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A connection between propositional systems in
Hilbert spaces and von Neumann algebras

by Dirk Aerts1) and Ingrid Daubechies1)

Theoretische Natuurkunde, Vrije Universiteit Brüssel, Pleinlaan 2, B-1050 Brüssel

(8. I. 1979)

Abstract. A theorem of Bade proves that for a complete Boolean sublattice S£ of 3>(3if) the
following holds:

SS — {PeS£"; P is orthogonal projection operator}

We prove that this theorem does not hold for the physically interesting class of non-Boolean
propositional systems embedded in a 3>(3if); we derive however a necessary and sufficient condition
under which the theorem does hold. This condition is automatically satisfied if the propositional
system is Boolean.

1. Introduction

There exist several formalisms for the description of quantum phenomena.
One of these is the axiomatic approach of Jauch and Piron [1] where one starts
from some intuitive and physically very comprehensive ideas. Another one is the
algebraic approach. It is amusing to note that they were both initiated by von
Neumann [2], [3]. The well known Hilbert space approach can be considered as a
special case of the axiomatic approach [4] as well as of the algebraic approach.

There is however a sensible difference between these two formalisms: the
axiomatic approach, as said before, has a more solid physical foundation but it is
not very practical for numerical calculations while the algebraic approach,
although physically less justified, is mathematically much more developed and is a
better tool for practical calculations.

It seems therefore interesting to establish a connection between the physically

more satisfying axiomatic lattice approach and the mathematically more
convenient algebraic approach. A first step in this direction was made by Bade
[5], who proved that a simple connection exists between complete distributive
lattices of projections in a complex Hilbert space and commutative von Neumann
algebras. We prove here an analogous theorem for a class of non-distributive
lattices, namely the physically interesting propositional systems of the axiomatic
approach [1].

In Section 2 we recall some definitions and basic theorems, including Bade's
theorem, and we formulate the problem.

In Section 3 we state and prove our main theorem and give some counterexamples.

In Section 4 we prove a generalization of this theorem.

A Wetenschappelijke medewerkers bij het Interuniversitari- Instituut voor Kernwetenschappen (in
het kader van navorsingsprogramma 21 EN).
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2. Definitions and basic notions- formulation of the problem

According to the axiomatic approach the structure of the set of propositions
corresponding to 'yes-no' experiments on a physical system is that of a complete,
orthocomplemented, weakly modular and atomic lattice which satisfies the covering

law. Such a lattice is called a propositional system. If the physical system has
no superselection rules, the propositional system is irreducible. For the definition
of a propositional system and of irreducibility we refer the reader to [6]; for more
details he can consult [1].

An important example of such an irreducible propositional system is given by
the following construction: let X be a complex Hilbert space, &(X) the collection
of all the closed subspaces of 9£.

If F, G are two elements of 0>(X), we say that G < F iff G <= F set-theoretically.
This defines a partial order relation on &>(9€). For (Gi)ieI in 3>(W) we define

A Gì fi Gì (set-theoretical intersection) (2.1)
ier is=I

V G Span Gj (closure of the subspace generated by the Gs) (2.2)
iel

For G in &(&) we define

G^G^ (2.3)

where Gx is the closed subspace orthogonal to G It is easy to check that d>(%€),

equipped with this structure, is indeed an irreducible propositional system.

Remark. With every closed subspace G of X corresponds a unique
orthogonal projection, namely the projection with image G. On the other hand the
image P3€ of any orthogonal projection P is a closed subspace of X. We will often
use this correspondence to identify the closed subspaces of die with the orthogonal
projections in f£(%£); we will even use the same symbol <?>($?) for both, and
depending on the context an element A of 0*($?) may either be a closed subspace
of %€ or an orthogonal projection in Zßifdt). If for instance x is a non-zero vector in
\H€, the symbol x will be used to denote the subspace Cx as well as the orthogonal
projection on this subspace. This identification will never lead to confusion.

A propositional system if will be called a propositional subsystem of
9>(2e) iff if is a sublattice of &(W) (i.e. if c 0>(3if) and v, a on if are the restrictions
to if of the operations v, a defined on 0>(3if)) with the additional property

P' P±aI (2.4)

where I is the maximal element of if.
Remark. Some concepts are much easier to define for a propositional subsystem

if of a &{ffâ) than for a general propositional system. For example:

- in a general propositional system if two elements are said to be compatible iff

(PaQ')vQ PaQ;
for a propositional subsystem if of &(%€), this is equivalent with the statement
that the projections P and Q commute.
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- in a general propositional system if, the center Z is defined to be the set of all
elements of if which are compatible with any elements of if; for a propositional
subsystem if of &(%£), the center Z is given by

Z {Peif;VQeiÇ:[P, Q] 0}.

One remarkable property of irreducible propositional systems is their showing

a structure which resembles that of ÇPUffî) in the example constructed above.
This is proven by C. Piron's representation theorem (see [1], [4]) which states that
any irreducible propositional system with rank at least 4 (i.e. with at least four
orthogonal atoms) is isomorphic to the lattice of all biorthogonal subspaces of a
vectorspace V over some field K, the orthocomplementation defining an involutive

anti-automorphism on K and a non degenerate sesquilinear form on V. One
can even prove (see [1]) that this vectorspace V turns out to be a Hilbertspace if
we take the field K to be C and the involutive anti-automorphism of C to be the
usual conjugation, which are two restrictions one usually makes when studying
physics. Since the set of all biorthogonal manifolds of a Hilbertspace is exactly
&(3€), we are then reduced to the case considered in the example.

In the algebraic approach one takes a von Neumann algebra of a C*-algebra
to represent the observables of the physical system. In the cases where a
C*-algebra is used, one often studies representations of the C*-algebra, which
amounts again to study von Neumann algebras.

There exists a definition for an abstract von Neumann algebra (i.e. a
definition independent of a Hilbertspace 3€), but one usually studies concrete von
Neumann algebras, i.e. subalgebras of a <£(3t) where Ht is some complex
Hilbertspace. One of the possible definitions of a von Neumann algebra is the
following (see [8]).

Definition, m <= if(Sie) is called a von Neumann algebra if m is an involutive
subalgebra of J£(2€) such that m m" (i.e. m is equal to its bicommutant).

Using this definition, one can prove easily the following theorem.

2.1 Theorem. Let 9€ be a complex Hilbertspace, m a von Neumann algebra in
VC. Then P(m) {Pem;P is an orthogonal projection} is a complete, orthocomplemented,

weakly modular lattice with respect to the in (2.1)-(2.3) defined
operations.

This lattice is irreducible iff m is a factor; it is irreducible and atomic iff m is a
factor of type I. In the latter case P(m) satisfies automatically the covering law,
which implies that P(m) is an irreducible propositional system. (For two simple
definitions of a factor and a factor of type I, see [9]).

Proof. Let (P;)ieI be a family of projections in m. For any projection Q in m'
we have [Pf, Q] 0 Vi e I. This implies that for any iel we can write Pt as

Pl=Pi,l + Pi,2 Pi,lVPi,2

where

Pu QPe<Q and Pia<Q'
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Hence

A-P; A (Pu+^,2)

(ap«)v (ap,2) (Vi, y :[Pu, P,2] 0)

Since now

AP«<Q, AP,2<Q\ this implies that | AP, Q\ 0
iel ier Liei J

This is true for any projection Q in m', which implies

APem"=m (2.5)
tel

Analogously one proves that

V P e m (2.6)

(2.5) and (2.6) together prove that P(m) is a complete lattice.
For P € P(m), we have immediately P' 1 — P e m, which implies that P(m) is

a complete orthocomplemented lattice. Weak modularity states that if P is smaller
than Q, P and Q are compatible. This is trivially the case here.

m is a factor iff the only projections in m which commute with P(m) are 0
and 1. This is equivalent to saying that the center of the lattice P(m) is trivial,
hence to saying that P(m) is irreducible.

m is a factor of type J iff m is a factor such that any projection P in m
contains a minimal projection. This is equivalent to saying that P(m) is irreducible
and atomic. In this last case one can check immediately that the covering law
holds.

So once a von Neumann algebra is given, we know that the set of its
projections is a complete, orthocomplemented, weakly modular lattice generating
the von Neumann algebra, i.e.

P(m)" m

One can now wonder if the converse is true. If one has a complete, orthocomplemented,

weakly modular sublattice if of @>(X), (with the operations defined by
(2.1), (2.2) and (2.4)), then if generates a von Neumann algebra, namely if" (if is
self-adjoint, see [8] p. 2). It is trivial to check that ifc P(if'). One can ask oneself
whether the other inclusion holds as well, i.e. whether

if P(£") (2.7)

If the lattice if does not contain lx, one immediately sees that

l^ePCSfOV*?

One can however always restrict oneself to the case where l^eif. Indeed, we can
prove the following theorem:

2.2 Theorem. Let 3K be a complex Hilbertspace. Let S£ be a complete,
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orthocomplemented, weakly modular sublattice of 9*(9€) with respect to the
operations defined by (2.1), (2.2) and (2.4). TTten there exists a subspace "3€x~P^
of %€ such that

^i {PiPPik;Pe^}
is a complete, orthocomplemented, weakly modular sublattice of &>(3€1), isomorphic
to iE, and which satisfies

lXle<?x^nWx)
we have then 2" 2"xClxeKl, hence P(£e") P(Se[)x{0,1}*©*,.

Proof. Define Px to be

Pi= VP
Pese

Since for any P in if :P<P1; we have

PiPPi I p,x — P I p,» an£» P I seePiSf= 0

From this one sees immediately that ifx defined by

ifx {PiPPi | PxX; P e if} is isomorphic to if.
Moreover

1», Pi I p,9e 6 =£i

The last statement is a consequence of [8, §2.1].

In the following we usually will assume that l^sif. If the lattice if is a
distributive or Boolean one, the question formulated above is answered by a
special case of Bade's theorem (see [5]; [10] p. 2214).

2.3 Theorem. Let 2€ be a complex Hilbertspace; let if be a Boolean sublattice
of &(%e), such that

ThenP(2") £e.

Remark that no atomicity is required for if in Theorem 2.3. We will restrict
ourselves to the case of propositional subsystems of &(X), which implies that we
will only treat atomic lattices. There does exist however a class of propositional
subsystems of 0>(9£), which contain the identity but for which the conjecture (2.7)
is false. Take for instance %€ C4, with canonical basis {e1; e2, e3, c4}. We define
the lattice if by its atoms:

A (if) \Pe;Pe= Projce with e of the form J] A^ for some A( in R >

The lattice if generated by this set is an irreducible propositional system containing

the identity. It is obvious that if" if(3(f), hence P(if") 0>(9(f) though
J i 9(W), which implies if ^ P(if").

We can however exclude these cases by a supplementary condition. We
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know, by Piron's representation theorem, that this lattice is isomorphic to the
lattice of all closed subspaces of a V, K, <j>. In the present case it is clear that
K R. In the following we will restrict our attention to cases where K C, thus
excluding pathological cases like this one. Though this may seem a strong
restriction, it is an absolutely necessary one, due to the fact that one usually
defines von Neumann algebras as complex algebras of operators on a complex
Hilbertspace.

To begin with we will restrict ourselves to irreducible propositional systems;
the results obtained will be generalized subsequently.

3. A necessary and sufficient condition

We will now proceed to prove our main theorem. To do this we will make an
intensive use of the material contained in [6]. For convenience we recall the
different results which will be applied here.

First of all: a definition. A c-morphism / from 0>(2€) to &(9P) is called an
m-morphism if: Vx, y atoms in g>(9€): the subspace /(x)+/(y) of &(W) is closed.
This is not the original definition given in [6], but according to Proposition 2.5 in
[6], it is equivalent with it. We will use the definition given above instead of the
original one because it turns out to be better adapted to the context in this paper.
The following theorem was proven in [6]:

3.1 Theorem (see [6, Theorem 3.1]). Let 26, $?' be complex Hilbertspaces
with dimension greater than two. Let f be a non-zero m-morphism mapping CpifffC)

into $>($€'). Then for every two non-zero vectors x, y in IH, there exists a bijective
linear map Fxy from f(y) to f(x), such that the set [Fxy ; x, y e X, x î 0 ^ y} has the
following properties:

rxy-Tyz -Txz W*rj

F*x l,«> (3.2)

Fyx is an isomorphism if \\x\\ \\y\\ (3.3)

PxxXv=Pxv (3-4)

For every non-zero x in %C, there exist two orthogonal projections P\, P2 in if(f(x))
such that

P\+Pl=f(x) (3.5)

Pxxx=APï + ÀP| (3.6)

Actually the theorem in [6] contains more than only this, but this is all we will
need here.

If for one non-zero x in W the projection Pl(Pf) mentioned in (3.5) and (3.6)
is zero, then all the Pl(P\) are zero and / is called a linear (anti-linear)
m-morphism. A general m-morphism is always the combination of a linear and
an anti-linear m-morphism; if either of these two is non-trivial, the m-morphism
is called mixed (see [6, Theorem 3.10 and Definition 3.9]).

We will also need the following rather weak consequence of Theorem 3.1
(see [6, Corollary 4.2]).
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3.2 Theorem. Let VC, W be complex Hilbertspaces with dimension greater than
two. Let f be a c-morphism mapping &(%€) into &(%£') such that

f\*-9e) *-sre'

3xe%e,x^0 such that f(x) is one-dimensional.

Then f($>(%€)) WW).

One more remark: from the construction of the Fxy (see the proof of Lemma
3.2 in [6]) one can infer the operator FKyx)/||y||2]yx is in fact the restriction to f(x) of
the orthogonal projection on f(y). Using all this, we can prove the following:

3.3 Theorem. Let 9€ be a complex Hilbertspace; let i£ be an irreducible
propositional subsystem of &&) such that

3^f complex Hilbertspace, dim^f>3, and a c-isomorphism ep mapping iß onto
ïP(È). Let i be the canonical injection mapping if into &(X). Then if P(if") iff
the c-morphism f=i°<p is a non-mixed m-morphism.

For the sake of comprehensibility, we have split the proof into different
lemmas.

3.4 Lemma. Let 3€, È be complex Hilbertspaces with dim^f>3. Let f be a
non-trivial m-morphism mapping &($€) into &>(^€). we define

iß f(&(&))

A(iß)={Peiß; P is an atom in iß}

If f is not mixed, then we can construct a set of partial isometries {UPQ;P, Qe
A(i£)}<^i£(9e) such that

(1) VP, QeA(if): UPQ has initial subspace QdK, and final subspace PVt.
(2) \/P,QeA(g):UpQe2"
(3) VP, Q, R e A(if) : U^U^ UPR.

Proof. For each atom P in if we choose a normalized vector xP in 3€ such
that P f(xp). For any two P, Q in A (if) we define the linear operator [/pq by

UpQ I Qse FXpXQ

UPQWQQtW) 0

It follows from Theorem 3.1, in particular from (3.3) that this UpQ is a partial
isometry with initial subspace QW and final subspace PSK (see [7], p. 197).

From the remark preceding Theorem 3.3 we see that

PO | ox F(Xp XQ)XpXQ (3.8)

If / is not mixed, we have either

P(xP,x0)xPx0= (xp, *q)FXpXq if / is linear,

or

P(xp,xQ)xPxQ ={xp, xQ)PxpxQ if / is anti-linear.
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In both cases there exists a complex number a such that

PQ|Q3e aFXpXQ, (3.9)

hence, from (3.7), PQ aUPQ
If P and Q are not orthogonal, we have a^O, hence

L7PQ=a-1PQeif"

If P and Q are orthogonal, there exists a Re A (if) (take f.i. R =/(xP + xQ)) such
that R/P and R/Q.

From (3.1) we see that

UPQ | Q* FXpXQ FXpXrFXrXo a^PR | RX • ß-'RQ | „a_1ß-1PRQ. |
QSf for some non-zero a, ß.

hence

[/PQ=a-1ß-1PRQeÄ"
The last statement is again a consequence of (3.7) and (3.1).

3.5 Lemma. Let "X, È, f, iß and A (if) be as in Lemma 3.4. Suppose that f is
not mixed, and that f(l&) lx. Let P be an element of A (if). Then there exists a
complex Hilbertspace §£ and an isomorphism ep mapping %€ onto %C<&PyC such that
the isomorphism ep defined by

<f>:iß(2e)->i£(§e®PW)

A"-xpoA°<p_1

maps iP' onto if(^)(8>CP3r and iß onto P(k)®lPx.
Proof. Since 1^ is an element of if, there exists a set of orthogonal atoms

(P)ier in &, containing P, such that

iel

(this can be obtained by a simple Zornication). Let i0 be the element of I for
which P Pio. From Lemma 3.4 we know that for each i, j in I there exists a

partial isometry I7y UPjP. in if" with initial subspace Pffi and final subspace P{X.
This implies (see [8], p. 25) that there exists a Hilbertspace §€ and an isomorphism
ep :yC-^§e®PM, such that the map

<p:iß(W)-+i£(§e®PW)

A^>ep°A°ep~1

maps if" bijectivily onto i£i$t)®i£P (we follow Dixmier's notations). On the other
hand we have if" (A(if))". Define the set B(i£) to be

B(if) {Qx • • • Qn; n€N, Qt,..., Qne A(if)} (3.10)

This is a selfadjoint set, stable for the multiplication, which satisfies (B(if))" if.
It follows then from [8, §2.1, Proposition 1] that

iß'P=(B(iß)Py (3.11)
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Let Qx,... ,Qn be elements of A (if). From (3.9) we see that either

PQx- •Q„P 0

or

PQi • • • Q„P a-1C/PQ]L7QiQ2 • • • UQnP for some a eC\{0}.

In the latter case we have

PQx- QnP a"1 l/pQ2 • • • UQnP a"1 UPP alP
which implies that in both cases there exists a complex number ß such that

PQx-QnP ßP (3.12)

From (3.12) and the definition (3.10) of B(iß) we see that B(if)PcCPaf, hence,
because of (3.11),

V" c-^P '-'Pa?

This implies that

4>(ie') i£(W)®CP9e, (3.13)

hence

eb(iß)czP(W)01Pw. (3.13)

It is obvious from the construction of X and <p that there exists a one-dimensional
projection Q in iß(§€) such that

cb(P) Q®lPM

Moreover we have <p(lx) l&(B)lP9t:. It follows from Theorem 3.2 that

<p(iß) &Ck)®lPW (3.14)

From (3.13) and (3.14) we see that

<MP(if')) P(<M^")) 9**)® lwr
ep(iß)

hence P(if') if (ef> is a bijective map).

This implies that the combination of Lemmas 3.4 and 3.5 proves that the
condition mentioned in 3.3 is sufficient. The necessity of the condition will be
proven in the lemma below.

3.6 Lemma. Let "M, È be complex Hilbertspaces with dim $f 5^3. Let f be a
unitary c-morphism mapping Çpi$€) into @&). We define

i£=f(&(k))
A(if) {Peif; P is an atom in iß}

If f is not an m-morphism, or if f is a mixed m-morphism, then

P(if")2if
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Proof. We suppose first that / is not an m-morphism. This implies that for
some P, QeA(if), P%€+QW is not closed. Hence there exists no complex
number a for which PQP exP. (The existence of such a complex number a
would force the subspace P3€+Q3€ to be complete, hence closed.) But this
implies ifp^CP3if, hence ißP contains non-trivial projections of iß(PW). Let S be
such a projection. Define Sx e if(Sf6) by

Sl | FX S

Sx(XQP<W) 0

Because of the definition of ifp (see [8], p. 16) this Sx is a non-trivial projection of
if", smaller then but different from P. Since P is an atom in if, we see that Sx is
not contained in if, although it is a projection of if". This implies

iß<=sP(iP')

Suppose now that / is a mixed m-morphism. Take x, y in §t such that ||x|| ||y||
1, and (x, y) |. Define the atoms P, Q, R in if by

P f(x), Q f(y), R=f(x + iy)

Since (3.8) holds even when / is mixed, we have

PQRP | PSK F(Xjy)xyF(y>(x+iy)/v2)y[(X+iy)/v2]F((x+iy)/v2>X)i;(x+iy)/V2]x

Using (3.4) twice, we can reduce this to

PQRP | PtK F(Xiy)(y>(x+iy)/72M(x+iy)//-2jX)xx

P(l/4)(i+(l/2))(l-(.72))xx

=\{^Ì)^J->1
Since both P\ and Pl are non-trivial, this implies that PQRP [^ is not a
multiple of lPPe, hence

~ßp T Lpje

Using the same arguments as in the case where / is not an m-morphism, we see
that this implies

P(iP')^i£.

Remark. It is actually possible to prove a theorem equivalent to Theorem 3.3
without using explicitly the properties of the {Fxy}, except for the rather weak
Theorem 3.2. This theorem has the advantage that it contains a necessary and
sufficient condition which is easier to handle than the rather abstract one in
Theorem 3.3. We will state this theorem without proving it here, but we indicate
how the previous proofs should be modified to prove it. This reformulated
theorem goes as follows:

3.7 Theorem. Let "UK be a complex Hilbertspace; lei iß be an irreducible
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propositional subsystem of Çf>(ff€) such that

lareif
3Üf complex Hilbertspace, dim SÌ? 3=3, for which iß is isomorphic to &(%!). Then

i£=P(iP') iffVP, Q, R atoms in iß, 3 a e C such that

PQRP aP (3.15)

To prove this, one uses condition (3.15) to construct a set of ÜpQ which are in
fact, up to some constant factor (depending on P and Q), the UpQ defined by
(3.7). These UpQ have again the properties stated in Lemma 3.4 except for the
third one, which becomes:

VP, Q,ReA(if):3ßeC, |ß| l suchthat ÜPQÜQR ßÜPR

Once these are constructed, the reasoning in the proof of Lemma 3.5 can be
repeated to prove the sufficiency of condition (3.15). The necessity of condition
(3.15) is proven by the same reasoning as the one used in the second half of the
proof of Lemma 3.6. The equivalence of Theorem 3.3 and Theorem 3.7 is proven
by the following:

3.8 Theorem. Let VC, $t be complex Hilbertspaces, with dim W^-2>; let f be a
unitary c-morphism mapping &($€) into &(%€). Then:

-f is an m-morphism iff VP, Q atoms in /(0>(2J?)):3aeC such that

PQP aP (3.16)

-f is a non-mixed m-morphism iff the atoms in f(&(ßc)) satisfy condition (3.17).

Proof. The fact that (3.16) compels / to be an m-morphism was proven in the
first part of the proof of Lemma 3.6. The other implication can be proven as
follows: Let P, Q be two atoms in f(&•($€)), and let x, y be normalized vectors in
à such that

f(x) P f(y) Q

Because of (3.8) we have

PQP I PX F(x,y)xyF(y,x)yx F(xy)(yx)xx

\(x,y)\2lm)
Hence

PQP \(x,y)\2 P.

We prove now the second statement in two steps. Suppose first that / is a
non-mixed m-morphism. Let P, Q, R be three atoms in f(&(È)), and let x, y, z be
normalized vectors in "k satisfying f(x) P, f(y) Q, f(z) R. Applying (3.8), we
obtain

PQRP I pa? F(x_y)xyF(y>2)y2F(2>x)2X

— "(x,y)(y,z)(z,x)xx
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Since f is not mixed we have either

PQRP\PX=(x,y)(y,z)(z,x)lm
or

P(2RP|p* (x,z)(z,y)(y,x)lf(i)
In both cases there exists an a such that PQRP aP, which implies that (3.15)
holds. Suppose now that condition (3.15) is satisfied. (3.16) being a special case of
(3.15), this implies that / is an m-morphism. We can then again use the Fxy and
their properties to obtain (3.17). If / were mixed, we could choose x, y, z as in the
proof of Lemma 3.6, and we should obtain:

PQRP\px \(l+fjPt+\(l-fjPl,
where both PJ and P| would be non-trivial. But this would imply that condition
(3.15) is not satisfied, which is false. Hence / is not mixed.

Condition (3.15) gives us an easier criterion to decide whether the main
theorem is applicable or not. It is interesting to note that condition (3.15) contains
both conditions that / should be an m-morphism and that / should not be mixed.
On the other hand, the proof that (3.15) is a necessary condition holds independently

of the dimension of "M, while the properties of the Fxy can only be used if
dim $? s* 3. These properties are used several times in the preceding proofs, which
implies that the restriction dim ^^3 plays a vital role in Theorem 3.8 as well as
in Theorem 3.3. Since we have to use Theorem 3.2 to prove Theorem 3.7, the
same^ is true for Theorem 3.7. We will give here two counterexamples with
dim^f 2. In the first one we have P(if')gif although condition (3.15) is
satisfied; in the second onewe show that the first statement in Theorem 3.8 does
not hold any more if dim §€ 1.

3.9 Counterexample. Take \H€ C4, it C2. The one-dimensional projection
operators in if(C2) are given by

Pe* eesç with e8<p cos Bex + eiv sin 0e2

0e[o,|], <pe[0,27r]

where e1; e2 is the standard basis in C2. Let fu f2, f3, /4 be the standard basis in
C4. We define

/9w cos0/1 + e-sin0/3 aJa^] .mol
g9(p=cos0/2 + e-sinö/4 'H^J' «^2^

We define now a map / from 0>(C2) to &(CA) by

/(0) 0 /OcO-lc.
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It is almost trivial to check that this / is a unitary c-morphism, which implies that
if /(0>(C2)) is a sublattice of 0>(C4), isomorphic with 0>(C2), which contains lc».
We will denote the atoms f(P6v) of if by Qe<p. We have now

Qevx fa (/e*, x) + g9$(ge<p, x) where ép -+— xv*a*r(<p)

using this and the fact that (/e<p, /ov) (ge<p, gev) for any 0, 0', <p, <p', we see that

{JetplJe'se'^Je"ss>"^Jest> — Ue*'; Je'<pVvJe'v'> Je'V-HTe'v 7e<p)^-=e<p>

which implies that condition (3.15) is satisfied. On the other hand, we know that
if contains the projections

and Q(7r/4)o:

/1 0 0 0

Ho 1

0

0

0

0

0

V 0 0 0

which implies

/1 0 1 0

i/o 1 0 1

2 1 0 1 0
\o 1 0 1

H(o lì- A^<«}-
But this implies that the projection operator

(1
0 i 0^

0 1 0 -i
-i 0 1 0

0 i 0 1

is contained in if", although one can check that it is not an element of if. We have
thus if^P(if'), although condition^. 15) is satisfied. This is due to the fact that
if is isomorphic to a 3>{ßt) where it has dimension smaller than three.

3.10 Counterexample. Take again 9i? C4, 9Ì? C2. For any 0 in [0, ir/2],
define 0 by 0 (2 — cos20)ir/4. With the same notations as in the previous
counterexample, we define a map / from 0>(C2) to 0>(C4) by

/(0) 0 /(lc^lc
/(Pftp) Rfl<p PrOJspanO^gi,)

One can check (see also [6]) that this map is a unitary c-morphism, i.e. that
if /(0>(C2)) is a sublattice of 0>(C4), which contains 1^ and which is isomorphic
to 0>(C2); A simple calculation yields

/cos20 0 0 0

Ro<pRe<pRo<p ~~
j 0 0

0 0

0 0

cos20 0

\ 0 0 0 o,

for 0^{O, ir/4, tt/2}, this is clearly not a multiple of R0(p, which implies that not
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only (3.15), but also (3.16) is not satisfied. One can immediately check that

h
cos2 0- cos2 0

(Q°A°°* - cos2 eQ^

is an element of iP'\i£, which implies P(iP') g if. This is a natural consequence of
the fact that the necessary condition (3.15) is not satisfied. On the other hand, we
see that, though / is an m-morphism, (3.16) is not satisfied: this is due to the fact
that if is isomorphic to a 9i$t) with Aim it<3.

4. Generalization to reducible propositional systems

Up till now, we have restricted ourselves to the case where the propositional
system is irreducible. This is however not a crucial point, and we will now
consider the general case. We first remind the reader of some results obtained by
C. Piron (see f.i. [1], Theorem 2.37).

4.1 Theorem. Let i£ be a propositional system, Z its center. Then Z is an
atomic Boolean sublattice of iE. If (P,)]eJ is a maximal set of stoms in Z, we can
write iß as the direct union of the segments [0, P,]

if=V[o,P,]
/eJ

Remarks

1. If P, Q are two different atoms in the lattice Z, then P and Q are
orthogonal (i.e. P < Q'), for they commute with each other:

2. For each atom P in Z, the segment [0, P] is an irreducible sublattice of if.
Using Theorem 4.1 we can prove the following:

4.2 Theorem. Let X be a complex Hilbertspace; let iß be a propositional
subsystem of dit such that sllt&iß. Let (P,)jSj be the set of atoms in Z, the central
sublattice of iß. Suppose that for each j e J, there exists a complex Hilbertspace its,
dim ^3^3, and an isomorphism ep, mapping [0, Ps] onto P(itf). Let i,:[0, PJ^
®(yt) be the canonical injection of [0,P,] into &(%). Then P(iP') i£ iffVje
J:i:°epP is a non-mixed m-morphism.

Proof. Since the P< are orthogonal, and

VP,=1*,
/eJ

we have

otp — iZT\ r> oydc — K1J lstn,
jeJ

Since all the P, are elements of if' D if (they commute with if), we have (see [8],
P. 20)

iP' \\iß'Pp,
J eJ
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So if Q is a projection in if", there exist a family of projections (Qj)jeJ with
Q, e ifp. such that

Q=lQ VQ.
jeJ jeJ

Applying Theorem 3.3 to the propositional subsystems [0, Py] of *3>(P{3t) yields

[0,P,] P(if£()

hence Q, e [0, PJ cz fß for each / in J. This implies

Q=VQ;€if,
jeJ

hence P(iP') c if, which implies P(iP') iß. The necessity of the condition can be
proven as in Lemma 3.6. Indeed, suppose that

ik°Vk1 '•&>(Ì€k)-^&(%£) is not a linear or anti-linear /-morphism.

Then (see the proof of Lemma 3.6) it is possible to find atoms Qx, Q2, Q3 in if
which are smaller than Pk and for which QtQ2Q3Qx is not a multiple of Qt. (If /
is not an /-morphism, one can even choose Q2 and Q3 to be equal). From
Theorem 3.7 one infers that

P(Äpt)3[0,Pk].

This implies that a projection exists for which

Reif£t R^[0,Pfc]
The projection R defined by R | Pk2t=R, R \ 2tQPkcHt 0 is then clearly an
element of iP' and not of if:

R&P(iP')\iß

Remark. One can again replace the necessary and sufficient condition in
Theorem 4.2 by the condition

VP, Q, R atoms in if : a e C such that PQRP aP (4.1)

Indeed, it is obvious that any atom is contained in a [0, P,]. If the P, Q, R belong
to different [0, P,], condition (4.1) is automatically satisfied with a =0. lì we write
(4.1) for all the P, Q, R smaller than the same Ps, we see from Theorem 3.8 that
we get a condition equivalent to the one in Theorem 4.2. On the other hand
Theorem 3.7 can be proven using only Theorem 3.2, and not Theorem 3.1 (see
the remark made previously). Since the dimension condition dim it 3= 3 in
Theorem 3.2 can be replaced by dim it j= 2 (for dim it 1 Theorem 3.2 is trivial),
we can reformulate Theorem 4.2 as follows:

4.3 Theorem. Let X be a complex Hilbertspace, iß a propositional subsystem
of (Pffl); let Z be its central lattice, and A (if) the set of its atoms. Let (Pj)](Ej be the
set of atoms^ of Z, and suppose that for any je J there is a complex Hilbertspace its
with c\ïm%tji=2 such that [0,P,] is isomorphic with ÇPi§ts). Then iß
P(iP') iff VP, Q, R e A(iP) : 3 a e C such that PQRP oP.
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One sees immediately that in this general form, the theorem can be applied
to Boolean atomic lattices, which yields a trivial special case of Bade's theorem.
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