
definition shows what is the problem: how to determine all possible solutions
(K, U, P). This is quite a general and difficult problem as long as nothing more is
said about K and we shall discuss under which assumptions it effectively can be
solved. We first want to exhibit that the usual frame of quantum mechanics is not
sufficient for this purpose, while enlightening and useful for the sequel.

Suppose thus first that K= J is a separable Hilbert space. Then Mackey’s
theory of induced representations (see e.g. [10]) provides useful tools: Let H= G
be some closed subgroup of G, L a representation of H, s € G/H, sg the natural
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action of G on the coset space, {g,} a set of (fixed) right coset representatives,
fe £*(G/H, #¥(L)) with #(L) the carrier space of L, then the induced representa-
tion*)

(U (@)f)(s) = (L(R)f)(s - g) (2.4)

where h =g, - g - g; ' € H, gives, via the characteristic functions on G/H a system
of imprimitivity for U™ based on the Borel sets of G/H. Such a s.0.i. will be
termed canonical.

The important result is the converse of that construction as follows from the
fundamental theorem of imprimitivity of Mackey that we briefly quote here.

Theorem 2.1 [7). Let U be a unitary representation of a separable locally
compact group G, S a transitive G-space (i.e. a Borel space with a transitive
associative action of G) and Q an s.o.i. for U based on S then

(i) there exists a closed subgroup H of G and a Borel isomorphism ¢ : G/H — S such
that

(p(H-g))-g'=¢(H-gg") VggeG (2.5)

(ii) there exists a representation L of H, unique up to equivalence, and a linear
isometry V such that

VUV '=U"r .
VQA V_]l = P¢71(A) (2.6)
with Ae B(S), U™ as in (2.4) and P the corresponding canonical s.o.i.

(1)) The commuting algebra of L is isomorphic to the algebra of all operators in #
that commute with both the range of P and the range of U.

If the action of G on S is not transitive, then (up to regularity conditions) this
theorem can easily be extended, the correspondence being now not with one
subgroup H but with a set {H;} corresponding to the decomposition of the space S
into orbits.

As follows from this theorem we thus have a 1 to 1 correspondence between
the observables of the space I' and a set of closed subgroups of G. This
correspondence can be explicited as follows: Let A=I', an arbitrary set corres-
ponding to a measure within A for the observable A and arbitrary values for the
other observables. Let y, €A and H, = G the stability group of this arbitrary
point. Then H,, corresponds to the observable A. Note that this group is thus
only determined up to conjugation.

Let us illustrate this relationship at the hand of our two examples

(i) For the Newton group

Observable § < H; ={(W, a®, 0, a)}

Observable p <> H; ={(0, a°, d, &)} 2.7
Observable t < H,={(w, 0, d, a)}

4 In view of our problem and to enlight notation we shall assume G to be unimodular.
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(i) For the Einstein group

Observable q < H, ={(w, 0, A)}
Observable p < H, ={(0, a, A)}

The problem thus gets a first answer: the question ‘which observables are
compatible with a representation U in #’ reduces to: ‘from which set of
subgroups {H,} is the representation U induced, up to equivalence’.

As follows from the inducing in steps theorem of Mackey [10] this set of
subgroups can be identified with a connected upper piece of the lattice of all
closed subgroups of G; this piece is closed under union.

Under these general results, we now want to examine the possible solutions
in our two examples. For this we first exhibit a simple but important condition on
the existence of observables that we prove for our particular case:

(2.8)

Proposition 2.2. Let A (resp. W) be the subgroup of space (-time) (resp.
momentum) translations and U an irreducible unitary representation of N or E.

Then there exist an s.o.i. for the position (resp. momentum) observable only if the
restriction U(A) (resp. U(W)) is faithful.

Proof. Suppose U(A) is not faithful, i.e. there exist a nonzero translation b
such that

U(b) =1,
Then the condition (2.3) implies
PA= PA+E = PA+nEa Vn €z (29)

Choosing A such that (A+ b) NA = J this implies with (2.2) (i) and (ii), multiply-
ing this equation (2.9) by P, and P,.,; respectively

PAZPA+nE=G%’, Vn EZ (2.10)

As A can be chosen such that |, (A+nb) =T, this implies that the corresponding
selfadjoint operator vanishes.
We now can state the following important

Proposition 2.3. Let U be an irreducible ordinary i.e. vector or non-projective
unitary representation of N, then U does not admit systems of imprimitivity
simultaneously for the observables position and momentum.

Proof. Suppose U admits an observable position. This img ies, by the
Theorem 2.1 that U can be brought in the following form: U~ U™ with

(U(@))(X)= L(h)f(g7"%),  XeR’ (2.11)

with fe £*(G/H, #(L)) and L a representation of the subgroup Hj given in
(2.7). From the Theorem 2.1 this representation L needs to be irreducible, hence,
as can be computed via the induction technique, it is necessarily of one of the two
classes given by

(Li(W, a°, a)f)(s) = e®@7F %D (B(s)aB(s) f(s") (2.12)
with p,eR, s € SO(3)/SO(2), B(s) a coset representative, B(s’) determined by the
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condition B(s) - a - B(s) '€ H:=S0O(2), D, an irreducible representation of
SO(2) and fe £L*(SO(3)/SO(2), #(D,)). The other class is given by

LZ(‘X’, aO’ a)fO = eipoaoDo-a"(a)fa' (2‘13)

with D, an irreducible representation of SO(3), and feC?***'.

As now the coset representatlves of SO(3)/SO(2) can be chosen in such a
way that the set {B(s)k} lies in a plane containing the 3-vector k, any momentum
translation in a direction perpendicular to this plane is mapped under U onto 1,
so that, with the Proposition 2.2, there cannot exist an s.0.i. The same is of course
true in case (ii) where all momentum translations are in the kernel of the
representation.

From the explicit calculation of the projective representations of N (see
Appendix B), we now can state the following result

Proposition 2.4. Let K= ¥ be a separable Hilbert space, then there exists only
one class of elementary (spinless) N-particles, when only p and g are requested to be
observables.

This solution follows from the results of Appendix B (see (B.7)) and is given
by

(UMW, a°, d, a)f)(X) =e ™ e®®f(a (X — d)) (2.14)

with m, A, poeR and fe £*([R*. The observables p and § are correspondingly
given by the following selfadjoint operators

g f(%)=x f(%)

(2.15)
pr= (o) ar)
obtained from the s.0.i. given by the characteristic functions in % for § and in k
(after Fourier transformation) for p.

We thus recover the usual quantal solution and as far as projective represen-
tations are concerned, the uniqueness of the solution is simply a reflexion of the
well known Stone-von Neumann theorem.

The situation is perfectly analogous for the Einstein group, so that we just
quote the result without entering again into details.

Proposition 2.5. Let K = ¥ be a separable Hilbert space, then there exists only
one class of elementary (spinless) [E-particles (admitting thus systems of imprimitiv-
ity for the observables p* and gq*).

This solution also follows from the results of Appendix B. We however
postpone the results up to part four of the present paper where we shall discuss this
solution into more details.

For the moment, let us come back to the non relativistic case. Not only the
unique solution found in (2.14) only describes the quantal case (whereas the spirit
of our approach was principally independent of this particular theory), but the fact
that only p and § are observable implies that the only measurable quantities are
necessarily functions of p and § only and this excludes e.g. all time dependent
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problems. In the above frame, there is however no possible solution for time to be
an observable as a consequence of the following

Proposition 2.6. Let ¥ be a separable Hilbert space and t, (p,q) be (all)
observable for a representation U of N in #. Then U is necessarily reducible.

Proof. If time is observable, then we may decompose # along the corres-
ponding spectral projectors

®
H’=“J' X, dt, teR (2.16)

where isomorphism is meant as N-module. As however time translations are in
the center of N, the characteristic functions on the corresponding dual space
provide non-trivial projectors that commute with U(N), hence U is reducible.

By these results we see that we have to relax some assumption to find
N-particles. Relax irreducibility would introduce new observables compatible with
the desired ones and thus would no longer correspond to our goal. Hence we have
to change K.

A possible solution is suggested from a theorem by Piron [5], which says that
any propositional system (except for some exceptional cases) can be realized
within the set of projectors of a family of Hilbert spaces.

In the remainder of this paper we shall study such objects taken as state
spaces, first in general and then, in section four, as applied to our two examples.

3. State spaces and generalized imprimitivity systems

Let thus S be some index set that we assume to be equipped with a Borel
structure and let

K=V ¥, (3.1)

seS

a state space obtained as (topological) direct union of copies of some separable
(complex) Hilbert space #. An element ¥ e K thus consists of an index s€ S and
aray Y e ¥, i.e. S plays the role of a possibly continuous set of superselection
variables.

Let us first quote the following generalized version of the theorem of Wigner.

Theorem 3.1 [11]. Every symmetry of a proposition system defined by a family
{#,, s € S} is given by a permutation f of the index set S and a family of (anti-)
unitary transformations U : ¥, — #;,,. Each U is defined up to a phase.

That is if the symmetries form a group G, we have

Ur)(80) Ui (82) = w,(81, 82) Us(8182) (3.2)
where  is a phase depending on g;, g, and s, satisfying thus

|ws(g1, gz)l = 1’ VS € Sa gl: gze G (33)
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For our purposes we may omit the dependence on these phase factors, in the
sequel.

Let now G be some separable locally compact group and K as in (3.1). As a
consequence of this theorem we may define a representation U of G in K as a set
of mappings {U(g) | g € G}

U(g):K— K (onto) (3.4)
satisfying the following properties

(i) U(e) is the identity mapping
(i) U(g)U(g) = U(g:18>) (3.5)
(iii) (U(g)p), =(L(s, g)U),, with L(s, g)eU(F,) the group of wunitary
operators in ¥, and with s'=s - p(g) depending only on s and g

(iv) U(g) is continuous in the product topology of S and # (with the strong
topology for ).

There are two important consequences of the above theorem and definition.
First a representation U induces, from (3.2) or (3.5)(iii) a set of mappings p(g)
that satisfy the following two conditions '

i) s-ple)=s VseS

.. (3.6)
(i) (s-p(g)-p(g)=s"p(g:18), V5, 81,8

so that S is promoted to a G-space [10], i.e. to a Borel space with an action p of
G satisfying precisely (3.6). |

Second, it also follows from (3.2) or (3.5) that the set {L(s, g)} of unitary
operators, satisfies the relations

(i) L(s,e)=14,Vs

3.7

(ll) L(S, g1gz) = L(S ' p(gZ)a gl)L(S: gz): VS, gla g2 ( )
hence the set {L(s, g)} forms a so-called normalized (G, S, U(¥))-cocycle (see e.g.
[12]). This implies that these equations (3.7) can be tackled by usual cocycle
techniques and also, because they are the same as in the usual Mackey induction
theory, their solutions can be obtained in the same way: denoting by H; the
stabilizer under p of an arbitrary but fixed point s € S, we see from (3.7) that the
set {L(s, h) | h € H} is a unitary representation of H,. Hence it is sufficient to find
all solutions of (3.7) for normalized (G, S, H,)-cocycles, that is for mappings
v(s, g) satisfying

(i) v(s, g)e H,
(i) v(s,e)=e, Vs | (3.8)
(iii) v(s - P(gz)a g)v(s, g2) = w(s, 8182)

and the general solution of (3.7) is then obtained by taking an arbitrary unitary
representation D of H; in the carrier space # and by setting

L*(s, g)= D(v(s, g)) (3.9)
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We are naturally led to the following important generalizations of the usual
concepts.

Definition. A representation U of G in K is termed irreducible if and only if

(i) the action p(G) is transitive on S (3.10)

(ii) the set {L(so, h)}, for s, arbitrary on S, forms an irreducible representa-
tion of H, with carrier space ¥,,.
Defining the commutant as the set of commuting families A ={A,}, this corres-
ponds to the following

Proposition 3.2. U is irreducible if and only if its commutant is trivial.

Proof. From (3.10)(ii) and the Schur lemma an element of the commutant is
necessarily of the form '

(A)s =A (S)ﬂsr,

Furthermore [A, U(g)]= 0% implies U(g)A(s)= A(s - p(g))U(g) = A(s)U(g) hence
by transitivity A is constant on S.

Definition. Two representations U; and U, of G on K, and K, are termed

equivalent if there exist a Borel isomorphism 7:S;— S, and a linear isometry
V:%#,— ¥, such that

VL (77'(s,), ) V™' = Ly(s,, ), Vs, €S,, VgeG (3.11)
For irreducible representations we then have

Proposition 3.3. U,~ U, if and only if the corresponding (G, S, U(¥))-cocycles
are in the same cohomology class i.e. differ by a coboundary.

The proof follows from direct computation.

As a consequence the classes of representations of a group G can be
completely classified by the classes of the representations of all closed subgroups
H and of the cohomological properties of G with respect to these subgroups (see
(3.8)). We do not go into the details of this problem as we shall, as for the Hilbert
space case, give more restrictions on the allowable representations. Let us just
quote here an important result concerning continuity.

Theorem 3.4. Let G be a separable locally compact group and K a direct
union of copies of some Hilbert space # over a G-space S. Then a representation
U of G on K satisfying (3.5)(i) to (iii) is continuous if and only if L in (3.5) is
continuous and the v-cocycles (3.8) are Borel functions.

The result is here the same as in Mackey’s theory and the proof follows from
the same argument (see [10] and also [12] and [13] for an analogous extension of
Mackey’s theorem).

Let us now make a further step: suppose we have given G, K, S and U as
above and suppose in addition, in order to avoid pathologies, that the p-action of
G is regular (i.e. that there exist Borel cross-sections to the orbits). We may thus
decompose S into a direct union of disjoint Borel spaces on which the action is
transitive and hence focus our attention to the latter case.

Let thus S be a transitive G-space, i.e. Ys,s'€ S 3ge G such that s - p(g)=+s’
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and let s, € S be arbitrary (but fixed) in S. Then it follows from Theorem 3.10(i) of
[10] that

(i) H, < G, the stabilizer of s,, is a closed subgroup

(i) S is Borel isomorphic with G/H,, (3.12)

Hence the set of possible K spaces can be classified using the following immediate
generalization of the induction procedure:

Let H< G be some closed subgroup, and let L be some unitary representa-
tion of H with carrier space #(L). Let K denote the direct union of copies of
# (L) over the coset space G/H

K=V (#(L)), (3.13)

seG/H
The generalized induced representation U" is then defined as

(UL(g)‘P)s =(L(h)‘P)sp(g) (3'14)

with, as in the usual case p(g) the (right) action of G on an (arbitrary but fixed)
set of (right) coset representatives {s} of G/H and where h is determined by the
condition

s p(g)-(s-g)'eH (3.15)

Denoting L(s, g) the transformations L(h) of (3.14) with h depending on s via
(3.15), these representations of course fulfill the conditions (3.7), hence U" is a
representation of G in the sense of (3.5), with as corresponding cocycle (3.8)
obtained from (3.15) as given by v(s, g)=s - p(g) - (s - g)~'. Conversely and as in
the usual case, each normalized cocycle v(s, g) can be brought in this standard
form with as normalized coset representatives

g =((s0,8) '8 g=e (3.16)

where ge H - g, H the stabilizer of s,. This definition does not depend on the
choice of g as can be verified using the cocycle equations and as is of course
necessary for consistency. As these algebraic equations are analogous to the usual
case we drop the details.

We are now in position to extend the notion of systems of imprimitivity. For
this purpose let us first extend the usual notion of projectors.

Definition. A system of projectors on K, or a projection in K, is a family
{P,, seS} of projectors defined on the corresponding family {#,} of Hilbert spaces.

The following operators on K
def
Py = {14 * xe|xe the characteristic function of E € B(S)} (3.17)

thus form projections in K, which with S, U™ as above satisfy by construction
UL(g)_IPEUL(g):PE.p(g). (3.18)
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This_is formally the same covariance condition as for the usual systems of
imprimitivity. Furthermore the projections (3.17) satisfy the properties (2.2):

() Py=0x Ps=14
@) PuPy=Pynx

(3.19)

(i) Pye =) Ps, for ENE=0, i#j

We shall call supersystems of imprimitivity sets of projections satisfying (3.17)
to (3.19) and superselection parameters or classical observables the corresponding
observables (see §2). The reasons for this terminology will be even more explicit
in the Section 4. Of course the same construction extends to the case where ¥, is
itself assumed to be of the more general form K, with K as in (3.1), this
corresponding to the inducing in steps procedure [10].

We thus see from the above construction that, with a careful extension of the
usual definitions, the whole problem is set in a similar context as in Section 2 for
the separable Hilbert space case. In fact we have even more: although the frame,
because of the state space K, is a proper generalization of the case considered by
Mackey, the method and the results follow, with the appropriately generalized
concepts, as a particular case of the ones of Mackey. Indeed, if the local and
algebraic problems turn out to be exactly the same, as we have shown, the global
conditions of the usual theory (e.g. square integrability) now become trivial.

Let us thus reformulate and complete the essential results of the present
analysis and combine them with the ones of Mackey in the following

Theorem 3.5. Let K= \/,.s#, as in (3.1), U a representation (3.5) of a
separable locally compact group G, transitive on S and let Q be a transitive set of
covariant projections in K (satisfying (3.18) and (3.19)) and defined on some
G-space T i.e. Q:B(T) —>P(K). Then there exist closed subgroups H,< H,< H, <
G and unitary representations L, of H, (i=1, 2) such that

(i) S=G/H,, and Q~P-R (i.e. Q={Q,} and Q,=P,- R, VscS) where P
is of the canonical form (3.17) for G/H; and R, is itself an ordinary s.o.i.
for Hy/H, on ¥,. In other terms K can be written as K = V(Vg s ¥,), with
S'= G/Hj; and P, depending only on S'. Furthermore, either T= G/H, and
S'=S, or T= G/H; and R, is then trivial (i.e. H; = H,).

(i) U~U" as in (3.14) on S and L,~ U™ on H,/H,.

From the Definition (3.10) it also immediately follows that U is irreducible if and
only if L, is irreducible.

Hence, and analogously to the case of Section 2, all supersystems of im-
primitivity are equivalent to canonical ones and the results of this section provide
us with a general method of classification of elementary G-particles, our primitive
goal, method that we shall apply in the next section and whose essential steps can
be resumed as follows:

1. As the set of observables is given a priori, we may choose as basic
G-space, and without loss of generality, the space I' discussed in Section
1. Also without loss of generality the corresponding action of G may be
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assumed to be transitive. Let 'S I' correspond to a subset {B} of the
observables {A} defining I' and let H, be the corresponding subgroup of
G.

2. Determine, for each choice, which irreducible unitary representations U,
of H, give rise to ordinary s.0.i. corresponding to each observable B, and
no other.

3. Use the generalized induction as in (3.14) on K= V#(U,) with S=
I''Ty=G/H, and #(U,) the carrier spaces of the representations U,
found in 2.

Each solution is found in this way and the observables found in Step 2 are the
usual quantal ones as they correspond to projectors in separable Hilbert spaces
whereas those found in step 3 play the role of superselection parameters or, in
other words, are of the classical type, as they commute with each other and have a
purely discrete point spectrum.,

Let us now come back to the two examples discussed in Section 1, in order to
show how our formalism applies and indeed provides the good framework to deal
with.

4. Applications

(a) The non relativistic spinless particles

Using the above mentioned method we find that there are exactly two classes
of spinless elementary N-particles.

(i) The classical particle

Let first S be directly given by I'. Then the step 2 of the procedure is trivial
I’y being identified with a single point, e.g. the origin, and H, being the rotation
subgroup of N.

S=I'=N/SO(3) =R® (4.1)
and
K=V %, (4.2)
s=r

with #, the one-dimensional carrier space of the trivial representation of SO(3).
The corresponding representation U of N in K is thus obtained from the defining
representation o given in (1.1)

(U@)W), = gy, SET 4.3)

The observables p, § and t are correspondingly given by the following operators

P:BR)—-T,  pa;)=(4541)
G:BR)—T,  4a;)=(p, A5 1) (4.4)
t:BR)—~>T, 1Aa)=(®,q4,)

or, equivalently these observables are defined as the inverses of the following
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(P, G t)—p
(B, 4 )— g (4.5)
B, g t)—t

(i) The quantal particle

This solution is obtained by generalized induction from the solution we have
found in (2.14) (solution first restricted to the subgroup H, given in (2.7), i.e. with
a®=0). That is, time plays the role of a superselection parameter and the space S
is isomorphic to the time axis

S=R,=N/H, (4.6)

Furthermore, with 9, given by the carrier space of the representation (2.14),
i.e. #, = £*(R?), the state space becomes

K=¥mz%uﬁwn - (4.7)
The complete representation U of N in K is thus given, from (3.14), by

(U(W, 0, &, a)i(x)), = (e~™* “Yla™'(X - @), (4.8)
and

(U@, a°,0, V() = (W(F)), oo (4.9)
Note at this point that

U(%,0,0, DU, 0, G, 1) =e~™**U(0, 0, 4, U(W, 0,0, 1) (4.10)

so that, with nA = —#"', we recover the usual Weyl commutation relations.
The observables p and ¢ are given from (2.15), by the following operators

(G (3)), = (F(3)),

i R \ 4.11
(B()), = (n—‘A 30(3) = (CinBu(D), @i

whereas the time observable is obtained, following (3.17) via the characteristic
functions in the space S, i.e. via the supersystem of imprimitivity defined by

(Pp (X)), = (xa, (DWY(X)), (4.12)
with A, € B(R,) and

1 if teA,
t =
Xa (1) {0 else

(b) The relativistic spinless particles

For the Einstein group E, the situation is very similar to the previous case: we
indeed again have exactly two solutions for the elementary spinless E-particles.
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(i) The classical particle
Here again I'; reduces to a point, i.e. S is directly given by I'
S=T=E/H,=R® (4.13)
with H, = SO(3, 1) the stability group of the origin. With #, the one dimensional
Hilbert space that carries the trivial representation of SO(3, 1)

KE‘\_/ #.=\ & (4.14)

5 Y
yeR
the corresponding representation is obtained, again from the defining representa-
tion o, as given by

(U(@) )0 = (oo
= (Rl’)(A—‘l(p—w),A*“(qﬁa)) (4.15)

The observables p and q are obtained analogously as in (4.4) by
p: BR)—T, p(A,)=(4, q)

i (4.16)
¢:BRHY—=L, qA)=(pA,)
or, equivalently, by the inverses of the following mappings
(p,a)—q

(ii) The quantal particle

As follows from Proposition 2.5 and from the results of Appendix B (esp.
(B.15)) there is a unique class of solutions, with no superselection parameter, i.e.
within the usual frame discussed in Section 2. The space S is thus reduced to a
single point, and the state space K is given by

K=%=%*R" (4.18)
the carrier space of the following irreducible unitary representation of E
U(w, a, M)(x) = e & *"Y(A7(x - a)) (4.19)

where the constant h~'=—mnA here also appears as a representation label, and g,,,
is taken with signature (—, +, +, +). Note again here that we have, similarly as in
(4.10) the following generalized Weyl commutation relations

U(w, 0, 1)U(0, a, 1) = e '&™"*"U(0, a, 1) U(w, 0, 1) (4.20)

The observables q and p are now again obtained via the characteristic
functions in the x-space and in the Fourier transformed space respectively, that is

(@A) ¥(x)) = xa, (x)th(x)

A A (4.21)
(P(Ap)¥(k)) = xa, tk)(k)
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where
P(k) = 2wh) > J, e BRI (x) d*x (4.22)

The corresponding selfadjoint operators then simply read

q*P(x) = x*P(x)

' (4.23)
pHi(x) = —ih 3" Yi(x)

so that now, in contradistinction to the usual Poincaré case, the space-time

position operators exist and their (continuous) spectra are just the space-time

variables.

Having thus shown the relevance of our approach, let us conclude with the
following important remarks. First we have considered only spinless particles. It is
however obvious that the solutions (4.2) and (4.7) easﬂy extend to the case with
spin, as SO(3) is the isotropy group of the origin in the classical case and as
follows from the solution (B.7) in the quantal case (this incidentally shows that it
is possible, within our frame, to treat problems where only spin has a quantal
character). In the relativistic case however this is not possible so directly as the
involved representations of the stability groups H, are then necessarily infinite
dimensional, H, being then isomorphic to SO(3,1). We thus there have to
consider additional observables or superselection rules. We just mention here that
such a solution has been proposed in [14] (see also [15, 16]) and we refer to these
papers on this point. -

Next we want to emphasize that all the framework of this paper was purely
kinematical, and that our construction, as well as the interpretation of the
observables is independent of the dynamics. It will be a second step to construct
in the just found state spaces the dynamics as realization of a two parameter
family of operators, family that involves an additional dynamical parameter, a
dynamical time, that is distinct as explained in the introduction from the time
observable considered here. We refer to [5], [14-16] for a discussion of the
dynamics within a frame corresponding to the point of views of the present
analysis.

Appendix A

Central extensions of N and E

As we are interested in the projective unitary representations of the kinemat-
ical symmetry groups G, we determine here briefly the corresponding central
extensions. These can be obtained via the central extensions of the simply
connected covering group, i.e. it is sufficient to determine all inequivalent exact
sequences

0—)R-:>g€—>g—)1 , & (A.1)

with «(R) in the center of g* and g the Lie algebra of G. Such an extension is
characterized by an infinitesimal exponent ¢, i.e. by a bilinear antisymmetric
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function
E:gXxg—>R | (A.2)
satisfying the cocycle equations

df(Ai’ Aj: Ak)E g([An Aj]’ Ak) + g([Ap Ak]s Al) + g([Aka Ai]a A;)
=0 (A.3)

with A;, A, A, the generators of g. Indeed, as is well known [17] there is a 1-to-1
correspondence between the equivalence classes of the exponents of a simply
connected Lie group (i.e. the equivalence classes of projective representations)
and the equivalence classes of the extensions (A.1).

These extensions can be obtained as follows (see [2]); let A;,..., A, be
some basis of g and c:;., L,j,k=1,...,n, the corresponding structure constants.
The Lie brackets of an extension g* are then given by

[A, Ajl=cEA, + oyl (A4)
[Is A;] = 0

with I the generator of R. The cocycle condition (A.3) is then equivalent with the

condition that (A.4) is a Lie algebra, i.e. satisfies the Jacobi identities. Further-

more two extensions are equivalent if and only if the corresponding constants a;;

and aj; are related by

ali= oy — c:})lk (A.5)

for n constants A,. This is equivalent to say that the two extensions are obtained
from each other by a change of choice of section g— g° in (A.1) which
corresponds in (A.4) to translations of the generators along the center, i.e. to
substitutions of the form

A — A +\I (A.6)

Let us now apply this method to the Lie algebras of the Newton group N and of
the Einstein group [E.

For N, with Lie algebra (1.8), we first note that by translations (A.6) for the
generators of the rotations, su(2) can be seen to have no non-trivial extensions, as
is well known. Similarly by translations of the generators P, and V, respectively
the two subalgebras generated by {P,, J.} and {V,, J;}, both isomorphic to «(3), can
also be brought in the original form, i.e. do not have non trivial extensions. We
thus are left with the following possible commutation relations

[‘/is PO] = aiI
[V, P]=B;I
[Po, P]=v.I (A.7)

[P09‘I|']28iI i’j=1’2,3
all others being as in (1.8). From (A.3), i.e. from the Jacobian identities
[Ai, Ajs Ak] = [[Ai’ Aj]a Ak] i [[Aj7 Ak]:- Al] 3 [[Aka Ai]s A]] =0 (AS)
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one can now straightforwardly obtain
[Po,Pi:Jj]z()® % =0
A \Z P]=0 =0
[P, Ji’Jj]=0<:> & =0
[ \Z P]=0& Bij = Ad

whereas all other Jacobi identities are then satisfied. The central extensions (A.1)
of the Lie algebra of N are thus characterized by the commutators of s
(as in (1.8)) except for the following ones

[V,P]=A8, - I | (A.10)
] ]

Using (A.5) one directly finds that two such extensions are équivalent if and
~only if A =)', hence the inequivalent classes form a one-dimensional family.

(A9)

ij

Similarly for E, with Lie algebra (1.14), one may by translations along the
center, show that ¢1(2,C) as well as the two subalgebras generated by {P,, M.}
and by {V,, M} respectively do not have non-trivial central extensions, as can
also be seen by noticing that these two subalgebras are isomorphic with the
Poincaré algebra. Hence we are just left with the commutators (1.14) except for

[VL.Pl=A,, 1 mw,r=0,1,2,3 (A.11)
The Jacobian identities [V, P,, M,,]=0 now give the equations

Burrow = Buoou T Buphvo ~ Buphuo = 0 (A.12)
whose only solutions can be found to be

A=A g, (A.13)

Again using (A.5) one concludes that two extensions characterized by two
constants A and A’ are equivalent if and only if A =A’, hence the inequivalent
classes form a one dimensional family, with commutator structure given by (1.14)
except for the following commutators

[V, P]l=A-g,, -1 (A.14)

Appendix B

Projective unitary representations of N and E

It follows from the results of Appendix A and from the so called lifting
procedure [18] that the projective representations of N can be obtained (except
for the usual SU(2) spin factor systems that -arises from the double covering of
SO(3)), from the ordinary representations of the one dimensional family of
central extensions found in (A.10) and that we shall denote by N*. These groups
have elements (6, g), 0 R, geN and the corresponding products read

(01, 81)(05, 82) = (0, + 0, + &, (g1, 82), £18>) (B.1)
with the factor systems £, obtained from (A.10) as given, for g = (W, a?, da, o),
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i=1,2, by \
&(81, 82) =AW, - 44, (B.2)

It is convenient at this point to consider the following exact sequences (split
extensions)

0->R’>N*—>EQB)—1, @, m~0 (B.3)

with R®> generated by I (the center), P, and V, i=1,2,3 whereas E(3), the
Euclidean group in 3 dimensions is associated with the subgroup of N* generated
by {P,J;}. Indeed we can calculate the representations of N* by the inducing
technique [18]°), from the corresponding normal abelian subgroup. An element of
the dual of this subgroup will be denoted by d™*? with

AP0, W, a®) = eMPei " g0t (B.4)
and the actions ¢ of the factor group of the extensions (B.3) are obtained using
the group product law as given by

(@(d, @) - ™ P)(8, W, a®) = 4™ P(o " '(d, a)(8, W, a®))

= GreEman(g, v, °) (B.5)
so that the orbits are characterized by constant  and p, and by the sets
{(ak —mAd), Vd, a}. It is interesting to note at this point that in contradistinction

to the Galilei group case, we here no longer have a dynamical type relationship as
we then had for the orbits (see e.g. [2]) the characterization

1
E— . p* = const. (B.6)

already implying in fact that the corresponding theory only would describe free
particles.

With (B.5) the representations (B.4) can now be induced to the whole of N*;
there are obviously two cases:

Case 1. mA =0, implying either that the extension is trivial, or that the factor
system &, is in the kernel of the representation. We thus then find, up to an
uninteresting phase factor exp (inf) the ordinary representations of N but, be-
cause of the Proposition 2.3 we may omit their analysis altogether.

_Case 2. nA#0. We may then choose as orbit representatives the elements
™%, whose little groups are isomorphic to SO(3) (resp. SU(2)). The corres-
ponding direct integral Hilbert spaces are £*(R*)® C,,,,, with 2s€Z, and the
induced representations are straightforwardly obtained as

(@"FPINM)P(6, W, a°, d, a)f, (%)
=(a"%% @ D,)(8 — AWX, W, a°, =% + d + aX’, a)f, (%)
= e i MR (D ) (a)f, (a”(E — d)) (B.7)
where we have used the little group condition for the coset representative X', and

®  For a brief survey of the method and more explicit notations, see [19], §3.
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where (D,),,- are the usual spin s matrices of SU(2). The projective representa-
tions of N are then obtained from (B.7) just by setting in this formula everywhere
0=0.

The situation is very analogous in the relativistic case. The central extensions
found in (A.14) will be denoted E*, and these groups have elements (6, g), 0 €R,
g €E with corresponding products

(01, 81)(02, 82) = (8, + 0, + £,(81, 82), 8182) (B.8)

where the factor systems ¢ can be obtained from (A.14), for g =(w, a, A;)
i=1,2 as given by

&0 (815 82) = Agu.Wi(A, alz)" (B.9)
We again can decompose E* as follows
0->R>E*—>2—-1, ¢ m~0 (B.10)

which is a split extension (m ~0) and where R® is generated by the center I and
the momentum translations, whereas the factor group 2 is isomorphic with the
Poincaré group. Denoting by d™, n €R, « a four covariant vector, an element of
the dual of the corresponding normal subgroup, i.e.

am™ (0, w)=e'morr.t) (B.11)
the action of & on this dual is then found to be given by
(¢(a, A)a™ ) (6, w)=a™" (¢ "(a, A)6, w))

=exp i[n0+((Ak), —nAa“g,, )w"] (B.12)
hence, with (g - a), =g, a"
¢o(a, A)a™ = gmi~—nk&a (B.13)

Exactly as for the Newton group, and because the ordinary representations of

E do not allow the desired systems of imprimitivity (see Proposition 2.5) we may

restrict ourselves to the case where A # 0. The orbits defined by (B.13) are then

characterized by a constant 1, and by the set {Ak—7A(g ‘- a)|Va, A} which is
easily seen to generate the whole 4-dimensional space of covariant 4-vectors.

- Note again at this point that similarly as in (B.6) we do not have a dynamical

relationship characterizing the orbits as with the Poincaré group for which we had

p>=m? (B.14)

which is bound to the fact that the representations of the Poincaré group only
describe free particles.

Let us now induce the representations (B.13) to E* :as nA # 0 we may take as
orbit representatives the elements d™° and the little groups are then SO(3, 1)
respectively SL(2,C) and we find in this way a unique class of (true) projective
representations given by

(@™°1E*)*(6, w, a, A)f(x)
= exp in(0— Ag,,w*x") AN)F(A™(x - ) (B.15)

with fe £L*(R*, #(4A), d*x), #(A) the carrier space of an irreducible representation
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A of SL(2,C). In the spinless case, this gives the quantal solution (4.19) whereas
for the case with spin, we refer to the remarks at the end of that Section 4.
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