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Particle interpretation for
external field problems in QED

: H. Fierz and G. Scharf
Institut fiir Theoretische Physik der Universitit Ziirich, Schonberggasse 9, 8001 Ziirich, Switzerland

(9. VIL 1979)

Abstract. Various Fock representations of the algebra of Fermi field operators in the presence of
time-dependent external electromagnetic fields are investigated. The static representation obtained by
freezing in the external field at any time ¢ is of particular interest. It is proved that the system is always
in this representation, describing the time evolution in the Schrédinger picture, which implies unitary
implementation of the S-matrix. However, the attempt to use the static representation as a particle
picture fails for reasons of relativistic covariance.

1. Introduction

The recent effort to test QED in strong electromagnetic fields has renewed
the interest in the external field problem. The starting point of these investigations
was the old observation that the vacuum structure changes from a neutral to
charged vacuum if a static external field exceeds some critical strength. This
statement has an unambiguous meaning in the static situation because there exists
an essentially unique particle interpretation, usually called the Furry picture.

Unfortunately static supercritical fields do not exist. This has led to the
proposal of looking for similar effects in time-dependent strong fields as they can
be achieved in heavy ion collisions. Then, however, the meaning of a ‘charged
vacuum’ is no longer clear. As a consequence, the meaning of ‘critical fields’ is
also not clear. Therefore, the discussion of the problem must start from the
analysis of the particle interpretation in time-dependent external fields.

In the next section, various Fock representations of the algebra of Fermi field
operators are introduced. Besides the well-known in- and out-representations,
there are at any time ¢ interpolating in- and out-representations, obtained by the
time evolution automorphism, and a static representation obtained by freezing in
the external field at time t. It is proved in Section 3 that the interpolating and the
static representations are unitary equivalent. This result has important physical
consequences. First, it implies the unitary implementation of the out-
representation in the in-Fock space, i.e. a unitary S-matrix. Second, it gives a
justification of the Furry picture: if an external potential is switched on in a
continuous manner and then remains constant = A(x), the system is driven into
the static representation corresponding to A(x), which is just the Furry picture.
For this reason, one might take the static representation as a candidate for a
particle interpretation also in time-dependent fields. In fact, this particle picture
has been used in almost all discussions of the external field problem in strong
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fields. However, the construction of the static representation is not a covariant
procedure. As a consequence, the vacuum state for one reference frame will look
as a many-particle state in a different frame of reference, which is unphysical. We
therefore must retain the conservative point of view that the notion of particles is
only related to the asymptotically in- and out-going states. But then, critical fields
must be defined by some change in the structure of the S-matrix, as discussed
below, and not by ‘diving’ of eigenvalues of a static Hamiltonian into the
continuum.

2. Fock representations of the field-operator algebra

Let % be a complex Hilbert space and & the *-algebra of Fermi field
operators Y(f) satisfying canonical anti-commutation relations

v, v (@=(8), [ ge (2.1)
Later on, # will be identified with the one-particle subspace, then we have
¥ = (L*(R®)* for the Dirac field.

In # a time evolution is defined by the Dirac equation
40

d

== (Ho+ BO)f(), 2.2)

where H, is the free Dirac Hamiltonian and
B(t,x)=V(t,x)—a - A(t, x)

represents a (possibly) time-dependent external electromagnetic field. We have to
impose some mild restrictions on the potentials: Let B(t) be Hy-bounded with
norm <1 for all ¢, and differentiable in t such that the derivative B'(¢) is also
H,-bounded (with arbitrary bound). Then according to a general theorem [1] the

Dirac equation (2.2) is solved by a strongly differentiable unitary propagator
U(ta t())

fO)=U(, to)fo,  fo€X (2.3)
satisfying

U(t, t) U(ty, to) = U(t, 1)

uitn=1 (2.4)

U(t, to)" = U, to) ' = Ul(ty, 1).

By means of the propagator U, the time evolution can be carried over to the
algebra o

tl’t(fO) = ll’( U(t03 t)fO)a fO € % : ‘ (25)

This is a *-automorphism on & which solves the operator Dirac equation
according to

. d . d +
L o= o{ i vt )

= Y((H U, 1)) " fo) = $(U(to, ) H(t)fo)
= Y, (H(t)f,), foe D(H(t)). (2.6)
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The abstract algebra & gets its physical meaning by representing it as an
algebra of operators on a Hilbert space & of state vectors. If this representation is
a Fock representation on

F=0 %,
n=0
¥*,={CQ, CeC} (2.7)
¥, = ¥,
with vacuum (), we have a particle interpretation. For the definition of a Fock

representation, it is sufficient to specify . This can be done as follows: We
choose an orthogonal direct decomposition of #

H=H, DIH_ - (2.8)
with corresponding projection operators P,
Hoaf=f,+f_, fe=P.fe ., (2.9)

and define annihilation operators by

b(f)=v(f,), df-)=¢(f)",
such that

Y(f) = b(f,)+d(f)". (2.10)
Then the vacuum () is defined by
b(f,)Q=0, d(f_)Q2=0, Vi.e .

The Fock space is constructed from (), applying b* and d" in the well-known
way. We identify #. with the electron and positron subspaces respectively.

The relationship between () and the projection operators P, is clearly seen in
the structure of the N-point functions (N=n+m)

(Q, g(f)" - d(f) (81 * - * (8n)D) = By det (£, P_g;). (2.11)

Under the time evolution automorphism (2.5), the N-point functions transform as
follows (U= U(t) = U(t, t,))

Q, y(U )" - p(U'g,)0) = 8, det (U™'f, P_U'g))
= 8, det (f, UP_U'g).

The right-hand side can be taken as the definition of a new Fock representatlon
with a vacuum (),, specified by the projector "

P_()=U@)P_U(t)". (2.12)

The corresponding Fock space &%, is obtained from % by the extension of the
mapping

Qr~Q, l_kl tb*(fi)tlf(gk)ﬂml_;[ Y (U PU() &), (2.13)

to the whole of %. This interpretation of the time evolution as a change of the
Fock representation with the field operators unchanged is the Schrédinger picture.
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Every decomposition (2.8) or (2.10) characterizes a particular particle in-
terpretation or Fock representation. The following representations will be impor-
tant for what follows:

(i) The in-representation: We take the spectral projections P2 on the posi-
tive and negative energy subspaces of the free Dirac Hamiltonian H,, such that
the decomposition (2.10) reads

P(f) = bin(f3) + din(f2)" (2.14)

with corresponding (), and %,,. Transforming ¢(f) according to the free time
evolution

UO(t’ tO) = exp - lHO(t_ tO)a

we write

" (f) = y(Us(to, 1)) (2.15)
If the (abstract) field is transformed with a non-trivial propagator U

¥.(f) = ¢, (U(to, D), (2.16)

we call it an interpolating field (using the LSZ terminology). To complete the
definition of the interpolating field, an initial condition has to be imposed, which
for the in-representation reads

im [y(f)—-¢:"(H]=0, Vfe. (2.17)
t—>—co
Then, taking t,— —% in (2.16), we get the following expression for the interpolat-
ing field in the in-representation

$(f) = lim Y (Ul(t, 1)f)

to—-)—oo

= lim ¢™(Uy(t, to) U(t,, 1)f)

to—>—oe

=y(W_()7)), (2.18)

where

W.(t)=s-lim U(t, t,) Uy(t,, t) (2.19)
to—>+c

are the wave operators. At this point, some additional restrictions on the
potentials, guaranteeing the existence of the wave operators, must be imposed.
Such conditions are well-known in the static case [2] as well as for time-
dependent potentials [3). Furthermore, to simplify the discussion, we assume that
W, are unitary operators on #, which excludes bound states in the static case, but
is no serious restriction for time-dependent fields going to 0 for t — %o,

(i) The interpolating in-representation: In this case the projection operators
are

P.(t)=s-lim U(t, t,)PLU(t,, t) = W_() PAW_(¢1)". (2.20)

tg—>—©



Vol. 52, 1979  Particle interpretation for external field problems in QED 441

For t=—co this coincides with the in-representation. For finite #, we get the
decomposition

()= lim ¢o(U(t, 1)f)

to—>—

lim {2(PLU(to, 1)f)+ it (P2 U(ty, 0)f)}

to—>—0o0

= lim {y,(PSU(t, )f) + b, (P2U(t,, 1))}

= Y (U(t, =) PLU(=, )f) + 1 (U(t, —=) P2 U(—, 1)f),

where — is used as a short notation for the strong limit (2.20). This shows that
the interpolating in-representation is obtained from the in-representation, taking
the time-evolution into account in the Schrédinger picture (2.12).

(iii) The static representation: Here the projection operators P, are given by
the positive and negative spectral parts of the static Hamiltonian

H= H0+ B(ta X)t=const7

where the external field B(t, x) is frozen in at some time ¢ The corresponding
particle interpretation is known as the Furry picture in the case of a static field.

(iv) The out-representation: This representation is completely analogous to
the in-representation with the only difference that the interpolating field is now
defined by the asymptotic condition

Lim [¢(f)—¢7™(H]=0, VfeX (2.21)

instead of (2.17). As a consequence, we now have
b (f) = Y7 (W ()7 f). : (2.22)

Similar to (ii) an interpolating out-representation can be defined.

According to the construction, each Fock representation I-IV is realized on
its own Fock space. Now, the natural question arises which representations are
unitary equivalent. Let us consider two representations ¢,(f), ¢,(f) with Fock
spaces #,, %,, defined by projection operators P, P%. They are unitary equival-
ent if a unitary operator U from %, onto %, exists, such that

() =U(HU™',  Vfed. (2.23)
Specializing the relation
by(Pif)+d (PLf)* = Ub,(P3f)U '+ Ud,(P2f)* U ! (2.24)

for f= P.f, we obtain a Bogoliubov transformation on %,
by(Pif) = by(PLPif)+d,(PLP3f)" = Uby(Pf)U™’
da(P2f)" = by(PLP2f)+ d,(PLP2f)" = Ud,(P2f)" U™,

which is unitarily implemented. This implies that )5 = U(Q, is the vacuum for the

Fermi operators b5, d% in %,. Therefore, the two representations are unitary
equivalent if and only if there exists a unique vacuum (5 for b5, d5 in %,. This

(2.25)
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problem has been studied in Ref. [4]. Writing
W,,=P.P} W_,=P.P;

W. =PP* W_=P'P, )
the solution can be expressed in the following
Theorem 1. Let
by(f)= by (W, . fy+d,(W_.f)"
Af)=b(W_.f)+d,(W__f) (2.27)

dz(f)? = b,(W+_f) + "11(“/—-f)+

be a Bogliubouv transformation of Fermi operators generated by a unitary operator W
on ¥

Ww =1, (2.28)

W, W
W=( ++ —+),

W,. W

Then the two sets of operators have vacua ), and (), in the same Fock space % if
and only if W_, and W__ are Hilbert-Schmidt (H.S.) operators on #.

There exist several proof of this theorem in the literature [S]. The construc-
tive proof given in [4] has the advantage of providing explicit expressions for the
vacuum (), and the corresponding dressing transformation V:

Theorem 2. The conditions of Theorem 1 are necessary and sufficient for the
existence of a unitary operator V on %, satisfying

Q,=VQ,

o (2.29)
Vi(HV™' = ¢(Wf).
V is given in terms of W as follows: Let.
N, =Ker(l1- “i*_W+_)=KerW++ (2.30)
N_=Ker(1-W- . W_,)=Ker W__,
be the (finite dimensional) null-spaces and
=—-W1! = -1
A=-W_ W_, B=W_.. (2.31)

C=wI! D=(W,_w. )T

where the inverse operators are defined on the orthogonal complements RN’,. Choose
a basis

Py w s s Cps p=n+1,...,x (2.32)
E s Prih Pn qg=n'+1,...,=
in N_, N, N_, N respectively, and define
b, = bae,), d, = da(ey), pq=1,...,=
Ap=(¢;.A¢7), By =(¢; Bg]) (2.33)
Cpq‘-*(qc;,ch;)', D,, = (¢, De¢g)s p=n+1,...,%

g=n'+1,...,, etc.
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Then
V=CyVoexp 2 Apb,d;:expy (B,,~8,,)b’b,
Pq Pq

rexp 3, (C,, —8,,)d5d, exp ), Dob,d, (2.34)
Pq Pq
with

=[det(1+ ATA)]"'?

\/0=:(b‘{¢z_ W‘i‘_dq) e (b;q:}: W‘i"_dq) (2.35)
q q
(d;xz wzab,,) e (d;.;z WE’L'b,,):
p p :

— if n+n’ even, + if n+n’' odd. The double dots mean normal ordering.

Let us now return to the problem of unitary equivalence. We shall prove in
the next section that for a large class of time dependent external fields the static
representation (iii) and the interpolating (in-) representation (ii) are equivalent.
This result has important physical consequences. First, it gives a justification of
the Furry picture: The particle interpretation obtained by following the time-
evolution in the Schrédinger picture, switching on the external field in a continu-
ous manner, is equivalent to the Furry picture (up to a unitary dressing transfor-
mation). Second, since the static and the interpolating out-representation are
equivalent as well, it follows that the interpolating in- and out-representations are
also equivalent. The unitary transformation between them can be fixed by
reahzmg both representations on the same Fock space, identifying the interpolat-
ing fields. Then equations (2.18) and (2.22) imply

WHW_(D)f) = g (f) = Y (W.(0)"f) (2.36)

or
U () = ¢ (W_(1)" W (0)f) = ¢ (S(1)f), (2.37)

where S(r) is the 1-particle S-matrix. The unitary dressing transformation S(r)
which exists according to Theorem 2 (2.29)

U (f) = ¥ (S0 f) = SO ¥ (HS(1) (2.38)

is of course the S-matrix in Fock space.

The explicit structure of the S-matrix is given by (2.34). For weak external
fields the factor V, is =1. The main problem in connection with strong time-
dependent fields is, whether the change in the structure of S with the appearance
of a non-trivial V, (2.35) or non-trivial null- -space (2.30) actually occurs. This
would correspond precisely to the charged vacuum in the static case [6], and wﬂl
be discussed elsewhere.

Theorem 2 can also be understood as a criterion on the unitary 1mp1ementa-
tion (2.29) of the *-automorphism

(oo gh)(f) = W(WS) (2.39)
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within the same Fock space &%. It is important to notice that unitary correspon-
dence can always be achieved between different Fock spaces & and %'. In fact, let
() and & be vacuum and Fock space corresponding to the decomposition

Yp(f)=b(f)+d(f)", fe=P.f (2.40)
defined by P,, and, in the same way, (), ¥’ for

P'(F)=>b(fL)+d'(f)",  f.=P.f (2.41)
with

P.=WP, W, (2.42)
such that

fi= Wf.. (2.43)
Extending the correspondence

Que®, 0G0 dlf) @mT1 0" d iy (2.44)

i i

to the whole of %, one gets a unitary mapping V of % onto %'. Then

b'(fL)=Vb(fIV™',  d'(f)=Vd({f )V (2.45)
and

W' (W) =Vb(f )V +V d(f) 'V =Vy(f IV, (2.46)

which shows the unitary correspondence.

In scattering theory, one wants to calculate matrix elements between incom-
ing and outgoing states. To carry this out, one needs unitary implementation of
the S-matrix as discussed above and not only a unitary correspondence (2.46). On
the other hand, in the discussion of symmetry transformations the trivial unitary
correspondence may be sufficient. We shall return to this point in the last section.
Moreover, as was pointed out in Ref. [7], the time evolution (2.5) is not
implementable in general. Using the unitary correspondence (2.46) in this case,
we are again in the Schrodinger picture (2.13).

3. Unitary equivalence of the static and interpolating representations

For simplicity we consider external potentials
B(t,x)= V(t,x)—a* A(t, x) (3.1)

which vanish identically for t=1¢,. Without loss of generality, we may assume
fo= 0. The interpolating in-representation at some fixed time T >0 is then defined
by U(T,0)PLU(0, T). According to Theorem 1 we have to prove
P (T)U(T,0)P° cH.S.
P_(T)U(T,0)Pl€H.S,,

where P,.(T) are the projection operators of the static Hamiltonian H(T),
defining the static representation. We show that the operators (3.2) are integral

(3.2)
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operators with Hilbert-Schmidt kernels. In doing so, we have to deal with the
more general Carleman integral operators [8]. A Carleman operator K on L? is
defined by a measurable kernel K(p, q) with

K(p,-)eL?  for almost all p. (3.3)
We shall only consider bounded Carleman operators, such that
(KN(p)= | K(p, )f(@) dgeL* foran feL”

In addition we have to use the eigenfunction expansion for H(T). If B(T, x)
is sufficiently restricted [9, 10], there exist normalizable eigenfunctions ¢(E;, x) €
L*(R** and generalized eigenfunctions ¢(p,x)e L*R?)?, p=(p, s, &), s, e ==1,
which define the generalized unitary Fourier transformation F

F: Lz(le')4 — LZ(R3)4G9 [?
(FP)(p) =Lim. jdsm(p, x)*f(x) € L2(R°)* (3.4)

(i) = j d*xo(E, x)* f(x) € I”

F diagonalizes H(T):
F(H(T)f)(p) = eE(p)(Ff)(p) (3.5)
F(H(T)f)(i) = E(Ff)(i),  E(p)=vp*+m>.

To simplify the notation, we use the symbol p for both (p, s, €) and the label i of
" the discrete spectrum, and E(p) for E(p) and E,, etc. In contrast to F the ordinary
Fourier transformation on L*(R*)* is denoted by F,. It transforms H, according to

Fo(H,f)(k) = E(k)(P3(k) — P2 (k))(Fof)(K)

oy L a-k+pBm (3.6)
P*(k)_z(ht E(k) )

We s.ometimes write
&) = (Fof)(k) € L2®R%)*. (3.7)

The norm of a 4 x4 matrix B will be simply denoted by |B| and the space of
matrix functions B(p) with

1/v
IBl,= (] IB@Fap) <= v=12 9
by L°(R*)'®. The symbol F, is also used for the Fourier transform of B(x)e
LZ(R3)16
B(k) = (F,B)(k) € L*(R*)". (3.9)
We are going to prove

Theorem 3. Suppose that the external potential (3.1) satisfies the following
conditions:

(1) B(t,x)=0 for t=0,
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(2) B(t,*) is continuous and two times piecewise continuously differentiable
with respect to t,

(3) B, k) e L>R*)"*NL'R*', «a=0,1,2 forall 0=t=<T.

(4) E=0 is not in the spectrum of H(T),

(5) H(T) has an eigenfunction expansion (3.4), (3.5).

Then the static and the interpolating in-representations at any time t€[0, T] are
unitary equivalent.

Remarks |

(i) Condition (4) serves for the only purpose to have a unambiguous meaning
of P.(T) in (3.2). If 0 is an isolated eigenvalue of finite multiplicity, the
corresponding eigenspace may be included in P,(T), say, and the theorem is also
valid.

(ii) Sufficient conditions for (5) have been given in Ref [9, 10]. These
conditions are usually formulated in x-space in contrast to condition (3), and they
are not automatically satisfied by (3). The additional condition B(T, x)e L'(R>)'®
guarantees the existence of the eigenfunction expansion, for example [9].

(iii) The idea of the proof is well-known from the similar problem for the
S-matrix [11]. We express the operator (3.2) by an appropriate Dyson series and
show convergence in Hilbert-Schmidt norm by partial integration in time. This
works with the weak smoothness assumptions (2). The potential must vary
discontinuously in time to be bad enough to destroy the Hilbert-Schmidt prop-
erty.

Proof. We start from the following integral equation for the propagator
U(T)= U(T, 0)

U(T)=U(T)-i JT dt, U,(T - t,)(B(t;)— B(s)) U(t,) (3.10)
where
U (t)= e,

with s arbitrarily fixed. Combining the equations for s =0 and s = T and interat-
ing, we get the following norm-converging Dyson series

U(T)= U(T) Y, ()" U™(T) (3.11)

where U(T)=1

n

U™(T) = derl Ltldtz s j: d, Up(—1,)(B(t,) — B(T))

* Ug(t;— 1) B(t,) - - - B(t,—1) Up(t,_1 — 1,)B(t,) Up(t,). (3.12)

To represent the relevant operators as Carleman integral operators in p-
space, we often use mixed Fourier variables. Let for any bounded operator A

A = FAF;. (3.13)
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For A = B™(s) we have

BN = | o, 0*B(s 0(F"x) dx

- [ 5o (e, *B(s, NWf0 K
= j BO(p, k)fK) d°k,  fe LA®)", (3.14)

using Parseval’s equality for F,. It follows from ¢ € L*, respectively L?, and (3)
that B“)(p,k) are Carleman kernels for « =0, 1, 2. Then .

B®(s),_= FP,(T)B“(s)P°F;" (3.15)
are Carleman operators as well. The equation
(H(T)™ Ho),(p %) = (E(p) + E®)P, ()P
_ =B(T).-(p, k) (3.16)
shows that P,(T)P? is also a Carleman operator with the kernel

B(T)._(p,k)
E(p)+E(k)’

This implies that all operators we have to deal with in the following are Carleman
operators.

We substitute the Dyson series (3.11) into (3.2) and study the Born term at
first

(1-iU(T))._(p, k) = (P,(T)P°)(p, k)

(P (TYP*)(p, k) = E(p)>0. (3.17)

. j dt, e EPEOE) (k) Bir),_(p, K)). (3.18)
0

Partial integration in t, leads to

B(T). (p,k)
E(p)+E(k)

53 JTdtleitl(E(p)+E(k)) . B(l)(tl)Jr_(p, k)
0 E(p)+E(K) ’

where the first two terms compensate because of (3.16). The remaining term will
be integrated a second time by parts. Assuming for a moment B‘’(f) to be
continuous in ¢, we obtain

~

kY =T
it (E(p)+E(K)) B(t).—(p,Kk) |

=(P+(?)P2)(pa k)-

(3.19)

e (E(P) l E(k))2 =0
i E B(Z)(t1)+—(p7 k)
! l it, (E(p)+E(Kk)) 3.20

If B(t) is only piecewise continuous, we get the analogous result for every



448 H. Fierz and G. Scharf H. P. A

interval of continuity. To see that the kernels (3.20) are Hilbert-Schmidt, we
estimate

B“(s),_(p, k) - B(%L_(p, k)

(E(p)+E(k)*| E(k)*
= [(BE(5)H,?P), _(p, k)| | (3.21)
Since
Bs)(g-K)
(FoB“(s)Hy’P2F')(q, k) = =— PE{K) | (3.22)
E(k)
is a Hilbert-Schmidt operator
1B ($)Ha* Py <[B (s [EC) 2 <o ©.2%)

the same is true for (3.21) because of the unitarity of the eigenfunction expansion.
The integral in (3.20) is also a Hilbert-Schmidt operator because the integrand is
uniformly bounded and continuous in H.S.-norm.

Now we turn to the nth order term in (3.11). The correspondmg kernel reads

U%(T)+_(p, k)= J dt, - -+ dt e GE@+LE@ (¢t p k) (3.24)
A
with
Lty st B = 8y, | @k - ¥k, [BT) B
- —B(T)(p, k)]e' = VM *B(1)(k, ~ k) - - - (3.25)

- ¢! & D B(1, ) (k, —k) P2(K),
Hyk)=a-k+Bm,
A={0<t, <t, < - -<t,;<T}cR" (3.26)

Since ﬁ(s)(p, ‘)eL? and B(t JeL', the convolutions (3.25) give
L(t;,...,t;p )eL? such that g (3.24) is a Carleman kernel. For partial
integratlon of (3.24) we introduce new time variables

1 n
S —im— t"
Yon Z‘l (3.27)
sztj_t}—15 j=2,3,...,n
with
9s.
det | =1
ot
and the inverse transformation
t—sl+ i (i—1)s;,—— Z (n—i+1)s,. (3.28)

i=j+1
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Because of

n,; i=2
. (3.29)

Z (i—1s;

i=2

tnzsl

the integration of the exponential in (3.24) with respect to s, yields a denominator .
E(p)+ E(k) as in (3.19) above. Differentiation of I, with fixed s,,...,s, acts on
the potentials B only. In the first partial integration of (3. 24) in s,, the boundary
terms vanish because they correspond to t, =T and t, =0 in (3.29) and in both
cases I, (3.25) vanishes. For the second partial integration, let us assume for a
moment B(t) to be two times continuously differentiable. Then the final result
consists of n? integrals over A (3.26) and 2n boundary terms with integrals over
AN{t, = T} and AN{t, = 0} respectively. The integrands are of the following form

Isla)(tls T tn; p, k)__—_ J-d3k1 “ e d3kn_1

(E(p)+ E(k))*
X [BE0(1,)(p, k1) — 80,0 B(T)(p, ky)e Motk - .
ei(‘"'t"“)H"(k"“)I_;’(“")(tn)(kn _ k)Pg(k),

a=(ay,...,a,), =012 ) a=2 (3.30)

To show that I'® (3.30) is a Hilbert-Schmidt kernel, it is sufficient to
consider the kernel

J(“)(p, k) — Jd?,kz R d3kn_1B(°‘1)(p—kl)e‘(‘z_‘l)Ho(kl)

E (k)
N —_—N
* B“J(k, ~k;) - - - B“(k, ~k)P2(k)

def

1
31
instead, using again the unitarity of the eigenfunction expansion. We have
1l = forgs |, 2l (3.32)
Since
MOl =< [B?] = |BC?| % - - (3.33)
Young’s inequality gives
n—1
1)l = H IB<l|, | B (3.34)
i=1

C =max|B®)|, i=1,2, - (3.35)
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which shows that J is H.S. It follows in particular that I (3.30) is continuous
on A in the H.S.-norm.
Finally, the volumes of the domains of integration in t,,...,t, are

Tn
M (B) =—
n: (3.36)
n—1
“’rr-l(An{tl = T}) = (n = 1)! = un—l(A n{tn = O})‘
This implies for (3.24) the following bound
1 n?T" " .
b =2-C}71 . + ) !
VD). s =2 €17 C || (S 2 (337)

and leads to convergence of the Dyson series (3.11) for U(T), _ in the H.S.-norm.
This completes the proof in the case of a two times continuously differentiable
potential. If B(?) is only picewise differentiable, the only modification in the above
estimates is the appearance of additional boundary terms. Let B(t) be discon-
tinuous at N points in [0, T], then we get instead of (3.37) the bound

1 2T 1
EK? 2'( - +(2“L2N)(n—1)!)‘

which leads also to a H.S.-converging Dyson series. The proof of the second
condition in (3.2) U(T)_, € H.S. runs along exactly the same lines.

||U(n)(T)+—”H.s. =2 Crll—lcz

4. Covariant particle interpretations

In this section we sometimes use relativistic notation, writing
f2(x) = Ug(t, to)fo(x), x = (t,x) (4.1)
f(x) = U(, to)fo(x). (4.2)

As it is well-known, the restricted Lorentz group L. operates on the free test
functions f°(x) as follows

(Vo(M)f)(x) = S(A)f*(A~"x) (4.3)
where '

x'=Ax, AelL]} (4.4)
and S(A) satisfies

y* AL =S(A) 1y*S(A). (4.5)

This defines a unitary representation of L] which is most explicitly described in
p-space: Let

f°(x)=j d0(p) ¥ {0 (p)u(p)e

s==1

+f2_(p)v,(p)e™} (4.6)
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be the time-dependent eigenfunction expansion in the free case, then

(Vo)) = | a0() T, DIWA, p)

XS (AT YU (p)e ™  + fL_(AT'p)* vlp)e ™}, (4.7)

where p’=Ap and W(A, p’) e SU(2) is the Wigner rotation.
Let us now consider a time-dependent external potential A*(x), which
transforms under Lorentz transformations as a 4-vector

A™(x")=A*A" (Ax"). (4.8)

To simplify the discussion we assume A*(x) to be different from 0 only in the
forward light-cone. Then there exist solutions u.(p, x), v,(p, x) of the Dirac
equation with A*(x), defined uniquely by the initial conditions

u(p, x)=u,(p)e ™,  v,(p, x) = v,(p)e™ (4.9)
for t=0 and similarly for A" (x'): _
uidp’, x)=uq(pe >,  oL(p’, x)=v.(phe?*  for ¢'=0.  (4.10)

The covariance of the Dirac equation with potential together with (4.9) imply the
same transformation property as in the free case

S(A)u,(p, A 'x") = Z DYZ(W(A, pHul(p', x), etc., (4.11)
which leads to the following covariance formula for the test functions f(x) (4.2)
(VAH(x) = S(A)F(A™"x")
- [ a0(p) T DIZWA, P (A7 o', )
+fs_(A"‘;;)v§'(P', x')}. (4.12)

If we take t,=0 in equations (4.1), (4.2), then

fou(p) = j 1y (p; 0, X Fol®) dx = f2.(p),

which we will assume from now on. V(A) can be expressed in terms of the unitary
propagators U, U’ of the original and transformed Dirac equation as follows :

VIRF= U, 0) [ d0G) T D2

X{f (A7 pHulAp’; 0,X) +f (A p)ui(p’; 0,x)}
=U'(¥, 0)(Vo(A)f)(0,x)
= U'(¥', 0)(Voo(A)fo)(x') (4.13)
where

(Voo(A)fo)(x') = Vo(A)(Us (-, 0)fo)(0, X)). (4.14)
Voo maps the test function f,(x) on the plane t =0 into the plane t'=0 according
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to the free time evolution and Lorentz covariance. This is a unitary operator with
respect to the invariant scalar product

¢ ), = J do* (X)) v, g(x), (4.15)

where o is any space-like hypersurface.
The restriction of V(A) to the planes t=1, and t'=t} defines a unitary
operator W(A)

(W(A)fo)(x) = (V(A)f)(t5, x) - (4.16)
with

f(ts X) = (U(ta tO)fO)(x)-

Because of (4.13), W(A) can be written as the following product of unitary
operators

W(A) = U'(th, 0)Voo(A)U(O, t,). | (4.17)

The action of W(A) on the test functions for ¢ = t, gives rise to a *-automorphism
a of the abstract field algebra «:

a(A)o (P (fo)) = W((WU(to, 0))*fo)

= y(U(0, to) W+f0) = ll’:o(W+f0)- (4.18)

This is again a Bogoliubov automorphism and we can apply Theorem 2 (2.29) to
decide whether it can be unitarily implemented in a Fock representation defined
by projectors P,. This is in general impossible. To see this explicitly, let us
consider a purely electric field, smoothly switched on, which belongs for every
time t to the class of regular potentials, studied in Ref. [7]. Then because of
Theorem 3, the time evolution can be described for all ¢ in the in-representation
P, = PY. For the Lorentz automorphism (4.18) we have to examine

POWP? = POU'(t, 0)PY V,o(A)U(O, t)P°
— PQU'(t', 0)P2 V(A U(O, t)PS
+PLU'(t', 0)P° Voo(A)U(O, 1). (4.19)
According to Theorem 3, the propagators-in (4.18) can be substituted by the

corresponding static propagators. Then the first two operators in (4.19) are H.S.,
since.

P° Voo (A)U(0, £)P° = V,o(A) PO U(0, )P° e H.S. .

But the propagator U’ corresponds to a non-vanishing magnetic field which is not
in the regular class according to Theorem 1 in Ref. [7]. Consequently, the last
term in (4.19) is not H.S., which means that a(A) (4.17) is not implementable.

We therefore are forced to adapt the more general point of view described at
the end of Section 2, changing the representation under Lorentz transformation.
If we start with the interpolating in-representation defined by

P.(t)=U(t, 0)P2U(0, t), (4.20)
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a Lorentz transformation A causes a change to
PL(t)= WP ()W) =U'(r, OPLU'(0, 1), (4.21)

which is just the interpolating in-representation for the transformed reference
system. This covariance property one must have in a physically acceptable particle
picture. On the other hand, if we start with a static representation P,, the
transformed representation

= W(A)P. W(A)™ | (4.22)

is not the static representation (P,) in the transformed system! It is true that two
are equivalent because of Theorem 3, but the dressing transformation is non-
trivial (P, P".#0, P, P_#0). That means, the transformed vacuum €’ defined by
P, (4.22) is a many-particle state in the static representation (P,). This is
completely unphysical. For this reason, we must reject the static representation as
a particle picture in the case of time-dependent external fields. The static
representation does have a physical significance for time-independent (static)
~ fields (Furry picture), since then a distinct reference frame exists in which the
external field is static. But in the general time-dependent situation, there is no
way to d1st1ngulsh one static representation from the other.

We arrive at the conclusion that the only satisfactory particle interpretatzons
are the in- and out-representations (or interpolating in- and out-representations
in the Schrodinger picture) in general. This is in accordance with the conservative .
point of view that the notion of particles has only an asymptotic meaning.
Concerning the problem of strong time-dependent fields, this implies that critical
fields must be defined by the change in the structure of the S-matrix, as discussed
in Section 2, and not by a ‘diving’ of an eigenvalue of the static Dirac Hamiltonian
into the continuum.
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