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A remark about weakly coupled one-dimensional
Schrodinger operators

by M. Klaus™

Department of Physics, Jadwin Hall
Princeton University, Princeton, New Jersey 08540

(26. 1. 1979)

Abstract. We discuss the asymptotic behavior of the ground state of weakly coupled one-
dimensional Schrédinger operators for various potential classes, in particular long range potentials.

Our recent work [1] about spectral properties of the infinite harmonic crystal
led us to this reconsideration of the weak coupling limit of one-dimensional
Schrodinger operators. We show how the method of [1] can be used as an
alternative, in momentum spaces to the position space methods used in [2] and
[3]. As regards the fall-off of the potential at infinity the method allows for a
unified treatment of all important cases. In particular, for applications to
Schrodinger operators with magnetic fields, potentials that behave as |x|™' for
large |x| are of interest [4]. Moreover, we will disprove a conjecture in [2]
concerning potentials that fall off as |x|™*, 0<a <1. We hope that this paper
completes the overall picture of this subject. We recall that we study the bound
states of

—d?
dx?

+AV (1)

as A | 0. The peculiarity of one dimension compared to three dimensions is that
the ground state in one dimension is asymtotically separated from the other
bound states while in three dimensions all bound states behave in the same way.
However, even in one dimension this is only true if the potential falls off fast
enough. The borderline is given by the |x| '-tail. Notice that E<0 is a bound
state of (1) if and only if 1 is an eigenvalue of —AQg where AQg is in momentum
space given by

AQ2m) 2 (p*-E)"*V(p-p)(p*—E)? 2
where
V(ip)=Q2w) I e V(x) dx (2)
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In [2] and [3] the operator Kg=+A|V|Y*(p>?—E) 'VY? where VY=
|V|"?(sgn V) was studied. We remark that K. and Qy are iso-spectral, since
Qs =AB and K =BA where A =(p>—E) Y?V"? and B=A(sgn V)A™". Thus
o (Kg)\{0}=a(Qg)\{0} [6]. We introduce the following potential classes:

(A): j(1+|x|)|V(x)|dx<oo

®: [Ive)ldx<e ®)
a
: V=-— + > >
(©) St W @20 b0
(D): Vz_l—)%ﬁw, a>0, O<a<l.

Conditions on W will be given later. Cases (A) and (B) will only be considered
briefly for they have been studied extensively in [2] and [3]. Case (C) and (D)
show some features that one could perhaps not expect at first sight. We will see
that one must not interchange the limits A | 0 and a | 0 in the asymptotic series.
Most of our work will be devoted to case (D).

The main idea in this paper is a perturbation argument which we briefly recall
here. We decompose Qg as

Q=P +Rg (4)

Where, in cases (A)—~(C), Pz = —{ic({i, ) with |[y||—  as ET0. |Rg|| will stay
bounded or blow up at a smaller rate than ||| as E10 (so that |Rg||/||lg|* — 0).
1€ o(—AQg) implies

Alds, (1 +ARE)71‘,IE) =1

The leading order is implicity given by A ||z|* = 1. Perturbation theory tells
us that |ARg|| <1, whenever E lies in an interval around the E-value given by the
leading order (the length of the interval also being of this order). To find the
higher order terms, we expand (1+ARg)™". Compared to [2] we avoid the use of
det (1+AQg).

Case (D) differs from this scheme in that Pr will be a compact operator
whose eigenvalues spread apart at a larger rate than |Rg|| blows up.

Case (A). Since Ve C" this case is completely analogous to the problem in

[1].

If { Vdx#0 we define

1 V(p)V(-p")
Pe =2 172(.12 7 E <0 6
VO2m PP~ E) PP —Ey = 6)

RE =QE—PE (7)
If {fVv=0,

Pg ! V(p)—i— V(—p') @®)

- " /277' (pZ_E)1/2(pr2_ E)1/2
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Ve (A) implies |Ry(p, p')| =const./max (|p|, |p']) so that R, is bounded (see Ap-
pendix). Then ||Rg||=||Ro| (E=0) and as A | 0, —AQg can only have eigenvalue
+1if f V=0. For | V =0 this follows as in [1]. Setting |APg|| =1 we find in leading
order

(—E)?= —% j V(x) dx 9)

in accordance with [2, 3].

Case (B). The same decompositions work. We only need remark that
(H.S. =Hilbert Schmidt)

”REHH.S. =E "?0(E)

by dominated convergence, while |Pg||= 0(E~"?). Hence Pg will dominate Rg as
E?10. We do not give the details of the asymptotics in this case.

Case (C). Here V(p) is logarithmically divergent at the origin. Hence the
decomposition (7) is no longer meaningful but this can be remedied. We assume
for simplicity that We L, and W(0) # 0. The right decomposition is

alnv—E

=+
1r(p2—~E)1/2(p'2— E)l/Z’

where a is the constant in (C). |Pg||~ — (In v — E)/¥ — E while |Rg|~ 1/~ —E. The
latter fact follows from a consideration of Rz (p, p’) whose explicit form can easily
be worked out. The first order correction to the eigenvalue a Inv — E/v —E of Pg
is (Y, Reps) where ¢ = (—E)"*/(p*>—E)">xw'?. We get

vV = E({, Ree) =V — E(Ysg, QE‘I’E)_ vV — E(Yg, PE"’E)

E r( p’) r
=—alnv—E+ dpd
al E fj(z p)( = ) p ap

=—aln\/—E+—;—J‘( —a +W(x))e‘2‘/$""dx

b +|x|
— —a(C—ln(Zb))—F%JW(x) dx=c as E 10. (11)
Here
C=[1e_u_1du+jmgdu
o u L u

is Euler’s constant. To find the ground state we have to solve

—Aalnx—Ac =x, x=v—E (12)
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Iteration gives

1
v—E=+4+Aaln(1/A)—Aalnln (X)—)L(a Ina+c)

Inln (1/A) A

AN I

Inln (1//\)) (13)

(aln(1/a)—c)+0 ( 2 (LX)

These few terms are consistent with the first order perturbation of Pg(11). We
observe that as a | 0 the first three terms reduce to —A [ W dx in accordance with
(9) but the first five terms go into —A(1—1/In (1/A)) | W dx!

Case (D). It is crucial to write V in the form (D). Then, if W=0,
Q:=(—E)*? 1 Q_,, E <. (14)

by performing a dilation.

aC,
(@*-E)"p—p'|'"™ (p*-E)"*
where C,=cos(m(1—a)/2)[(1—a)/m. —Q_; is compact and positive. Let

(—Qi/a)g, =0, (s=0,1,...), go>a,>--|¢]|=1. Denote by E; (s=0,
1,...) the bound states of p>— Aa/|x|* in increasing order. Then

(_Eg)llz - (I\ao_s)ll(z_a) (16)

Adding We(A) means perturbing Qg by an operator whose norm is
bounded by const. E~"? as E 10. This cannot affect the leading order (16). We
denote by E, the bound states of p>— Aa/|x|*+AW. Then, E, = E obeys

Q,(p, p)= E<0, 0O<a<l1 (15)

(—E)"“?=aAa, (¢, (1-AB) ') (17)
B=(1-AE“? g ) ¢,P) ' OQx (18)
iF#s

1 W(=E(p-p))
\/2_77\/35 (p2 + 1)1’2(p’2 +1)'2
P.(-) =4 (4s,). it

Q;. is related to Qg in (2) by a dilation. The inverse in (17) is well defined for
we need only consider A = E'"*?/(o,a) corresponding to the leading order (16).
Now

(—E,)'"“? = Aa,a+A’aa(d, By,)+ A oa(y, B(1—AB) ¢) (21)
s even: Assuming We(A) and Ww(0) #0

éE =

(19)

. ==}
(d’s, B'J’s) = (d’ss OElbs) = \/_—_E j W(JC)X‘S?(X\/——_E) dx

_—x:0)
V-E

J W(x) dx +0(1). (22)
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Xs was introduced as the Fourier inverse of (p?+ 1) "?y,. We also have (p*—
(1/oy) |x|™™)xs =—x,. x:(0)#0 by a Wronski argument. The 0(1) term follows
from dominated convergence. The second term on the r.h.s. of (21) is
O(AG 22/~ 4 ()(A2) while the third is Q(A@3)/2=)) Tt follows

(—E,)"2 = (ake,) V- - 2X: (O)IW( ) dx +0(AS 3272 (23)

Similar as in (C), the second order term does not reduce to (9) as a | 0
although x, does not depend on a. To see this note that

V2mx,(0) = ((p*+ 1) 2, ) =7

by the Schwarz inequality. Thus

(0) 1 1
*—
2—a 2(2 a) 2

s odd: Assuming | |W(x)| (1+x?) dx <o we find

(s Bl = ~V=BOAO) | Wx)x® dx+0(1) 24)

where x7(0) # 0 for s odd. The third term in (21) is 0(A?) if W’(0)# 0 and smaller
otherwise. Thus

2/(2—a)
( —-E )1/2 (a)to- )1/(2—a) __A(4—a)/(2 )

R R
X I x*W(x) dx +0(A>~**7) (25)

Remarks. s odd also covers the three dimensional case for s-waves since the
odd functions satisfy a Dirichlet boundary condition at the origin: One can make
the limit @ 11 in (25) using the fact that on odd functions C, |p —p’|*~" goes over
into log (lp—p'l/lp + p’|) which is familiar as the s-wave part of |p—p'|™>

In the very special case W(x)=—W(—x), s odd,

(¢, Bgs,) =0
identically in E. We have to look at

M oa(y,, B2y,).
If f xW(x) dx# 0 this term approaches

—on* ([ xWw) dx) (0 T pae (07 26)
k=0

as E; 10, where p,, =(1— (04 /0,)) ". (26) would give the second order if it were
non-zero. However there are always positive and negative terms in the sum which
might cancel. We don’t know the second order in this case.

The response of the asymptotic series to a replacement of —a/|x|* by —a/(|x[* +
b), b>0, is surprising. It amounts to choosing

ab
|x[* (|x[|* + b)

W=
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in (D). If 1>a>1/2 and s is even, the second order is still given by (22) and (23).
If 0<a<1/2, (,By,) is 0((—E)*™ ") and the second order is (23) becomes
O(A* /@) This accords with the limit « | 0 (b > 0) where one expects —E,~
O(A). If a =1/2 we get an O(A In A) term.

Similar effects occur if s is odd.

We conclude with the remark that the momentum space method also allows us to
discuss the threshold behavior of potentials like sin |x|/|x|. This has been disco-
vered recently and will be discussed elsewhere.

Appendix

This appendix considers a more general threshold behavior than the weak
coupling limit. We show how the methods of this paper can be used to give a
quick proof of a well-known fact about the ~1/1+ x>—potential. The appendix
also explains some steps in [1]. Let

H=p>—A(d?*+x?), d>0, A>0.
We show

(i) H has one bound state if A <1/4.
(i) H has an infinite number of bound states if A > 1/4.

Since H serves parity, we consider H on the odd or even function separately.
Accordingly, we introduce Qz (+(—)=-even (odd)) and consider these operators
on L?(R") (after an obvious unitary transformation). Then

1 e—d lp—p’l _e—d lp+p’|

_ﬁ (pz_ E)llz(prz_E)uz’

Qg(P, p") = p,p'=0E=<0. (A.1)

1 e e~
_ﬁ (pz—E)”z(pQ—E)”z’

Qt— Q= E<O. (A.2)

Qg— Qg is a rank one operator whose negative eigenvalue goes to —x as
E | 10. Anticipating that Q, is bounded, we note that Qg — Q strongly and

Q=1 [Qsll- Moreover, Qp gets unitarily transformed when d varies (dilation)
and as d | 0

Q, = —Ay(p, p))=—1/max (p, p') (A.3)

strongly and ||Qg||=||A¢ll. The limit d | O serves as an auxiliary tool to discover
the spectrum of Q, from that of —A,. Substituting p — e°® (s e (—%®)) we can
unitarily transform A, into the integral operator with kernel exp (—|x—y|/2) on
L*[R). Hence o(A,)=[0, 4]=0(Qy;) since, on the one hand, o(Q; has to “fill
up” [0,4] as d | O (strong convergence) [5, p. 290]) and on the other o(Qyp) is
invariant as d changes. (ii) follows now from the fact that dim (RamP; .,(—Qg)) =
o if A > 1/4. (i) follows since (1, ®) € p(—Qy) for A =1/4 and since QF differs from
Qg by a rank one operator which creates one single bound state.
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