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Exact time dependent probability density for a non-linear
non-markovian stochastic process

by M.-O. Hongler*

Département de Physique Théorique, Université de Genéve, 1211 Genéve 4, Switzerland

(23. IV. 1979)

Abstract. The influence of an external colored noise on the evolution of non-linear stochastic
processes is studied by means of a model. We obtain analytically the time dependent probability
density of the process and discuss the evolution as a function of the covariance parameter A of the
applied noise. It is shown that the parameter A plays a major role (bifurcation parameter) and,
depending on its value, drives the system into markedly different stationary states.

1. Introduction

The phase transitions induced by the presence of fluctuating surroundings
have recently gained much interest in the study of simple dynamical models. It is
known that systems subject to white noise, the amplitude of which is itself
controlled by the macro-variables, exhibit probabilistic behaviours not predicta-
ble from a deterministic analysis [1, 2]. The white noise process, being very erratic
in its nature, may not, in certain cases, provide a good modelization of the real
world. It is then worthwhile to study the dynamics of systems in the presence of
colored noise stochastic processes, characterized by a finite correlation time A",
The parameter A can play a determinant role in the evolution of the system. This
point has recently been discussed by Horsthemke [3]. In this paper, the stationary
state reached by the system is approximately calculated and is shown to be
drastically dependent on A. We address ourselves to this question and provide a
non-linear model for which the exact time dependent probability density can be
calculated. In our example, the stationary state exhibits qualitatively the same
behaviour than the model used by Horsthemke. The coincidence is in fact not
accidental since, in the vicinity of the origin, the two models are identical.

We finally consider the white noise limit (A — ) and remark that the
stationary probability density is the same as the one found when the Stratonovich
prescription is used to calculate the stochastic integrals. This last property can be
seen as an explicit illustration of the Wong, Zakai and Clark’s theorem [4].

* In part supported by the Swiss National Science Foundation.
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2. The model

The model we propose to study reads:

dx B

— t P R A
a_ gh (vx) cosh (yx) Wo

where a, B, y are positive constants and w, is the colored noise stochastic process
defined by:

xeR; w,eR (D

2

wy=0;  (w, wy=L1 ACXP{—f\ lt—1t']} (2)

2
p and A are fixed positive constants.

When B =0, we can write the general deterministic solution of equation (1)
in the form:

x(t) = y~" arsinh {(sinh yx,)e "} (3)

where x, is the initial value. We conclude immediately from (3) that x =0 is a
stable solution for any initial value x,.

When B # 0, the stochastic process (1) is non-markovian. This property is due
to the finite correlations of w,.

It is very useful to note that w, can itself be generated by a stochastic
differential equation [4];

dw=—Awdt+ pA do, weR ' (4)

The notation do, stands for the formal differential of the Wiener process o,
and models therefore a white noise stochastic process. In order to get (2), we
impose in (4) the initial value W, to be normally distributed with zero mean and
variance w>A/2. We adopt the notation:

Wo=N (0, ‘”‘;A) | (5)

According to equation (4), we now rewrite the stochastic process (1) in the
form*:

dx = (— a tgh ('yx)-—zgsfi(’—y;-i wt) dt (6a)

dw=—-Awdt+puA do,, - (6b)

The pair (x, w) appearing in the equations (6a, b) constitutes now a marko-
vian process whose realizations take place in R>.

Owing to the markovicity, we can write the Fokker—Planck equation (F.P.E.)
associated to (6a, b). This equation reads: '

oP(x, w, t)

o= P w, 0); J j P(x, w, t) dxdw =1 | (7)

R2

* Apart from its degeneracy, the diffusion process (6) is closely related to San-Miguel’s class of
models [6].
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and % stands for the F.-P. operator which in this case takes the form:

0 Bw ] 0 pA? 92
0x [ o tgh (yx) cosh (yx)] ow L=t 2 9w? ®)

In order to solve (6), we introduce, following Chandrasekar [5], a one to one
mapping T from R? into R?;

T:(x, w)— (I, L), 9)

where,

I,=e*" [sinh (yx)+ By w]
ay—A
L =eMw

I, and I, are two integrals of the deterministic (u = 0) system (6a, b).
In terms of the new coordinates (I;, I,) we have:

]

II P(x, w, t) dxdw = P, L, dI, dI,

of o

R? R?
[ [ 4 I,,1 '
= P(I,(x, w, t), I,(w, 1), t) 8Ly, L) dxdw=1 (10)
J) a(x, w)
R2
where
M =y cosh (,Yx)e(a'yH\)t
a(x, w)

stands for the Jacobian of the mapping T.
From (10), we deduce straightforwardly:

6(11312)

T:P(x, w,t)—> P(I,, I, 1)
a(x, w)

(11)

and the differential operators appearing in (7) transform like:

d d d d
T:——>—+ayl, —+AL —
at ot SYar T ML

a 2
T:—— vy \/1 + (e_"“"I1 __By Ize_“) g 9
ax ay—A ol
(12)

6 B’Y ea‘yti_i_e)\t a

T:—w—

ow  ay—A ol ol,

T (B Y 2, 2By &

w2 \ay—A oI ay—A I, 4l oI5
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Introducing (11) and (12) in the F.-P.E. (7) we end up with:

aﬁ(Il’ = t) - u2A2 [( By )2 62 2Bv (ay+A)t 9
ot 2 ay—A

61'2 ay— /\e oI, oI,

d
+e e 31»2] P(II: 129 t) (13)

The readily normalized solution of (13) reads [5]:

4 A H
B(I,, I, t) = VB exp {—ﬁ (I~ LoP ~ (= Tio) (L~ L)

B 2
2 (L-Le| (4

where:
2
A=L ey
ZAZ
g ""’ B ‘Y 5 (eza’yt+c3)
2ay(ay—A)
oy ZA (15)
[ 5 B'y (e(a'y+)\)t+ Cz)
(o)
A=AB-— H2

and I, Ly, C,, C,, C; are constants to be fixed by the particular initial conditions
of the problem.

The general, normalized solution of (7) then reads:
P(x, w, t) = 2mwvA) 'y cosh (yx)e@ "

Xexp{—% [e (smh (yx)+ iy )L) (smh (yxo) + B’;Y_;)]z

—% [e"”‘ (sinh (yx)+ ai?v/\) (smh (yxo) + B,: :)\ )] [we™ —wo]

B 2}
— — 1
A [we™ —w,] (16)
Beside (5), which is fixed, we shall choose the following initial conditions:
x=0 attimet=0 (17)
and '
TR
P(x,w,t=0)=8(x)N (0, 5 )-—"Pm(x, t =0)Ppp. (W, t =0) ‘ (18)

where we have introduced the marginal densities P,,,, Py defined by:

Py (x,t)= L P(x, w, t) dw
(19)
Py, (W, t)J; P(x, w, t) dx
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According to (9), the conditions (5) and (17) reduce to
110 =(0 and 120 =( (20)
With (20), the total density (16) simplifies somewhat to finally give:

P(x, w, t) = v cosh (yx)e® ™ (2mv/A) ! exp {— Z (sinh (yx))?

—Z sinh (yx)w — z (w)z} (21)

where ’ ’

2 =(28) " Ae> | (22a)

1

); =[A(ay—A)] ABye>™ +(A) " He @ (22b)

z =[2A(ay — AT 'AB%y2e>™ +[A(ay — M) ' HBye ™ ™" +(2A) ' Be*™

’ (22¢)
With the help of (21) and (22), we calculate the marginal densities:

Pys. (x, ©) = [2m$(€ )]y cosh (vx) exp{—[sinh (yx)PP[2¢(£ )]} (23)

Pas (W, 1) =[2m( )] exp {-w>(2u (& 1)} (24)
where the vector £ stands for the set (a, B, v, w, A) and:

S )= (ay—A)?B>y’e ™ MA +(ay— ) "2Bye M H +e>*"B (25)

v )= A | (26)

_ . 2x .
According to (26), the condition P, (w,t=0)=N (0, “’—2-) takes the sim-
ple form '

C,=0 | (27)
Using (27), (18) and (22b) at time t =0, we obtain
ay+A
C,= -1 28
2= (28)

Finally Py, (x,t=0)=8(x) implies ¢(£ t=0)=0 which in view of (25) at
time t =0, gives:

Cy=—1+1 (29)

Using (27), (28) and (29), the time dependent probability density of the
non-markovian process x, defined in (1) reads:
Pu (x, 1) =[27 (& 1)y cosh (yx) exp {—[sinh (yx)P[2 (£ )]} (30)
and:
b(E 1) =[2ay(ay+A)] ' n>AB2y>
+Hay —A) ARy {[(20) 7 - (2ay) Tl
+[2(ay+A) 1 =—A"1]e v . (31)
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3. Discussion

We can study the shape of (30) as a function of (£, ). Let us then calculate
the positions of the extrema which are given by the equation.

0P (x, 1) sinh (yx) (cosh (yx))? (sinh (yx))?
= y? — iy — - =) 31
2 : V2w (£ t) {1 (& 1) }e { 2¢(& 1) } GD
The solutions of (31) are:
x,=0 V‘ﬁ(é t) (32)

X,.3(t)= Fy ' arcosh (v d;(:g“', t), if q(;(é, t)>1

The second derivative indicates if we deal with minima or maxima. We have:

82Py(x, t) v3 (cosh (yx))? 1—(cosh (yx))*

= — . h 1——/\—.—— 1 =

0 \2md@Ern %) {[ ¢ 1) ][ ¥ (1) ]
421~ (cosh (vx))zl} . {_ (sinh (3&))2}
o 1) 2¢(4 1)

So we obtain immediately:
PPpl(x, 1) spm 202 etpr iz o [<0, i SE D1
TR ~vemd@ o -BE TSy $Eho ”
PRD | yromympldE 0l -2<0, for $(E0>1

X2.3 :
The situation is completely sketched in Fig. 1.
For the stationary state, we have:
lim $(€ 1) = Qaylay+A) " pn2AB%y> = é.. (35)

t—>oo

Therefore if q'3w> 1, we shall have two maxima, corresponding to a bimodal
density and in the contrary only one maximum centered at x =0. When o, B, v, w
are fixed, A becomes the control parameter of a bifurcation problem and similarly

X

y-1 arcosh( Qﬂi(fj)

Figure 1

Position x of the extrema of P,,, as a function of Vé(£ 1) (— maximum; ——— minimum)..
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to Fig. 1, we can draw, for \[cf:,,,. a global bifurcation diagram. The stationary state
exhibits qualitatively the same behaviour as observed by Horsthemke [3], for the
system:

dx

dt

This similarity is not accidental. Indeed, the second order expansion of (1) in the
vicinity of x =0 coincides with (36) when a =%, =1 and y=2.

Let us finally calculate the stationary state of (30) in the white noise limit
(A — ). We have immediately:

=—x+(x*-dw;  xe[-3 +3] (36)

u>yB*\ 12
lim Py (x, 1) = (w - ) y cosh (yx) exp {— a(n>B?y) ™" (sinh (yx))*}
7 (37
Dividing both sides of (4) by A and taking the limit gives:
lim w, = p do, (38)

A—>

Using (38), we rewrite the process (1) in the form of a stochastic differential
equation:

e __Budo,
dx =[—a tgh (yx)] dt e (39)

The diffusion term appearing in (39) is not constant and we therefore have to
specify the interpretation of the stochastic integral.
If (39) is interpreted in its It form, the associated stationary F.—P.E. reads:

B>’ & P (x)
2 3x? (cosh (yx))*

o=% (e iy () B (40)

which solution reads:

Py} foosh [P {B—"ﬁ (sinh (y2)°}

If (39) is interpreted in the Stratonovich form, we include the fluctuation
induced drift, and the F.-P.E. reads:

B*u® 9 1 B’ 9  Py(x)
4 ox ((cosh (yx))z) PS(x)] © 2 ax?(cosh (yx))?
(41)

d
0= o [a tgh (yx)—

which solution reads:

P.(x) ~ cosh (yx) exp {w Bzzz'y (sinh (yx))z} (42)

The solution (42) is identical with (37) which shows that the Stratonovich
interpretation has to be used in this case. This situation provides an illustration of
the Wong, Zakai and Clark’s theorem [4].
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