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Trotter limits of Lie algebra representations and
coherent states

U. Cattaneo*

Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel (Switzerland)

W. Wreszinski
Instituto de Fìsica, Universidade de Sâo Paulo, Sâo Paulo (Brazil)

(14. V. 1979)

Abstract. The notion of a Trotter limit of a net (-n;) of Lie algebra representations is introduced
and a proposition on the existence of such a limit for a net of skew-symmetric representations
satisfying specific conditions is proven. This result is then applied to limits of interest in relativistic
quantum field theory or quantum optics, in particular for the study of zero-mass representations of the
Poincaré group and of the connection between Bloch and Glauber coherent states.

I. Introduction

Since the pioneering papers of Segal [1] and Inönü and Wigner [2], there has
been renewed interest in the theory of Lie algebra and Lie group contraction,
both mathematical and in view of physical applications. In particular, there have
been several important mathematical contributions to the subject as, for instance,
those of Saletan [3] and Lévy-Nahas [4]. Moreover, applications have been found
in several branches of theoretical physics, such as relativistic quantum field theory
(in connection with the study of zero-mass representations of the Poincaré group
[5]) and, more recently, quantum optics [6].

Although, from the algebraic point of view, the theory has been developed
aiming at great generality and in a mathematical rigorous way in [3] and [4], it has
met with some troubles when dealing with the contraction of representations. The
latter problem has been ordinarily studied from the point of view of taking
suitable limits of matrix elements. Yet the definition of 'limit operators' (which
are, in most relevant cases, properly unbounded) by matrix elements is, in
general, beset by serious difficulties ([7], §53).

In a previous paper [8], a theory of contraction of Lie algebra representations
has been presented which attempts to avoid these difficulties. Given, for each
element i of a directed system J (usually a subset of R with the induced ordering),
a complex Hilbert space ^>t and a representation it, on fët of a finite-dimensional
real Lie algebra gt isomorphic to a reference Lie algebra g which is 'contracting
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into g', we have defined and investigated in [8] a representation irj of the
contracted Lie algebra g with carrier space given in terms of the net ($t). In
particular, we have shown the existence of a subrepresentation it of -ftj, naturally
defined under conditions which are often realized in practice.

We prove, in Section II of the present paper, that the representation tt of g is

essentially unique and can be defined as a Trotterlimit of the net (irj. In Section
III, we apply the results of Section II and of [8] to several examples which are
chosen to illustrate the chief points of the theory of contraction of skew-
symmetric Lie algebra representations and in view of their interest for applications,

especially to the study of zero-mass representations of the Poincaré group
and to quantum optics. Regarding the latter, we prove in Section III.3 that the
Glauber coherent states (see, e.g., [9], Ch. 3) are limits in Trotter's sense [10] of
sequences of the so-called Bloch (or spin, or atomic) coherent states [11, 6], and
this settles the treatment of ([6], Section IV) on a firm ground.

We shall use notation and results of [8] throughout. In particular, V will
always stand for a finite-dimensional real vector space and alg(V, p) will denote
the Lie algebra with underlying vector space V and Lie multiplication p. Every
net considered in the present paper will be indexed by a directed system denoted
by/.

II. Trotter limits of nets of Lie algebra representations

In preparation for formulating the main result of this section, we begin by
recollecting two concepts already used in [8].

Let alg(V, p) be a reference Lie algebra and let (rt) be a reference net of
automorphisms of V. A net (alg(V, pj) of Lie algebras such that, for each ie/,
the mapping I\ is an isomorphism of alg(V, pt) onto alg(V, p) is said to be
contracting into alg (V, p) with respect to alg (V, p) if

/i(g,g') iimr:1(p(rl(g),rt(g')))

for all g, g' in V. By abuse of language, the contracted Lie algebra of the net
(alg (V, pj), namely, alg (V, jâ), is also called a contraction of alg (V, p).

It is not a goal of the present paper to find necessary and sufficient conditions
in order that a net of finite-dimensional real Lie algebras be nontrivially contracting.

Particular cases have been studied by different authors. The most important
types of Lie algebra contractions appearing in the literature are, in decreasing
order of generality, the following.

(a) Lévy-Nahas contractions [4]

Using the previous notation with J a subset of R-{0} unbounded from
above, the reference nets (r,) of automorphisms of V defining Lévy-Nahas
contractions are given by

r^r^r+r^dv),
where n is a positive integer and T is a noninvertible endomorphism of V such
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that r+r'Idv is an automorphism of V for all teJ. Let V VR©VN be the
Fitting decomposition [12] of V relative to T, i.e., let the direct summands VR
and VN be T-stable vector subspaces of V such that T | VR is an injection onto VR
and r | VN is nilpotent. Then the net (alg (V, p,)) defined by alg V, p) and (TJ is

nontrivially contracting if and only if rn°i> 0, where v is a mapping of Vx V
into V given by

v(g, g') r2(p(g, g')N)-r(p(r(g), g')N+p(g,r(g'))N)+p(r(g),r(g'))N.
Here, and in the next few paragraphs, the subscript N (resp. R) denotes
orthogonal projection onto VN (resp. VR). If the condition Tn°v 0 is satisfied,
then p (-r)"_1ov for ns*l and

P(g, g') (T | vR)-1(p(r(g), r(g'))R) - r(p(g, g%)
+ p(r(g),g')N+p(g,r(g'))N

for all g, g' in V when n 0.
Notice that this result is obtained for every J of the type considered.

(b) Saletan contractions [3]

They are the Lévy-Nahas contractions with n 0.

(c) Inönü-Wigner contractions [2]

They are the Saletan contractions such that T( VN) {0} ([3], Section I. C. 1).

The second concept we need is that of a net (£>J of Hilbert spaces approximating

a Hilbert space £ ([10], Section 2) with respect to a net (PJ, where, for
each i e J, Pt is a continuous linear mapping of $ into $t. This happens when
||PJ|«1 for all ie J and lim, ||pd>|L ||4|£ for all 4>e&. Then a net (<fc)eIL& is
said to be (PJ-convergent to cf>e& (shortly: (PJ-lim ej>t ep) if limt ||<k-Ptd»||t
0; a net (AJ of operators in ($J is said to be (PJ-convergent to the operator A in
Q (shortly: (PJ-lim A, A) if Ad» (PJ - lim AtPtd> for all d»eD(A). Notice
that, if ef> (PJ-lim ef>, and ej>'= (PJ-lim cpL, then tf> ej>' because

|^-^1ls lim||P^-P^l^lim|k-P^||l+lim||^-P^l=0.
I L I

Definition. Let (gt) (alg(V, pj) be a net of Lie algebras contracting into
g alg(V, p) and, for each teJ, let irt be a representation of gt on a complex
Hilbert space QL. A representation tt of q on a complex Hilbert space & is said to be

a Trotter limit of the net (ttJ and, alternatively, (irj is said to be strictly
contracting into ir if the following conditions are satisfied:

(a) For each i e J, there exists a continuous linear mapping Pt of & into &t
such that the net (&J, approximates & with respect to the net (P,).

(b) *(g) (P)- lim 7rt (g) for all g e V.

If g is the contraction of a Lie algebra g alg V, p) by means of a
reference net (TL) of automorphisms of V and if, for each i e J, irt is a
representation of g on Qt, then tt is said to be a Trotter limit of (tt,) (and
(irt) is said to be strictly contracting into it) when condition (a) is satisfied
together with

(b') *(g) (PJ-lim irt(rt(g)) for all ge V.
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More precisely, in both cases, ir is said to be the Trotter limit of (tt,) relative
to (PJ.

Proposition 1. Let (gj (alg (V, pj) be a net of Lie algebras contracting into
g alg V, p) with respect to g alg V, p) and let % be a basis of V. For each i € J,
let &, be a complex Hilbert space of dimension Card (SJ, where S, is a subset of R
such that S,>çS, whenever i'< t, let tt, be a skew-symmetric representation of g, on
&„ let {ej>(Y}SsES be an orthonormal basis of &, contained in D (irj, and, with
S \J,S„ define {i//ts)}seS by ifi[s) et>{s) whenever seS, and ^s) 0 otherwise.
Suppose that for —k =s m ^ fc, where k is a fixed positive integer, for each seS, and
each ge% we have a net (cism(g)) of complex numbers, which are 0 whenever
s£SL or s + mfiS„ converging in C to csm(g). If

Tsig)<t>[s)= t cl>s,m(g)^rm> ail)
m= — k

for all i e J, all g e % and all s e S„ then, up to unitary equivalence, there exists one
and only one skew-symmetric representation tt of g on a complex Hilbert space !q of
dimension Card (S) which is the Trotter limit of the net Ìtt,) relative to a net (PJ
defined by

P,^=^Y ii€j;seS), (II.2)

where ©j {«^(s)}seS *s some orthonormal basis of & such that D(ir) sp (@j). In
addition, we have

#(g)*w= I cs>m(g)^+m) (113)
m — k

for all g e'S and all se S.

Proof. To begin with, let us note that if ir is the Trotter limit of ìtt,) relative
to the net (PJ defined by (II.2), then (II.3) is satisfied because it follows from
(II. 1) that

limk(g)«Ms)- I cs,m(g)^+m)
II m -k II'

k

=s £ iipk,s,m(g)-cs>m(g)| o
m= —fc

for all g e « and all s € S.

The existence of ir with the stated properties was proven in ([8], Proposition
4). Conversely, suppose that together with ir we have a skew-symmetric representation

if' of g on a complex Hilbert space &' of dimension Card (S) which is the
Trotter limit of (ttJ relative to a net (P'A defined, in analogy with (PJ, via an
orthonormal basis &'j={<p'(s)}seS- Then, by (II.3), the unitary mapping U of &
onto $' such that Lty(s) »K(s) for all seS implies v(g)=ir1ir'(g)U for all
geV. ¦

Remark 1. Alternatively, a representation tt which is a suitable Trotter limit
of the net iv,) can be constructed as follows. Let $ be Iq(S), the Hilbert space of
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all complex-valued functions / defined in S and satisfying

I l/(s)|2<-
S6S

with scalar multiplication (.|.) given by

if\h)=Zfis)hïsj.
seS

If ©j {</f<s)}seS is the canonical orthonormal basis of l%iS) such that ^(s') 8SS;

then P, is given by (II.2) and if, defined by (II.3) with D (ir) sp (©j), is a
representation with the desired properties.

Remark 2. If the relation (II.6) of [8] is satisfied, then the skew-symmetric
representation ir of Proposition 1 is integrable ([13], Theorem 1).

Remark 3. Suppose that, instead of the nets (gj, (irj, we have a Lie algebra
g alg (V, p), a contraction g of g by means of a reference net (T,) of automorphisms

of V, and, for each i g J, a skew-symmetric representation tt, of g on a
complex Hilbert space &, of dimension Card (SJ. Then the conclusions of
Proposition 1 are still correct when 7rt°rt replaces tt, in (II. 1) and all other
assumptions are kept unchanged.

Remark 4. By virtue of ([8], Propositions 1 and 4), Proposition 1 (and its
reformulation according to Remark 3) is still true if 'skew-symmetric' is replaced
everywhere by 'symmetric' and even if the term 'skew-symmetric' is everywhere
dropped, provided in this last case the nets (ir,(g)) satisfy Condition (K) of [8]
for all g e V

DI. Examples

In this section, we illustrate the previous theory by several examples, for
which we shall verify the assumptions of Proposition 1. Hence, in each case, we
are given a contracting net (gJ (alg(V, pj) of Lie algebras, each gt being
isomorphic to a reference Lie algebra g alg(V, p), and a net (£J of complex
Hilbert spaces with, for each t g J, a skew-symmetric representation tt, of g, on $t.
In the examples treated here, we require that tt, be, for each ig/, an irreducible
representation.

We shall denote by su(2), e(2), t)(l), r3, and m(l, 1), respectively, the Lie
algebras of the (real) Lie groups SU(2), E(2) (the Euclidean group of the plane),
H(l) (the 3-dimensional Heisenberg group), the additive group of R3, and
SU(1, D-

The following two particular notions concerning Lie algebra representations
will be used. Given a connected finite-dimensional real Lie group G whose Lie
algebra is isomorphic to a Lie algebra g and given a skew-symmetric representation

tt of g on a complex Hilbert space $, we shall say that tt is integrable to G if
there exist a (unique) strongly continuous unitary representation U of G on $Q and
an isomorphism 6 of g onto Lie (G) such that ir(g) Ç dU(d(g)) for all gGg. Two
skew-symmetric representations tt and tt' of g on § which are integrable to G by
means of strongly continuous unitary representations U and U', respectively, will
be said to be cognate if U= U'.
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In what follows, the symbols £> and ©, (with the suitable J) will have the
same meaning as in Proposition 1. In particular, $ and <§j can be constructed as
in ([8], Proposition 4).

For the sake of clarity, we divide this section, and then again Section III.l,
into three parts. In Section III. 1.1 (resp. Section III. 1.2, resp. Section III. 1.3) we
take g su(2) and a contracted Lie algebra g~ e(2) (resp. g h(l), resp. g^r3) as
an example of the case where g is the Lie algebra of a compact Lie group, shortly,
a compact Lie algebra. In Section III.2, we give an example where g is the Lie
algebra of a noncompact Lie group (namely, g su(l, 1)) and g is once more
isomorphic to e(2).

In each of the quoted examples, we start with nets of integrable faithful
irreducible skew-symmetric representations and then we obtain integrable faithful
irreducible skew-symmetric representations of g, except for the cases treated in
Section III. 1.3 and in Remarks 5 and 6 in which the representations obtained are
neither irreducible nor faithful.

By ([8], Corollary to Proposition 4), the results when g e(2) may be
interpreted as follows [5]. The Lie algebra e(2) is isomorphic to the Lie algebra of
the stabilizer of a light-like vector; its faithful irreducible skew-symmetric
representations integrable to E(l) are Trotter limits of nets of integrable irreducible
skew-symmetric representations of the Lie algebra (isomorphic to su(2)) of the
stabilizer of a time-like vector (resp. of the Lie algebra (isomorphic to su(l, 1)) of
the stabilizer of a space-like vector).

The case of g su(2) and g~ï)(l) is treated in greater detail, and more
concretely, in Section III.3 because of the interest it has recently found in
quantum optics regarding the connection between Bloch and Glauber coherent
states (see, e.g., [6], Section IV). We prove, in particular, that the latter are limits
of sequences of the former in Trotter's sense.

III.l. The compact case: g su(2)

Let {gx, g2, g3} be a basis of the reference Lie algebra su(2) alg (V, p) such
that

^(gi, g2) g3, M(g2, g3) gi, Pigs, gi) g2-

Throughout Section III.l, the index set will be J jN* or J N*. For each
/ g|N*, the symbol $~>t will denote the complex Hilbert space of all polynomials of
degree =£2 J in one complex variable which carries the standard irreducible
skew-symmetric representation of dimension 11 +1 of su(2) ([14], Ch. Ill, §2). We
choose a canonical orthonormal basis of £>, that we shall denote by {^>is)}seS„
where S, ={-/, -/ +1,..., /}. For each s g S, and each m g{-1, 0,1}, we put

^(l + s)(l-s + l) if m -1
c?."'m(gi) |o ifm 0 (Ill.la)

iiJ(l-s)(l + s + l) if m 1,

'-y(l+s)(l-s + l) if m -1
c!S(g2) \ 0 if m 0 (III. lb)

}s/(l-s)(l + s + l) if m 1,
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«g3)=(:is ifthm
°

Cm.10
(U otherwise.

ULLI. 8~e(2)

For each l g N* and each r g R* (the set of strictly positive real numbers), let
g\r) alg (V, p^r)) be the Lie algebra isomorphic to su(2) via the automorphism r\r)
of V defined by

rSr)(gl) (r//)gl, ir(g2) (r/0g2, r«(g3) g3; (III.2)
thus

I^Sr)(gi,g2) (r2//2)g3, pîr)(g2,g3) gi, ^Sr)(g3,gi) g2- (III.3)

The contracted Lie algebra g alg(V, p) of the sequence (gir))ieN* has a Lie
multiplication ß satisfying

£(gi>g2) 0, p(g2, g3) gi, p(g3, gj g2,

hence is isomorphic to e(2). The contraction is an Inönü-Wigner one.
For each l g N* and each r g R*, we define on $i an (integrable) irreducible

skew-symmetric representation Tr\r) of g\r) by

^r)(g,)<Ms) I c£m(g)*Ss+m> 0 1.2,3;sgSJ, (III.4)
m=-l

where

ctUg,) (r/l)c$%(gj) (j 1,1), (III.5a)

ctUg3) c^(g3). (III.5b)

Moreover, we put c\r)sm(gj) 0 (j 1, 2, 3; -1 « m ^ 1) for all s g Z- S,. It follows
from (III.5) that

c« (g,) lim cgjg) (; 1, 2, 3; s g Z; -1 ^ m « 1)
I—»oo

is given by

f -hir if iti —1 rvr wi 1

(III.6a)

(III.6b)

f-is if m 0
s

c(^(g3) in (III-6C)
(0 otherwise.

By virtue of (III.6), the relation

|ciì(gj)|«(r + l)(|s| + l) 0' l,2,3;rGR*;sGZ;-l^m«l)

c^(gj -
rïir if m —1 or m

if m 0,

\-\r if m -1
c^(g2 - 0 if m 0

ir if m 1,
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is satisfied; hence, the sequence (7r{r)) is strictly contracting into an integrable
skew-symmetric representation ir(r) of g on ^> with D (ir^) sp (©N=1:) (Proposition
1 and Remark 2). By (III.4) and (III.6), ir(r> is given explicitly (with s G S Z and

^g©^) by

#w(g1)0w èin^-1)+è«n^(,+1>, (III.7a)

ir<r)(g2)i|'(s)= -W'^+W^K (III.7b)

ir(r)(g3)^<s) -is^(s) (111.7c)

(cf. [14], Ch. IV, §2.3, where R ir).
We obtain in this way, up to cognateness, representatives of all equivalence

classes of faithful irreducible skew-symmetric representations of g which are
integrable to E(2) ([15], Korollar zu Satz 3).

If we replace in the above / N* by J §N*-N*, and keep the rest
unchanged, then, for each reR* the net (tt(Y) is strictly contracting into a faithful
irreducible skew-symmetric representation ir'<r) of g on ^p which is integrable to a
2-sheeted covering group of E(2) but not to E(2).

Remark 5. Even by changing the sequence (T^) it is not possible to obtain,
proceeding as above, the (non-faithful) 1-dimensional skew-symmetric representations

of g. On the other hand, if we put in (III.2) r^r)(g/) (r/Z2)gJ and in (III.5)
cUm(gj)= W2)cuS(g,) f°r / 1. 2, with the rest remaining unchanged, we get a
direct sum of 1-dimensional skew-symmetric representations of g ([14], Ch. IV,
§2.3).

III.1.2. g b(l)
In this case, for each J e^N*, we define g, alg (V, pj via the automorphism

T, of V given by

r!(g1) r1/2gl, r,(g2) rll2g2, r,(g3) (i//)g3;
then

Pi(gi, g2) g3, Pi(g2, g3) (l/0gi, Pi(g3, gi) (l/0g2-
The contracted Lie algebra of the net (gj is thus g alg (V, p), isomorphic to

h(l), where

ßigu g2) g3> £(g2>g3) 0, p(g3, gi) 0.

The contraction is a Lévy-Nahas one, however not a Saletan one ([4], Section
ILE).

For each Zg§N*, we define an (integrable) irreducible skew-symmetric
representation w, of g, on &, by

^(g.W)= I c[n,m(gi)4>fn+m) (j l,l,3;neNl), (III.8)
m -l

where N, ={0,1,..., 21}, the orthonormal basis {0!<n)}nsN, is defined by <M(n>

cMn~", and

cl„.m(g) r1/2cr„(2UgJ) (/ 1,2), (III.9a)

cl„,m(g3) (l//)cr„(2)iim(g3). (III.9b)



c'n,m(gj) lim c{>n,m(g/)
1—»oo

'i2"1/2V^

C'„,m(gl) ' 0

[i2-1/Vn + l
'-2-1/2V^

C'„,m(g2)=, 0

,2-1/2Vn + l
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We put c'lnm(gs) 0 (j 1, 2, 3; -1 ^ m =s 1) for all neN-N,; then it follows from
(III.9) that'

0 1,2,3; nGN;-l=£m=sl),
|—»oo

with
if m -1
ifm 0 (III. 10a)

if m 1,

if m -1
ifm 0 (III. 10b)

if m 1,

U ifm 0
C-(g3) l0 otherwise.

(IIL10c)

The relation

\c'n,migj)\^n + l (j=l,2,3;neN;-l«m^l) (ffl.ll)
being satisfied, the net (irj is strictly contracting into an integrable skew-
symmetric representation if of g on & with D (ir) sp (©»n»). By virtue of (III.8)
and (III. 10), if is given explicitly (with neS =N and i/Z^g©!,^) by

^¦(gi)^"' i2"1/2^'("-1)+ ì2"1/\/7h:1><"+1), (III.12a)

^(g2)<l',(n, -2-"1/2^'('*-1) + 2-1/2>AH:T^(',+1), (III.12b)

ir(g3)^'(n)=i^'(B). (111.12c)

If we take J N*, we obtain an equivalent result.
By (III. 12), & is isomorphic to the Fock space over C, the Hilbert sum of a

countable family of copies of C, equipped with an irreducible representation with
vacuum of the canonical commutation relations for one degree of freedom.
Therefore, by von Neumann's uniqueness theorem, the representation ir is a

representative of the unique equivalence class, up to a 'phase factor' and
cognateness, of nontrivial irreducible skew-symmetric representations of g which
are integrable to H(l).

III. 1.3. g«r3
For each / G5N*, the Lie algebra g, alg V, p,,) is defined by means of the

automorphism T, of V given by T^gJ (l//)gj (j 1, 2, 3), so that

f*i(gi, g2) (l/0g3, Pi(g2, g3) (l/0gi, Pi(g3, gi) (l/0g2-

Hence, the contracted Lie algebra g of the net (gj is Abelian and is isomorphic to
r3. We define 7r, as in Section III.1.2, but with coefficients Cjnm(g,) related to

ctÄ) by

ci,n,m(gJ) (l/Ocr„(2Ugi) (i l,l,3;neN,;-l^m^l) (III.13)
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and equal zero if ne\S-Nt. It follows from (III. 13) that the assumptions of
Proposition 1 and (III. 11) are satisfied, and thus the net (tti) is strictly contracting
into an integrable non-faithful reducible skew-symmetric representation ir of g on
& with D (ir) sp (©im») defined by

ir(g,) 0 (; 1,2),

ir(g3) ilds.

III.2. The noncompact case: g su(l, 1) and g=e(2)

In Section III.2, {g1; g2, g3} will denote a basis of the reference Lie algebra
8u(l, 1) alg (V, p) such that

/*(gi,g2) -g3, P-(g2, g3) gi, P-ig3, gi) g2-

The irreducible strongly continuous unitary representations of SU(1,1) that we
shall consider are those of the principal series, labeled by a real number 1^0 and
by a parameter e taking the values 0 and \ ([14], Ch. VI, §2.7, where p /)• The
index set will be J R-{0} in both cases e 0 and b=\.

For each le J and each reR*, we define gîr) alg (V, p^r)) via the
automorphism r\r) of V given by (III.2); then pjr) is given by (III.3) with a minus
sign in the right-hand side of the first relation. The contracted Lie algebra
g alg(V, ß) of the net (g^r)) identifies with the Lie algebra g of Section III. 1.1.
The contraction is an Inönü-Wigner one.

For each / g J, let fé, be the Hilbert space L|(U(1)) of equivalence classes of
Lebesgue square-integrable complex-valued functions on the circle group U(l)
and let {d»<s)}seZ be the basis of L|(U(1)) defined, up to equivalence, by

4>(s)(0) (2-n-)-1/2expHs0),

so that the set S, of Proposition 1 is a copy of Z. Then we define an integrable
irreducible skew-symmetric representation 7Tje'r) of g\r) on L|(U(1)) ([14], Ch. VI,
§2.3), with eg{0,§} and reR*, by

-nf ,r)(gi)</><s) ir/H)(s -\ + H + e)</>(s-1)- (r/20(s +\- il + e)4><s+1), (m. 14a)

ir.e'r)(g2)4><s) -ir/lil)is -i+ il + e)ef>(s'1) - (r/lil)(s +\-il + e)<pu+1\
(III. 14b)

(g3)4>(s) -'(s + e)4>(s). (111.14c)TT

It follows from (III. 14) that the assumptions of Proposition 1 and Remark 2 are
satisfied, so that we obtain an integrable skew-symmetric representation ir(e'r) of g

on a(L|(U(l))) with D(ir(er)) sp(@7), where a is the mapping of ([8], Remark
1). The representation ir'-'-^ has the same form as the representation ir<r) of
Section III.1.1 if one replaces the coefficient s in (III.7c) by s + e and i>(s) by
a(d»(s)); thus ifl0-r) is equivalent to ir<r> while ü-(1/2r) is equivalent to ir'<r>.

Remark 6. Proceeding as in Remark 5, it is possible to obtain a direct sum of
1-dimensional skew-symmetric representations of g.

Remark 7. The results of Section III.2 may also be obtained by using a
suitable countable index set J' (e.g., J' N*) instead of J.
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III.3. Bloch and Glauber coherent states

In this section, we treat the example of Section III. 1.2 in greater detail and
from another point of view which emphasizes the notion of a Trotter limit. The
directed system will be / N*.

Let {|n)}neN be the standard orthonormal basis of the Fock space § over C
consisting of eigenvectors of th^. number operator a*a, where a and a* denote,
respectively, the annihilation and creation operators satisfying

o|n> Vn|n-l> (n>0), a|0) 0,

a*|n> Vn + l |n + l).

We can identify f? with the Hilbert space fé of Section III. 1.2 by putting |n> iff'M
and

a -2-1/2(iir(gJ + ir(g2)), (III.15a)

a* -2-1/2(iir(gJ-ir(g2)). (III.15b)

For each NgN*, we consider the 2N-dimensional complex Hilbert space
(C2)®N which can be interpreted, for instance, as the space of states of an.
assembly of N 2-level atoms. In what follows, we shall indulge in the usual abuse
of language of calling 'states' the vectors of a space of states instead of reserving
this name for the rays describing the pure states of the physical system considered.
An orthonormal basis of (C2)®N is given by all vectors of the form |d>ei}<8>|4>e2}<8>

• • -(8)|^>B~), where e,G{+,-} for l«j«N and

**>-Q. IO-G);
we set

l<r>®i<r>®---®i<r>=|o>N.

In addition, we define operators S£} (fc l,2,3) in (C2)®N (the 'total spin'
operators) by

N
s£)=£i<8)---<g>eof£)<g)---<g>i,

i-i
where er<jk) is a Pauli matrix (acting in the /'-th factor), and we define vectors \n)N
(neN) of (C2)®N by

f
|»)n [

((N-n)! Nn/n\ N!)1/2(N"1/2S^" |0)N it n^N
0 if n > N, '

with S%=S^±iS^.
The above definitions are motivated in part by the interpretation of the

operators N~1S'£) (k 1,2, 3) as 'intensive observables' and of the operators
N'V2S% as 'fluctuation operators' (of N^Sf, around 0) [16] and in part by 'spin
wave theory' [17].
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It follows from (III. 16) that, for each NgN*,
(8mn if In «N and n»sN

N<m|n)N=|0 otherwise
(III.17)

Let féN be the vector subspace of (C2)®N generated by {|n}N}„eN; then we have a
continuous linear mapping PN of $ onto féN defined in {|n)}neN by PN |n) \n)N
and extended to §! by linearity and continuity. We shall denote by S$' (k
1, 2, 3), Sn, Sn also the restrictions to féN of these operators. The Hilbert space
féN is (N+ l)-dimensional and carries an irreducible skew-symmetric representation

ttn of su(2) given, in the basis {g1; g2, g3} of Section III.l, by

Mgl) 3'(S^+SN),

^NÌg2) ìiStì-S^),
%(g3) -'SS5'.

Considered as a subspace of the space of states (C2)®N of a system of N 2-level
atoms, féN consists of all states with maximal 'total spin', namely jN. By virtue of
(III. 17), we have ||PN||= 1 for all NgN* and, for each element £"=o y„ \n) of g,

II

oo II / N \ 1/2 II « M

Pn I Jn \n)\ lim X |yj2) I Y„ I")
I n=0 llN N-» ^n=0 ' lln=0 II

Thus the sequence (féN) approximates $ with respect to the sequence (PN);
obviously, |n) (PN)-lim \n)N for all neiS.

Proposition 2. (i)

a (PN)- lim N-1,2S~N, (III.18a)

a* (PN)-limN-1/2Si, (III.18b)

Ids (PN) - lim (-2N-1Sg)). (111.18c)

(ii) For each zeC, let \z) be the element of % defined by

\z) exp H |z|2) exp (za*)\0) (III.19)

and, for each zeC and each NgN*, let \Clz)N be the element of féN defined by

\nz)N (1 + |z|2/N)-iN exp (zN-1/2StA |0)N; (III.20)

then |z) (PN)-lim|fì2)N.

Proof, (i) By reason of (III.16), we have, for each NgN*,

N-1/2SN|n)N (N/(N-n + l))1/2Vn|n-l)N + P1(N-1) (0<n«N),
N~1/2S£ |n)N ((N- n)/N)1/2VnTÏ |n + 1)N (n gN),

-2N"1Sg) |n)N |n>N + Ü2(N-1) (neN),

where 0,(N_1) (j=l,2) stands for an element of féN such that the set
{NllC^N"1)!^} is uniformly bounded in N.
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(ii) It follows from (III. 19), (III.20), and (III. 16) that

limpz>N-PN|z)||N
N-..O0

II £ / /AA1'2 \ II

lim £ (1 + |z|2/N)"H N~inzn -exp (-§ |z|>r1/2 zn) |n)J
n-»°° ||„=o \ \n/ / Hn

(lim f ((l + |2|2/N)-N(N)i^r-|z|2"+exp(-|z|2)nr1|z|2B
\n-»oo n=0 \ \n/

-2(l + |z|2/N)-iN exp (-1 |z|2)Q1/2N-^n!-1/2 \z\2n)Y2

(2-2exp(-|z|2) lim f (^'V^nr1'2 Iz^^^O
because

i/2

n/ In J

for all NgN* and all positive integers n*sN. ¦
The vectors |z) of $ are the Glauber coherent states (for one degree of

freedom) so important in quantum optics, and the vectors |liz)N of féN are the
Bloch coherent states of radius |N with the 'north pole' of the Bloch sphere of
radius |N [9] removed.

Remark 8. For each NgN*, the Hilbert space féN can be identified with the
Hilbert space féiN of Section III.1.2 by putting \n)N ip'$, where ifrffl d>$?

if n=£N and «/r'^ 0 if n>N. Moreover, the representation irN can be identified
with the representation TriN°Tï^ of that section and so if becomes a Trotter
limit of the net (ttn) (Remark 3). The contraction parameter I of Section III. 1.2

may then be interpreted as a 'fluctuation parameter'; assertion (i) of Proposition 2

follows from Proposition 1 and from (III. 15).

Remark 9. In order to show the connection between Bloch and Glauber
coherent states, another contraction was considered in [6] and [18], namely, a
contraction of the Lie algebra u(2) of U(2) into a Lie algebra isomorphic to that of
the harmonic oscillator group for one degree of freedom.

Let {gjjo«^ be a basis of u(2) such that {g1; g2, g3} is the basis of su(2)
introduced in Section. III.l and g0 is in the center of u(2). The reference net
(rjieèN* of automorphisms of V defining the contraction studied in [6] and [18]
can be given by

ri(g1) r1/2gl, r,(g2) r1/2g2, ri(g3) g3-/go, r,(g0) go.

The representation tt, of g, on fé, (J g^N*) is defined by (III.8) for / 1, 2 and by

*tig3)<pîn) -inet>fn\ TTsigJcy^ i<M(n);

Proposition 1 can be applied and we obtain an integrable irreducible skew-
symmetric representation ir of § on fé (with D (ir) sp (®iN*)) given by (III. 12a),
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(III. 12b),

' ir(g3)^(n) -m^(n),
ir(go)^'(n)=^'(n).

With the identifications of the present section, we have a*a iir(g3); then
assertion (i) of Proposition 2, with (III. 18c) replaced by

a*a (PN)-lim(S£>+iNIdeN),

follows from Proposition 1 while assertion (ii) is left unchanged.

To make contact with the notation of the literature, we remark that we have
|0)n |2N, -|N) in standard angular momentum notation. The elements \n) of $
are sometimes called the Fock states and the elements \n)N of féN the Dicke states
of radius §N. The coherent state \£lz)N (also denoted by |0, ej>)N) is the vector
obtained by applying to the ground state |0)N (which is identified with the 'south
pole' of the Bloch sphere of radius |N [9]) the operator that represents the
rotation taking the direction of the south pole into the direction (0, d») such that

N-1/2z tg(|0)exp(-icf») i0^e<TT-,0^et><lTT).

We see that the contraction consists here in letting the radius of the Bloch sphere
tend to infinity in such a way that 'small rotations' on the sphere go over into
translations in the tangent plane at the south pole. This plane corresponds to the
phase space of the 1-dimensional harmonic oscillator ([9], Appendix A.2).
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