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Trotter limits of Lie algebra representations and
coherent states

U. Cattaneo™
Institut de Physique, Université de Neuchatel, CH-2000 Neuchatel (Switzerland)

W. Wreszinski

Instituto de Fisica, Universidade de Sdo Paulo, Sdo Paulo (Brazil)

(14. V. 1979)

Abstract. The notion of a Trotter limit of a net (1) of Lie algebra representations is introduced
and a proposition on the existence of such a limit for a net of skew-symmetric representations
satisfying specific conditions is proven. This result is then applied to limits of interest in relativistic
quantum field theory or quantum optics, in particular for the study of zero-mass representations of the
Poincaré group and of the connection between Bloch and Glauber coherent states.

1. Introduction

Since the pioneering papers of Segal [1] and Innii and Wigner [2], there has
been renewed interest in the theory of Lie algebra and Lie group contraction,
both mathematical and in view of physical applications. In particular, there have
been several important mathematical contributions to the subject as, for instance,
those of Saletan [3] and Lévy-Nahas [4]. Moreover, applications have been found
in several branches of theoretical physics, such as relativistic quantum field theory
(in connection with the study of zero-mass representations of the Poincaré group
[5)) and, more recently, quantum optics [6].

Although from the algebralc point of view, the theory has been developed
aiming at great generality and in a mathematical rigorous way in [3] and [4], it has
met with some troubles when dealing with the contraction of representations. The
latter problem has been ordinarily studied from the point of view of taking
suitable limits of matrix elements. Yet the definition of ‘limit operators’ (which
are, in most relevant cases, properly unbounded) by matrix elements is, in
general, beset by serious difficulties ([7], §53).

In a previous paper [8], a theory of contraction of Lie algebra representations
has been presented which attempts to avoid these difficulties. Given, for each
element ¢ of a directed system J (usually a subset of R with the induced ordering),
a complex Hilbert space §, and a representation 7, on 9, of a finite-dimensional
real Lie algebra g, isomorphic to a reference Lie algebra g which is ‘contracting
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into §’, we have defined and investigated in [8] a representation 4, of the
contracted Lie algebra § with carrier space given in terms of the net (9,). In
particular, we have shown the existence of a subrepresentation 7 of 7;, naturally
defined under conditions which are often realized in practice.

We prove, in Section II of the present paper, that the representation 7 of § is
essentially unique and can be defined as a Trotterlimit of the net (). In Section
ITI, we apply the results of Section II and of [8] to several examples which are
chosen to illustrate the chief points of the theory of contraction of skew-
symmetric Lie algebra representations and in view of their interest for applica-
tions, especially to the study of zero-mass representations of the Poincaré group
and to quantum optics. Regarding the latter, we prove in Section III.3 that the
Glauber coherent states (see, e.g., [9], Ch. 3) are limits in Trotter’s sense [10] of
sequences of the so-called Bloch (or spin, or atomic) coherent states [11, 6], and
this settles the treatment of ([6], Section IV) on a firm ground.

We shall use notation and results of [8] throughout. In particular, V will
always stand for a finite-dimensional real vector space and alg (V, n) will denote
the Lie algebra with underlying vector space V and Lie multiplication w. Every
net considered in the present paper will be indexed by a directed system denoted
by J.

I1. Trotter limits of nets of Lie algebra representations

In preparation for formulating the main result of this section, we begin by
recollecting two concepts already used in [8].

Let alg (V, n) be a reference Lie algebra and let (I',) be a reference net of
automorphisms of V. A net (alg (V, w,)) of Lie algebras such that, for each ¢ J,
the mapping I', is an isomorphism of alg(V, w,) onto alg(V, u) is said to be
contracting into alg (V, i) with respect to alg (V, w) if

fi(g g)=limI'"'(n(T.(g), T.(g"))

for all g g’ in V. By abuse of language, the contracted Lie algebra of the net
(alg (V, w.)), namely, alg (V, i), is also called a contraction of alg (V, w).

It is not a goal of the present paper to find necessary and sufficient conditions
in order that a net of finite-dimensional real Lie algebras be nontrivially contract-
ing. Particular cases have been studied by different authors. The most important
types of Lie algebra contractions appearing in the literature are, in decreasing
order of generality, the following.

(a) Lévy-Nahas contractions [4]

Using the previous notation with J a subset of R—{0} unbounded from
above, the reference nets (I',) of automorphisms of V defining Lévy-Nahas
contractions are given by

I,=t"T+t'1dy),

where n is a positive integer and I' is a noninvertible endomorphism of V such
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that I'+¢7 ' Id is an automorphism of V for all teJ. Let V= V,@® Vy be the
Fitting decomposition [12] of V relative to T, i.e., let the direct summands Vg
and Vy be I'-stable vector subspaces of V such that I'| Vi is an injection onto Vg
and I' | Vy is nilpotent. Then the net (alg (V, u,)) defined by alg (V, p) and (T',) is
nontrivially contracting if and only if I"°e» =0, where v is a mapping of VXV
into V given by

v(g 8) =T*(n(g 8n) —T(1(T(g), &)~ + (g T(gNn) + 1(I'(g), (gD

Here, and in the next few paragraphs, the subscript N (resp. R) denotes
orthogonal projection onto Vy (resp. V). If the condition I'"ev =0 is satisfied,
then @ =(-I)""'evy for n=1 and

(g, 8)=[T| Ve) ' (r((g),T(gNr)—T(1(g &)
+u(l'(g), 8w+ (g I'(g))n

for all g, g’ in V when n=0.
Notice that this result is obtained for every J of the type considered.

(b) Saletan contractions [3]

They are the Lévy-Nahas contractions with n=0.

(c) Inonii- Wigner contractions [2]
They are the Saletan contractions such that I'(Vy) ={0} ([3], Section I. C. 1).

The second concept we need is that of a net (§,) of Hilbert spaces approx-
imating a Hilbert space £ ([10], Section 2) with respect to a net (P,), where, for
each vteJ, P, is a continuous linear mapping of § into §,. This happens when
[P|l=<1 for all veJ and lim, |[P,¢||, = |||l for all ¢ €H. Then a net (¢,) €], D, is
said to be (P,)-convergent to ¢ €9 (shortly: (P,)—lim ¢, = @) if lim, |, — P.d||, =
0; a net (A,) of operators in (9,) is said to be (P,)-convergent to the operator A in
9 (shortly: (P)—1lim A, =A) if Ad=(P)—lim A P¢ for all ¢ €D(A). Notice
that, if ¢ =(P,)—lim ¢, and ¢'=(P,)—1lim ¢,, then ¢ = ¢’ because

|¢ —'lle =1lim |P.¢ — P.¢'ll. <lim ||, — P.g|\, +1im ||, = P.¢'|.. = 0.

Definition. Let (g,) = (alg (V, w,)) be a net of Lie algebras contracting into
g=alg(V, i) and, for each ve I, let w, be a representation of g, on a complex
Hilbert space 9,. A representation 7 of § on a complex Hilbert space 9 is said to be
a Trotter limit of the net (m) and, alternatively, (w,) is said to be strictly
contracting into 7 if the following conditions are satisfied:

(a) For each € J, there exists a continuous linear mapping P, of 9 into 9,
such that the net (9,), approximates § with respect to the net (P,).
(b) w(g)=(P,)—limm (g) forall geV.

If § is the contraction of a Lie algebra §=alg(V, u) by means of a
reference net (I',) of automorphisms of V and if, for each v€J, m, is a
representation of § on 9., then 7 is said to be a Trotter limit of (w,) (and
(7,) is said to be strictly contracting into #) when condition (a) is satisfied
together with

(b") 7(g)=(P)—lim 7, (I'.(g)) forall geV.
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More precisely, in both cases, 7 is said to be the Trotter limit of (,) relative
to (P,).

Proposition 1. Let (g.) = (alg (V, w,)) be a net of Lie algebras contracting into
g=alg (V, i) with respect to g=alg (V, u) and let G be a basis of V. For each 1€ J,
let ©, be a complex Hilbert space of dimension Card (S,), where S, is a subset of R
such that S, < S, whenever ' <., let 7, be a skew-symmetric representation of g, on
D, let {¢),cs. be an orthonormal basis of 9, contained in D (m,), and, with
S=U.S, define {¢'},cs by ¢ =¢ whenever se€S, and ¢ =0 otherwise.
Suppose that for —k <m =<k, where k is a fixed positive integer, for each s € S, and
each ge %, we have a net (c,,,.(g)) of complex numbers, which are 0 whenever
s¢ S, orstm¢S,, converging in C to c,,.(g). If

()90 = Y com(@)dt™ (IL.1)

m=—k

forall veJ, all ge 9, and all s € S,, then, up to unitary equivalence, there exists one
and only one skew-symmetric representation 7 of § on a complex Hilbert space $ of
dimension Card (S) which is the Trotter limit of the net (1r,) relative to a net (P,)
defined by

Py =y®  (1el;se8), (IL.2)

where ©; ={y*}, _ is some orthonormal basis of  such that D (7)=sp (&;). In
addition, we have

TP = Y cyn(@YET™ (IL.3)

m=—k

for all ge % and all s S.

Proof. To begin with, let us note that if 4 is the Trotter limit of () relative
to the net (P,) defined by (I1.2), then (II.3) is satisfied because it follows from
(IL.1) that

7 (PO — Y ¢ m(@Yt™

m=—k

li{n

L

k
< 2 limle,om(®)~com(®)|=0
m=—k

for all g€ % and all s€S.

The existence of 7 with the stated properties was proven in ([8], Proposition
4). Conversely, suppose that together with 7 we have a skew-symmetric represen-
tation 7' of § on a complex Hilbert space ' of dimension Card (S) which is the
Trotter limit of () relative to a net (P!) defined, in analogy with (P,), via an
orthonormal basis &,={y"“},.s. Then, by (II.3), the unitary mapping U of §
onto §' such that Uy =y for all seS implies #(g)=U'#'(g)U for all
geV. R

Remark 1. Alternatively, a representation 4 which is a suitable Trotter limit
of the net (m,) can be constructed as follows. Let § be I&(S), the Hilbert space of



Vol. 52, 1979 Trotter limits of Lie algebra representations and coherent states 317

all complex-valued functions f defined in S and satisfying

Y f(s)P <o

seS

with scalar multiplication (.|.) given by

(f1m)= 2 f(s)h(s).
seS
If &, ={y*’},.s is the canonical orthonormal basis of IZ(S) such that ¢*)(s') =6,
then P, is given by (IL.2) and #, defined by (IL.3) with D (#)=sp(&;), is a
representation with the desired properties.

Remark 2. If the relation (I1.6) of [8] is satisfied, then the skew-symmetric
representation 7 of Proposition 1 is integrable ([13], Theorem 1).

Remark 3. Suppose that, instead of the nets (g,), (1,), we have a Lie algebra
g=alg (V, u), a contraction § of g by means of a reference net (I',) of automorph-
isms of V, and, for each ve€J, a skew-symmetric representation #, of g on a
complex Hilbert space , of dimension Card(S,). Then the conclusions of
Proposition 1 are still correct when r,oI', replaces 7, in (II.1) and all other
assumptions are kept unchanged.

Remark 4. By virtue of ([8], Propositions 1 and 4), Proposition 1 (and its
reformulation according to Remark 3) is still true if ‘skew-symmetric’ is replaced
everywhere by ‘symmetric’ and even if the term ‘skew-symmetric’ is everywhere
dropped, provided in this last case the nets (m,(g)) satisfy Condition (K) of [8]
for all ge V.

III. Examples

In this section, we illustrate the previous theory by several examples, for
which we shall verify the assumptions of Proposition 1. Hence, in each case, we
are given a contracting net (g,)=(alg(V, n,)) of Lie algebras, each g, being
isomorphic to a reference Lie algebra g=alg (V, u), and a net (9,) of complex
Hilbert spaces with, for each « € J, a skew-symmetric representation a, of g, on 9,.
In the examples treated here, we require that 7, be, for each « € J, an irreducible
representation.

We shall denote by su(2), ¢(2), b (1), r?, and su(1, 1), respectively, the Lie
algebras of the (real) Lie groups SU(2), E(2) (the Euclidean group of the plane),
H(1) (the 3-dimensional Heisenberg group), the additive group of R®, and
SU(1, 1).

The following two particular notions concerning Lie algebra representations
will be used. Given a connected finite-dimensional real Lie group G whose Lie
algebra is isomorphic to a Lie algebra g and given a skew-symmetric representa-
tion 7 of g on a complex Hilbert space ©, we shall say that  is integrable to G if
there exist a (unique) strongly continuous unitary representation U of G on $ and
an isomorphism 6 of g onto Lie (G) such that w(g) = dU(6(g)) for all geg. Two
skew-symmetric representations 7 and 7' of g on £ which are integrable to G by
means of strongly continuous unitary representations U and U’, respectively, will
be said to be cognate if U= U".
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In what follows, the symbols § and ©, (with the suitable J) will have the
same meaning as in Proposition 1. In particular,  and &; can be constructed as
in ([8], Proposition 4).

For the sake of clarity, we divide this section, and then again Section III.1,
into three parts. In Section II1.1.1 (resp. Section III.1.2, resp. Section I11.1.3) we
take g=su(2) and a contracted Lie algebra §= ¢(2) (resp. §=h(1), resp. §=1°) as
an example of the case where g is the Lie algebra of a compact Lie group, shortly,
a compact Lie algebra. In Section III.2, we give an example where g is the Lie
algebra of a noncompact Lie group (namely, g=su(l, 1)) and § is once more
isomorphic to e(2).

In each of the quoted examples, we start with nets of integrable faithful
irreducible skew-symmetric representations and then we obtain integrable faithful
irreducible skew-symmetric representations of g, except for the cases treated in
Section III.1.3 and in Remarks 5 and 6 in which the representations obtained are
neither irreducible nor faithful.

By ([8], Corollary to Proposition 4), the results when §= e(2) may be
interpreted as follows [5]. The Lie algebra e(2) is isomorphic to the Lie algebra of
the stabilizer of a light-like vector; its faithful irreducible skew-symmetric rep-
resentations integrable to E(2) are Trotter limits of nets of integrable irreducible
skew-symmetric representations of the Lie algebra (isomorphic to su(2)) of the
stabilizer of a time-like vector (resp. of the Lie algebra (isomorphic to su(1, 1)) of
the stabilizer of a space-like Vector)

The case of g=su(2) and §=bh(1) is treated in greater detail, and more
concretely, in Section III.3 because of the interest it has recently found in
quantum optics regarding the connection between Bloch and Glauber coherent
states (see, e.g., [6], Section IV). We prove, in particular, that the latter are limits
of sequences of the former in Trotter’s sense.

III.1. The compact case: g=su(2)

Let {g,, -, g5} be a basis of the reference Lie algebra su(2) =alg (V, w) such
that
n(81, 82) =8  1(82,8)=81,  m(8s81) =8>

Throughout Section IIL.1, the index set will be J=3N* or J=N*. For each
[ €3N¥, the symbol §, will denote the complex Hilbert space of all polynomials of
degree =<2! in one complex variable which carries the standard irreducible
skew-symmetric representation of dimension 21+ 1 of su(2) ([14], Ch. III, §2). We
choose a canonical orthonormal basis of §, that we shall denote by {¢{},cs,
where S,={-1,—1+1,...,1}. For each se€ S, and each me{-1,0, 1}, we put
Jiv(i+s)(l-s+1)  ifm=-1

c2(g) =40 if m=0 (I11.1a)
livl—s)(I+s+1) ifm=1,

(—3N(1+s)(I-s+1) ifm=-1 |
chP(g) =10 if m=0 (I11.1b)
SV(I-s)(I+s+1)  if m=1,
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—is ifm=0
su(2) — II.1c
CTam(8s) {0 otherwise. S
IIL1.1. g=~e¢(2)

For each [ e N* and each re R¥ (the set of strictly posmve real numbers), let
gi” =alg (V, u{”) be the Lie algebra isomorphic to su(2) via the automorphism I'{”
of V defined by

T{7(gy) = (1) gy, I7(g2) = (11D g,, [7(gs) = gs; (ITL.2)
thus '

“’Er)(gls 82) = (r2/l2)g3, (r)(gZa 83) = gly ,- (r)(g3’ gl) = g2 (III 3)

The contracted Lie algebra g=alg(V, i) of the sequence (g{”),.n+ has a Lie
multiplication [ satisfying

lu‘(gla g2) = 09 M'(gZa 83) = gla ﬂ(g& 81) = 82:

hence is isomorphic to ¢(2). The contraction is an InOnii-Wigner one.
For each leN* and each re R¥, we define on , an (integrable) irreducible
skew-symmetric representation " of g{” by

7{"(g) b = Z ¢ (g)F™™  (j=1,2,3;5€8), (I11.4)
m=-—1
where
ciom(g)=De@(g)  (i=1,2), (I11.5a)
i) n(gs) = ¢ 2(gs). (ITI.5b)

Moreover, we put c{?,.(g)=0 (j=1,2,3; —1sm=1) for all seZ-S,. It follows
from (IIL.5) that

com(g)=lim c{?,.(g) (j=1,2,3;5€Z;-1sm=<1)

l—oo

is given by

(r) sir fm=—lorm=1 IIL6a
2(81) = { i m=b. (IIL6a)

—3r ifm=-1
c(g,=140 ifm=0 (IT1.6b)

ir  ifm=1,
by _ —is ifm=0 1L 6¢
csiml83) {O otherwise. | (IIL.6¢)

By virtue of (IIL.6), the relation
| (g =<(r+1)(s|+ 1) (i=1,2,3;reR¥ seZ;-1=m=1)
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is satisfied; hence, the sequence (7} ’)) is strictly contracting into an integrable
skew-symmetric representation #® of § on § with D (#) =sp (Sns) (Proposition
1 and Remark 2). By (II1.4) and (IIL.6), 7" is.given explicitly (with s € S =Z and

™ € Spe) by

(g )9 = Hing s~V + Ling D, (I 72)
FO(g) ) = —LpgGD 4 LpyG+D) (II1.7b)
AO(g) P = —isyp® (I1.7¢)

(cf. [14], Ch. 1V, §2.3, where R =1r).

We obtain in this way, up to cognateness, representatives of all equivalence
classes of faithful irreducible skew-symmetric representations of § which are
integrable to E(2) ([15], Korollar zu Satz 3).

If we replace in the above J=N* by J=3N*—-N* and keep the rest
unchanged, then, for each r € R¥, the net (#{") is strictly contracting into a faithful
irreducible skew-symmetric representation 4’ of § on § which is integrable to a
2-sheeted covering group of E(2) but not to E(2).

Remark 5. Even by changing the sequence (I'{") it is not possible to obtain,
proceedmg as above, the (non-faithful) 1-dimensional skew-symmetric represen-
tations of §. On the other hand, if we put in (II1.2) I‘(')(gj) (r/I*)g; and in (II1.5)
Clom(g) = (W 1P)ciu@(g;) for j=1,2, with the rest remaining unchanged, we get a
direct sum of 1-dimensional skew-symmetric representations of § ([14], Ch. 1V,
§2.3).

II1.1.2. g=h(1)

In this case, for each [ €3N*, we define g; = alg (V, y,;) via the automorphism
I', of V given by

T'i(g)=1"2¢g, I (g)=1"g,, I'(g5) = (1/1)gs;
then

(81, 82) = gas (g2, 83)=(1/D)g1,  mu(8s, 81)=(1/1)gs.

The contracted Lie algebra of the net (g;) is thus § g alg (V, fi), isomorphic to
b(1), where

(81, 82) = &s, (g2, 83)=0, (g3, g1)=0.

The contraction is a Lévy-Nahas one, however not a Saletan one ([4], Section
ILE).

For each 1€3N*, we define an (integrable) irreducible skew-symmetric rep-
resentation m of g, on 9, by

1.‘.!(g])(b.r(n)_ Z Clnm(gj)¢'(“+M) (]: 1’2,3; REM), (IIIB)
m=—1
where N, ={0, 1,...,2l}, the orthonormal basis {¢|"™}, ., is defined by ¢{™ =
B and
Chom(8)=1"2eli2m(g)  (=1,2), (I11.92)

Ci,n,m(gS) = (l/l)c?,un(z—')l,m(gii)' (III'9b)
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We put ¢}, .(g)=0(=1,2,3;-1=m=1) for all neN— N;; then it follows from
(I1I1.9) that |

chm(g)=limel, (g (=1,2,3;neN;-1<sm=1),
[—co

with

(i27V2/n if m=-1

Crhm(8)=40 ‘ ifm=0 (I11.10a)
i27Vn+1  if m=1, |

(—2712/p if m=-1

¢l m(g)=40 if m=0 | (II1.10b)

(272/n+1  ifm=1,

¢l )—{i it m=0 1110
83 0 otherwise. (II1.10c)
The relation
et m(g)lsn+1  (j=1,2,3;neN;-1sm=<1) (I11.11)

being satisfied, the net (m) is strictly contracting into an integrable skew-
symmetric representation # of § on § with D (#) =sp (Sys). By virtue of (IIL.8)
and (I1.10), # is given explicitly (with n€ S =N and '™ € Sy») by

F(g )Y’ ™ = i27 V2 gD + 27V - T+, (I11.12a)
(g = =272y "V + 272+ Ty, (II1.12b)
(g '™ = ip'™, (I1.12¢)

If we take J=N¥, we obtain an equivalent result.

By (II1.12), § is isomorphic to the Fock space over C, the Hilbert sum of a
countable family of copies of C, equipped with an irreducible representation with
vacuum of the canonical commutation relations for one degree of freedom.
Therefore, by von Neumann’s uniqueness theorem, the representation # is a
representative of the unique equivalence class, up to a ‘phase factor’ and
cognateness, of nontrivial irreducible skew-symmetric representations of § which
are integrable to H(1).

II1.1.3. =13

For each | e3N*, the Lie algebra g, =alg (V, ;) is defined by means of the
automorphism I'; of V given by I',(g) =(1/1)g; (j=1, 2, 3), so that

(81, 82)=(1/D)gs, (g2 g83)=(1/D)g1,  wmu(gs, g81)=(1/1)g,.

Hence, the contracted Lie algebra § of the net (g;) is Abelian and is isomorphic to
r3.(\)7Ve define m as in Section III.1.2, but with coefficients ¢}, .(g) related to
su(2

Cl,s,m(gj) by
Clum(g)=A/Ncin2m(g)  (=1,2,3;neN;—-1=sm=<1) (II1.13)
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and equal zero if neN— N, It follows from (III.13) that the assumptions of
Proposition 1 and (II1.11) are satisfied, and thus the net (i) is strictly contracting
into an integrable non-faithful reducible skew-symmetric representation 4 of § on
 with D (7) = sp (Syn=) defined by

’.ﬁ'(g3) = iId@.

III.2. The noncompact case: g=su(l,1) and §= ¢(2)

In Section III.2, {g,, g,, g5} Will denote a basis of the reference Lie algebra
su(l, 1)=alg (V, u) such that

©(81, 82)=—8s» ©(g2, 83) = &1 p(gs, 81) = 8-

The irreducible strongly continuous unitary representations of SU(1, 1) that we
shall consider are those of the principal series, labeled by a real number [# 0 and
by a parameter ¢ taking the values 0 and 3 ([14], Ch. VI, §2.7, where p=1). The
index set will be J=R—{0} in both cases ¢ =0 and & =1.

For each leJ and each reR*, we define g{”=alg(V, u{”) via the au-
tomorphism I'{” of V given by (IIL.2); then u!” is given by (II1.3) with a minus
sign in the right-hand side of the first relation. The contracted Lie algebra
g=alg (V, i) of the net (g{”) identifies with the Lie algebra § of Section III.1.1.
The contraction is an Inoni-Wigner one.

For each le J, let ©, be the Hilbert space LZ(U(1)) of equivalence classes of
Lebesgue square-integrable complex-valued functions on the circle group U(1)
and let {9}, be the basis of LZ(U(1)) defined, up to equivalence, by

¢(8) = (2m) "' exp (—ish),

so that the set S; of Proposition 1 is a copy of Z. Then we define an integrable
irreducible skew-symmetric representation 7{*" of g{” on LZ(U(1)) ([14], Ch. VI,
§2.3), with £ €{0, 3} and reRY, by

m*(g)¢® = (121)(s—3+il + £)$* V— (M2D)(s +3— il + £)**Y,  (IIL14a)

m(g) ¢ = —(12il)(s =3+ il + £) TV — (1n2il)(s +3— il + £) TP,
(II1.14b)

wgs,r)(gs)d)(s) = —i(S 4 8)(1)(3). (III.14C)

It follows from (III.14) that the assumptions of Proposition 1 and Remark 2 are
satisfied, so that we obtain an integrable skew-symmetric representation #" of §
on a(LZ(U(1))) with D (#”)=sp (&,), where « is the mapping of ([8], Remark
1). The representation #" has the same form as the representation #" of
Section IIL.1.1 if one replaces the coefficient s in (IIL.7c) by s+¢& and ¢ by
a(¢d®); thus 7O is equivalent to #” while #%/>" is equivalent to 7',

Remark 6. Proceeding as in Remark 5, it is possible to obtain a direct sum of
1-dimensional skew-symmetric representations of g.

Remark 7. The results of Section III.2 may also be obtained by using a
suitable countable index set J' (e.g., J'=N%*) instead of J.
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II1.3. Bloch and Glauber coherent states

In this section, we treat the example of Section III.1.2 in greater detail and
from another point of view which emphasizes the notion of a Trotter limit. The
directed system will be J=N*.

Let {|n)},~ be the standard orthonormal basis of the Fock space § over C
consisting of eigenvectors of the number operator a*a, where a and a* denote,
respectively, the annihilation and creation operators satisfying

aln)=vnln-1 (n>0), al0)=0,
a*|n)y=vn+1|n+1).

We can identify & with the Hilbert space § of Section II1.1.2 by putting [n) =
and

n)

a=-2""2(i#(g,) + #(gy)), (IIL.15a)
a* = —27"(if(g,) — #(g,)). (IL.15b)

For each NeN¥, we consider the 2V-dimensional complex Hilbert space
(C*»®N which can be interpreted, for instance, as the space of states of an.
assembly of N 2-level atoms. In what follows, we shall indulge in the usual abuse
of language of calling ‘states’ the vectors of a space of states instead of reserving
this name for the rays describing the pure states of the physical system considered.
An orthonormal basis of (C*)®" is given by all vectors of the form |¢°)®|d°)®
-+ -@|p~), where g e{+,—} for 1<j<N and

09=(g)  1e9=(})

we set

7)R[|PIR - - Bldp7)=|0)n

In addition, we define operators S& (k=1,2,3) in (C*®" (the ‘total spin’
operators) by

N ,
SH=Y1Q-- R - -®1,
j=1

]

where o{* is a Pauli matrix (acting in the j-th factor), and we define vectors |n)y
(neN) of (C*®N by

((N—n)! N"/n! N)YA(N-Y28)" |0)y if n<N

I11.16
0 if n> N, ( )

m = {

with Sx= SV +iSP.

The above definitions are motivated in part by the interpretation of the
operators N7'S& (k=1,2,3) as ‘intensive observables’ and of the operators
N~'285%; as ‘“fluctuation operators’ (of N~'S5 around 0) [16] and in part by ‘spin
wave theory’ [17].
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It follows from (III.16) that, for each N e N¥*,

6,, fm=<Nandn<N

wim | {0 otherwise. (L. 17)
Let 95 be the vector subspace of (C*)®" generated by {|n)x}..n; then we have a
continuous linear mapping Py of § onto 9 defined in {|n)},n by Px |n)=|n)y
and extended to § by linearity and continuity. We shall denote by S§ (k=
1,2,3), Sy, Sy also the restrictions to Y of these operators. The Hilbert space
O~ is (N + 1)-dimensional and carries an irreducible skew-symmetric representa-
tion 7y of su(2) given, in the basis {g,, g, g3} of Section 1II.1, by

mn(g1) = %i(S}:,r'i' SN
mn(82) = 3(Sh— SR,
n(g3) = _iS(s)-

Considered as a subspace of the space of states (Cz)@’N of a system of N 2-level
atoms, 9, consists of all states with maximal ‘total spin’, namely 3N. By virtue of
(I11. 17) we have ||Py]|= 1 for all NeN¥ and, for each element };_, v, |n) of F,

1 oo
= lim (Z I'vnlz) = PEAD
n=0 ?S‘

N—o n=0

PN Z Ynln)

n=0

lim

N—x

Thus the sequence (9n) approximates F¥ with respect to the sequence (Py);
obviously, |n)=(Py)—lim |n)y for all neN.

Proposition 2. (i)

a = (Py)—lim N"'28g, (I11.18a)
a* = (Py)—lim N~Y2S%, (I11.18b)
Idg = (Py)—lim (-2N71S8Q). (IT1.18c)
(i) For each z€C, let |z) be the element of ¥ defined by
|z) = exp (=3 |z[*) exp (za™*)|0) (II1.19)
and, for each zeC and each N eN¥, let |Q,)y be the element of §y defined by
Q)08 =1 +|z]2/N) N exp (ZN"287) |O)n;; (I11.20)

then |z)=(Py)—lim |Q,)x.
Proof. (i) By reason of (II1.16), we have, for each Ne N*,
N7285 |nyy = (NI(N—n+ 1)"*Vn|n—Dy+0,(N")  (0<n<N),
N85 nmn=(N=n)/N)"*Vn+1|n+ 1)y (neN),
—2N7'SR [n)n=|n)n+ O,(N7Y) (neN),

where O;(N™') (j=1,2) stands for an element of ©, such that the set
{N[|G,(N"Y)||x} is umformly bounded in N.
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(i) It follows from (III.19), (II1.20), and (II1.16) that
lim 10,y ~ By |2l

N 1/2
((1 + |z|2/N)_%N(]:) N7z —exp (=2 |zP)n!"12 z") |n)n N

)

n=0

N
- ( lim Y ((1+ ZPIN —N(':)N-n 2" +exp (—|zP)nt |z

N—o n=0

= lim

N—x

\ 1/2 1/2
—2(1+|2PINY N exp (1 |zP) (fl’) U N |z|2"))

. 172 12
= (2— 2 €Xp (— |z‘2) lim Z (Ir?) N—g_-nn !-*.112 |z|2n) <(

N—0 n=0

because

1/2
() e
n n

for all NeN* and all positive integers n<N. W

The vectors |z) of § are the Glauber coherent states (for one degree of
freedom) so important in quantum optics, and the vectors |Q,)y of O are the
Bloch coherent states of radius 3N with the ‘north pole’ of the Bloch sphere of
radius 1N [9] removed.

Remark 8. For each N e N*, the Hilbert space §, can be identified with the
Hilbert space 93y of Section III.1.2 by putting |n)y = ¢§i’, where ¢ = 'R
if n<N and ¢{ =0 if n> N. Moreover, the representation my can be identified
with the representation fn-%NoF%_; of that section and so 7 becomes a Trotter
limit of the net (my) (Remark 3). The contraction parameter | of Section I11.1.2
may then be interpreted as a ‘fluctuation parameter’; assertion (i) of Proposition 2

follows from Proposition 1 and from (III.15).

Remark 9. In order to show the connection between Bloch and Glauber
coherent states, another contraction was considered in [6] and [18], namely, a
contraction of the Lie algebra u(2) of U(2) into a Lie algebra isomorphic to that of
the harmonic oscillator group for one degree of freedom.

Let {g}o<j<s be a basis of u(2) such that {g;, g, g3} is the basis of su(2)
introduced in Section. III.1 and g, is in the center of u(2). The reference net
(I'})1cin= of automorphisms of V defining the contraction studied in [6] and [18]
can be given by

I'(g)= 1_1/281, I'y(g)=1""%g,, I'(83) = 83— 8o, Ft(go_) = Bo-
The representation m; of g; on 9, (I €3N¥) is defined by (IIL.8) for j=1, 2 and by
Wt(gs)fbi(n) = —inqb','("), m(go)tbi(") = i‘i’i’(n);

Proposition 1 can be applied and we obtain an integrable irreducible skew-
symmetric representation 7 of § on § (with D (77) =sp (S:x»)) given by (II1.12a),
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(ITI1.12b),

1’1‘.(83) d”(n) = —inlﬁ'("),
F(go) ™ = iy ™.

With the identifications of the present section, we have a*a=i#(g;); then
assertion (i) of Proposition 2, with (III.18c) replaced by

a*a = (Py)—lim (SF +3N Idg,),

follows from Proposition 1 while assertion (ii) is left unchanged.

To make contact with the notation of the literature, we remark that we have
|0)x = 5N, —3N) in standard angular momentum notation. The elements |n) of §
are sometimes called the Fock states and the elements |n), of 95 the Dicke states
of radius ;N. The coherent state |Q,), (also denoted by |6, ¢)y) is the vector
obtained by applying to the ground state |0), (which is identified with the ‘south
pole’ of the Bloch sphere of radius 3N [9]) the operator that represents the
rotation taking the direction of the south pole into the direction (6, ¢) such that

N 2z=tgk0)exp (—ip) (O=<0<m;0<¢<2m).

We see that the contraction consists here in letting the radius of the Bloch sphere
tend to infinity in such a way that ‘small rotations’ on the sphere go over into
translations in the tangent plane at the south pole. This plane corresponds to the
phase space of the 1-dimensional harmonit oscillator ([9], Appendix A.2).
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