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A connection between propositional systems in
Hilbert spaces and von Neumann algebras
by Dirk Aerts') and Ingrid Daubechies')

Theoretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel

(8. 1. 1979)

Abstract. A theorem of Bade proves that for a complete Boolean sublattice ¥ of P(3¢) the
following holds: '

¥ ={Pe¥"; P is orthogonal projection operator}

We prove that this theorem does not hold for the physically interesting class of non-Boolean
propositional systems embedded in a $(3); we derive however a necessary and sufficient condition
-under which the theorem does hold. This condition is automatically satisfied if the propositional
system is Boolean.

1. Introduction

There exist several formalisms for the description of quantum phenomena.
One of these is the axiomatic approach of Jauch and Piron [1] where one starts
from some intuitive and physically very comprehensive ideas. Another one is the
algebraic approach. It is amusing to note that they were both initiated by von
Neumann [2], [3]. The well known Hilbert space approach can be considered as a
special case of the axiomatic approach [4] as well as of the algebraic approach.

There is however a sensible difference between these two formalisms: the
axiomatic approach, as said before, has a more solid physical foundation but it is
not very practical for numerical calculations while the algebraic approach, al-
though physically less justified, is mathematically much more developed and is a
better tool for practical calculations.

It seems therefore interesting to establish a connection between the physi-
cally more satisfying axiomatic lattice approach and the mathematically more
convenient algebraic approach. A first step in this direction was made by Bade
[5], who proved that a simple connection exists between complete distributive
lattices of projections in a complex Hilbert space and commutative von Neumann
algebras. We prove here an analogous theorem for a class of non-distributive
lattices, namely the physically interesting propositional systems of the axiomatic
approach [1].

In Section 2 we recall some definitions and basic theorems, including Bade’s
theorem, and we formulate the problem.

In Section 3 we state and prove our main theorem and give some counterex-
amples. In Section 4 we prove a generalization of this theorem.

) Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in
het kader van navorsingsprogramma 21 EN).
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2. Definitions and basic notions — formulation of the problem

According to the axiomatic approach the structure of the set of propositions
corresponding to ‘yes—no’ experiments on a physical system is that of a complete,
orthocomplemented, weakly modular and atomic lattice which satisfies the cover-
ing law. Such a lattice is called a propositional system. If the physical system has
no superselection rules, the propositional system is irreducible. For the definition
of a propositional system and of irreducibility we refer the reader to [6]; for more
details he can consult [1].

An important example of such an irreducible propositional system is given by
the following construction: let % be a complex Hilbert space, (%) the collection
of all the closed subspaces of .

If F, G are two elements of (%), we say that G < F iff G < F set-theoretically.
This defines a partial order relation on 2(%). For (G,);c; in #(%) we define

A G, = G; (set-theoretical intersection) (2.1)
iel iel
V G; =Span G; (closure of the subspace generated by the G;) (2.2)

iel
For G in @(¥) we define
G'=G* (2.3)

where G* is the closed subspace orthogonal to G. It is easy to check that P(%),
equipped with this structure, is indeed an irreducible propositional system.

Remark. With every closed subspace G of ¥ corresponds a unique or-
thogonal projection, namely the projection with image G. On the other hand the
image P of any orthogonal projection P is a closed subspace of #. We will often
use this correspondence to identify the closed subspaces of % with the orthogonal
projections in £(¥); we will even use the same symbol P(#) for both, and
depending on the context an element A of ?(J) may either be a closed subspace
of % or an orthogonal projection in #(3%). If for instance x is a non-zero vector in
¥, the symbol x will be used to denote the subspace Cx as well as the orthogonal
projection on this subspace. This identification will never lead to confusion.

A propositional system £ will be called a propositional subsystem of
P() iff £ is a sublattice of P(¥) (i.e. L= P(¥) and v, A on & are the restrictions
to &£ of the operations v, A defined on 2(%)) with the additional property

P =P'AI (2.4)
where I is the maximal element of £.

Remark. Some concepts are much easier to define for a propositional subsys-
tem £ of a P(¥) than for a general propositional system. For example:

—in a general propositional system £ two elements are said to be compatible iff
(PAQ)vQ=PAQ;

for a propositional subsystem £ of 2(%), this is equivalent with the statement
that the projections P and Q commute.
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—1in a general propositional system %, the center Z is defined to be the set of all
elements of & which are compatible with any elements of #; for a propositional
subsystem £ of (%), the center Z is given by

Z={Pe¥;VQe%:[P, Q]=0}.

One remarkable property of irreducible propositional systems is their show-
ing a structure which resembles that of 2() in the example constructed above.
This is proven by C. Piron’s representation theorem (see [1], [4]) which states that
any irreducible propositional system with rank at least 4 (i.e. with at least four
orthogonal atoms) is isomorphic to the lattice of all biorthogonal subspaces of a
vectorspace V over some field K, the orthocomplementation defining an involu-
tive anti-automorphism on K and a non degenerate sesquilinear form on V. One
can even prove (see [1]) that this vectorspace V turns out to be a Hilbertspace if
we take the field K to be C and the involutive anti-automorphism of C to be the
usual conjugation, which are two restrictions one usually makes when studying
physics. Since the set of all biorthogonal manifolds of a Hilbertspace is exactly
P(9), we are then reduced to the case considered in the example.

In the algebraic approach one takes a von Neumann algebra of a C*-algebra
to represent the observables of the physical system. In the cases where a
C*-algebra is used, one often studies representations of the C*-algebra, whlch
amounts again to study von Neumann algebras.

There exists a definition for an abstract von Neumann algebra (i.e. a
definition independent of a Hilbertspace %), but one usually studies concrete von
Neumann algebras, i.e. subalgebras of a £(#) where ¥ is some complex Hil-
bertspace. One of the possible definitions of a von Neumann algebra is the
following (see [8]).

Definition. m < £(%) is called a von Neumann algebra if m is an involutive
subalgebra of £(%) such that m =m” (i.e. m is equal to its bicommutant).

Using this definition, one can prove easily the following theorem.

2.1 Theorem. Let % be a complex Hilbertspace, m a von Neumann algebra in
. Then P(m)={Pem;P is an orthogonal projection} is a complete, orthocomp-
lemented, weakly modular lattice with respect to the in (2.1)—(2.3) defined
operations.

This lattice is irreducible iff m is a factor; it is irreducible and atomic iff m is a
factor of type I. In the latter case P(m) satisfies automatically the covering law,
which implies that P(m) is an irreducible propositional system. (For two simple
definitions of a factor and a factor of type I, see [9]).

Proof. Let (P,);.; be a family of projections in m. For any projection Q in m'
we have [P, Q]=0 Viel This implies that for any i€ I we can write P; as

P, = -Pi,1+Pi,2= Pi,1VPi,2
where

P.,=QP,<Q and P,<(Q’
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Hence
./\IPi = /\I(P:1 + Pi,2)
= (‘/\IPi’l)V (./\IPi,Z) (Vl: ] : [I)i,la ‘Pj,Z] = 0)
Since now
AP1<Q, AP,<Q', thisimplies that [/\ P, Q] =0
iel iel iel

This is true for any projection Q in m’, which implies

AP.em”"=m (2.5)

iel
Analogously one proves that
VPem (2.6)

iel
(2.5) and (2.6) together prove that P(m) is a complete lattice.

For P e P(m), we have immediately P’ =1— P € m, which implies that P(m) is
a complete orthocomplemented lattice. Weak modularity states that if P is smaller
than Q, P and Q are compatible. This is trivially the case here.

m is a factor iff the only projections in m which commute with P(m) are 0
and 1. This is equivalent to saying that the center of the lattice P(m) is trivial,
hence to saying that P(m) is irreducible.

m is a factor of type I iff m is a factor such that any projection P in m
contains a minimal projection. This is equivalent to saying that P(m) is irreducible

and atomic. In this last case one can check immediately that the covering law
holds.

So once a von Neumann algebra is given, we know that the set of its
projections is a complete, orthocomplemented, weakly modular lattice generating
the von Neumann algebra, i.e.

P(m)'=m

One can now wonder if the converse is true. If one has a complete, orthocomp-
lemented, weakly modular sublattice £ of (%), (with the operations defined by
(2.1), (2.2) and (2.4)), then £ generates a von Neumann algebra, namely £’ (£ is
self-adjoint, see [8] p. 2). It is trivial to check that £ < P(¥"). One can ask oneself
whether the other inclusion holds as well, i.e. whether

£=P(&") (2.7)
If the lattice &£ does not contain 1,,, one immediately sees that
L.e P(¥N\&

One can however always restrict oneself to the case where 1, € £. Indeed, we can
prove the following theorem:

2.2 Theorem. Let # be a complex Hilbertspace. Let ¥ be a complete,
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orthocomplemented, weakly modular sublattice of P(¥) with respect to the
operations defined by (2.1), (2.2) and (2.4). Then there exists a subspace #,= P,¥
of ¥ such that

%, ={P\PP; | x; Pe £}

is a complete, orthocomplemented, weakly modular sublattice of P(%,), isomorphic
to &, and which satisfies

1y € £ < P(H,)

we have then £’ =%"XClggg,, hence P(£") = P(£) X{0, 1}sos,-
Proof. Define P; to be
P,=V P.

Pes
Since for any P in ¥:P<P,, we have
P,PP,|px=P|lps and P|gcps=0
From this one sees immediately that %, defined by
¥,={P,PP, | P,%; P ¥} is isomorphic to £.
Moreover
1x,xP1|PI%€$1

The last statement is a consequence of [8, §2.1].

In the following we usually will assume that 1,,€ £. If the lattice &£ is a
distributive or Boolean one, the question formulated above is answered by a
special case of Bade’s theorem (see [5]; [10] p. 2214).

2.3 Theorem. Let ¥ be a complex Hilbertspace; let & be a Boolean sublattice
of P(%), such that

1,e%
Then P(£")=%.

Remark that no atomicity is required for & in Theorem 2.3. We will restrict
ourselves to the case of propositional subsystems of 2(%), which implies that we
will only treat atomic lattices. There does exist however a class of propositional
subsystems of (%), which contain the identity but for which the conjecture (2.7)
is false. Take for instance % = C*, with canonical basis {e,, e,, €5, ,}. We define
the lattice £ by its atoms:

4
AL = {Pe; P, =Projc, with e of the form Z Ae; for some A; in R}
i=1
The lattice £ generated by this set is an irreducible propositional system contain-
ing the identity. It is obvious that ¥'=%(%), hence P(¥")=%(¥) though
J 2 P (%), which implies &£ 2 P(&Z").
We can however exclude these cases by a supplementary condition. We
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know, by Piron’s representation theorem, that this lattice is isomorphic to the
lattice of all closed subspaces of a V, K, ¢. In the present case it is clear that
K=R. In the following we will restrict our attention to cases where K= C, thus
excluding pathological cases like this one. Though this may seem a strong
restriction, it is an absolutely necessary one, due to the fact that one usually
defines von Neumann algebras as complex algebras of operators on a complex
Hilbertspace.

To begin with we will restrict ourselves to irreducible propositional systems
the results obtained will be generalized subsequently.

3. A necessary and sufficient condition

We will now proceed to prove our main theorem. To do this we will make an
intensive use of the material contained in [6]. For convenience we recall the
different results which will be applied here.

First of all: a definition. A c-morphism f from P(¥) to P(¥’) is called an
m-morphism if: VX, y atoms in P(¥): the subspace f(x)+f(y) of P(%’) is closed.
This is not the original definition given in [6], but according to Proposition 2.5 in
[6], it is equivalent with it. We will use the definition given above instead of the
original one because it turns out to be better adapted to the context in this paper.
The following theorem was proven in [6]:

3.1 Theorem (see [6, Theorem 3.1]). Let %, ¥ be complex Hilbertspaces
with dimension greater than two. Let f be a non-zero m-morphism mapping (%)
into P(#'). Then for every two non-zero vectors x, y in ¥, there exists a bijective
linear map F,, from f(y) to f(X), such that the set [F,,;x, y €%, x# 0# y} has the
following properties:

F.F,, =F, 3.1)
F. =1 (3.2)
F,, is an isomorphism if ||x||=||y|| (3.3)
Fxxhy = ny (3.4)

For every non-zero x in 3, there exist two orthogonal projections P%, P3 in £(f(x))
such that

P} + P} = (%) (3.5)
Fyox = AP+ APZ (3.6)

Actually the theorem in [6] contains more than only this, but this is all we will
need here.

If for one non-zero x in ¥ the projection P5(P7) mentioned in (3.5) and (3.6)
is zero, then all the P3(P}) are zero and f is called a linear (anti-linear)
m-morphism. A general m-morphism is always the combination of a linear and
an anti-linear m-morphism; if either of these two is non-trivial, the m-morphism
is called mixed (see [6, Theorem 3.10 and Definition 3.9]).

We will also need the following rather weak consequence of Theorem 3.1
(see [6, Corollary 4.2]).
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3.2 Theorem. Let %, ' be complex Hilbertspaces with dimension greater than
two. Let f be a c-morphism mapping P(J) into P(¥') such that

f(lye) =1,
dx e ¥, x# 0 such that f(X) is one-dimensional.
Then f(P(¥))=P(HK").

One more remark: from the construction of the F,, (see the proof of Lemma
3.2 in [6]) one can infer the operator F, .21y« iS in fact the restriction to f(x) of
the orthogonal projection on f(y). Using all this, we can prove the following:

3.3 Theorem. Let 3% be a complex Hilbertspace; let ¥ be an irreducible
propositional subsystem of P(¥) such that

1,.€%

33’6’ complex Hilbertspace, dim %¢=3, and a c-isomorphism ¢ mapping ¥ onto
P(F). Let i be the canonical injection mapping &£ into P(¥). Then ¥ = P(&") iff
the c-morphism f=i°¢ is a non-mixed m-morphism.

For the sake of comprehensibility, we have split the proof into different
lemmas.

3.4 Lemma. Let %, 9 be complex Hilbertspaces with dim$=3. Let f be a
non-trivial m-morphism mapping P(¥) into P(¥). we define

£ = f(P))
A& ={Pc¥;Pis an atom in &£}

If f is not mixed, then we can construct a set of partial isometries {Upg; P, Q€
AP L (¥) such that

(1) VP, Qe A(¥): Upg has initial subspace Q¥, and final subspace P¥.
(2) VP,Qe A(%):Upo e ¥’
(3) VP, Q, R e A(E): UPQUQR — UPR'

Proof. For each atom P in ¥ we choose a normalized vector xp in ¥ such
that P = f(Xp). For any two P, Q in A(%) we define the linear operator Upg by

Ura l Q¥ = Fxpr
Upo(#© Q) =0

It follows from Theorem 3.1, in particular from (3.3) that this Upy is a partial
isometry with initial subspace Q% and final subspace P¥ (see [7], p. 197).
From the remark preceding Theorem 3.3 we see that

PQ | Qx = F(xp,xQ)xpr (3.8)

If f is not mixed, we have either

(3.7)

F(xP:xQ)XPXQ= (xP’ xQ)FxPxQ if f iS linear,

or

F i xoyeoxe = (Xp X0)F,,x, if f is anti-linear.
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In both cases there exists a complex number a such that
PQ l Qox — anpr:v (3.9)

hence, from (3.7), PQ = aUpq
If P and Q are not orthogonal, we have a# 0, hence

Upo = 'PQe ¥’

If P and Q are orthogonal, there exists a Re A(.Sf) (take f.i. R= f(xp +x5)) such
that R{P and R/ Q.
From (3.1) we see that

UPQ I Qe =Fxpr=FxpxRFxnxo: a_IPR IR% x B_IRQ I Qx

=a '8 'PRQ | g% for some non-zero «, B.

hence
Upo = a 'B'PRQec ¥

The last statement is again a consequence of (3.7) and (3.1).

3.5 Lemma. Let ¢, %, f, & and A(%) be as in Lemma 3.4. Suppose that f is
not mixed, and that f(13) =1,. Let P be an element of A(¥). Then there exists a
complex Hilbertspace % and an isomorphism ¢ mapping % onto & P such that
the isomorphism ¢ defined by

¢ : L(H)—> L(HQDPK)

ArsgpoAocp™!

maps L' onto L(H)RCpy and £ onto P(#)D1ps.

Proof. Since 1,, is an element of %, there exists a set of orthogonal atoms
(P;);cr in &, containing P, such that

VP =1,

iel
(this can be obtained by a simple Zornication). Let i, be the element of I for
which P=P,. From Lemma 3.4 we know that for each i, j in I there exists a
partial 1sometry U;; = Upp, in " with initial subspace P, and final subspace P;%.
This implies (see [8] p. 25) that there exists a Hilbertspace % and an 1som0rph1sm
¢ :#—>H R PX, such that the map

& : L(56) — L(H D P3¢)

A—@oAcp!

maps £ bijectivily onto £(%)® £} (we follow Dixmier’s notations). On the other
hand we have ¥"=(A(%))". Define the set B(¥) to be

B(#)={Q, - Q,;neN,Q,,...,Q,cA(¥)} - (3.10)

This is a selfadjoint set, stable for the multiplication, which satisfies (B(¥))"=<"
It follows then from [8, §2.1, Proposition 1] that

=(B(&L)p)" | (3.11)
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Let Q,, ..., Q, be elements of A(¥). From (3.9) we see that either
PQ,---QP=0

or
PQ,---Q,P=a'Upo,Ug,o, - Ugp for some a € C\{0}.

In the latter case we have
PQ,---QP=0a'"Upq,  *Ugp=a 'Up=a'P

which implies that in both cases there exists a complex number B8 such that
PQ,---Q,P=BP (3.12)

From (3.12) and the definition (3.10) of B(¥) we see that B(¥)p < Cps, hence,
because of (3.11),

Lp=Cpsz

This implies that

(L") = L(3) R Cpy, (3.13)
hence

¢ (L) < P(%) @1ps. (3.13)

It is obvious from the construction of 9 and ¢ that there exists a one-dimensional
projection Q in £(#) such that

¢ (P)= Q®1p,
Moreover we have ¢(1,)=1;®1p,,. It follows from Theorem 3.2 that
&(L) =P(%) @1y (3.14)

From (3.13) and (3.14) we see that
(P(L)) = P($(L") = P(5)D1p
=¢(2)
hence P(¥")=% (¢ is a bijective map).

This implies that the combination of Lemmas 3.4 and 3.5 proves that the
condition mentioned in 3.3 is sufficient. The necessity of the condition will be
proven in the lemma below.

3.6 Lemma. Let %, 9 be complex Hilbertspaces with dim%=3. Let f be a
unitary c-morphism mapping P(¥) into P(%). We define

£ = f(P(%))
A& ={Pe%; P is an atom in ¥}

If f is not an m-morphism, or if f is a mixed m-morphism, then
P& 2%
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Proof. We suppose first that f is not an m-morphism. This implies that for
some P, Qe A(¥), P¥+ Q¥ is not closed. Hence there exists no complex
number a for which PQP = aP. (The existence of such a complex number «
would force the subspace P¥+ Q% to be complete, hence closed.) But this
implies ¥p# Cps, hence ¥§ contains non-trivial projections of £(P#). Let S be
such a projection. Define S, € £(%) by

S; I pee =S
S Px)=0
Because of the definition of £} (see [8], p. 16) this S; is a non-trivial projection of

Z", smaller then but different from P. Since P is an atom in ¥, we see that S, is
not contained in %, although it is a projection of £”. This implies

Fc P&

Suppose now that f is a mixed m-morphism. Take x, y in % such that ||x||=|y||=
1, and (x, y) =3. Define the atoms P, Q, R in £ by

P=f(x), Q=f(F), R=f(x+iy)

Since (3.8) holds even when f is mixed, we have

PQRP | P¥ = F yyxyF oy, xivyvay [x+ivyn2a1F (c-vivym2, oG+ ingivalx

Using (3.4) twice, we can reduce this to
PQRP | P =F Ge, Yy, (x+iy V2 ((x +iy)/V2, x)x X

= Fa)G+Q200-@2)xs

1 3 <. 1 30
5 (1 )pre(1-3)es

Since both P} and PZ are non-trivial, this- implies that PQRP |ps is not a
multiple of 1., hence

ZLpF Cpse

Using the same arguments as in the case where f is not an m-morphism, we see
that this implies

P& 2&£.

Remark. It is actually possible to prove a theorem equivalent to Theorem 3.3
without using explicitly the properties of the {F,,}, except for the rather weak
Theorem 3.2. This theorem has the advantage that it contains a necessary and
sufficient condition which is easier to handle than the rather abstract one in
Theorem 3.3. We will state this theorem without proving it here, but we indicate
how the previous proofs should be modified to prove it. This reformulated
theorem goes as follows:

3.7 Theorem. Let ¥ be a complex Hilbertspace; let ¥ be an irreducible
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propositional subsystem of P(3) such that
lye¥

I% complex Hilbertspace, dim 9 = 3, for which £ is isomorphic to P(). Then
F=P(Eiff VP, Q, R atoms in ¥, da € C such that

PQRP = aP (3.15)

To prove this, one uses condition (3.15) to construct a set of fIPQ which are in
fact, up to some constant factor (depending on P and Q), the Up, defined by
(3.7). These Upy have again the properties stated in Lemma 3.4 except for the
third one, which becomes:

VP,Q,Re A(¥):3B€C, |B|=1 suchthat UpoUgr = BUpr

Once these are constructed, the reasoning in the proof of Lemma 3.5 can be
repeated to prove the sufficiency of condition (3.15). The necessity of condition
(3.15) is proven by the same reasoning as the one used in the second half of the
proof of Lemma 3.6. The equivalence of Theorem 3.3 and Theorem 3.7 is proven
by the following:

3.8 Theorem. Let %, % be complex Hilbertspaces, with dim#=3; let f be a
unitary c-morphism mapping P(F) into P(¥). Then:

— f is an m-morphism iff VP, Q atoms in f(g’(%)):Ela € C such that
PQP = aP (3.16)
—f is a non-mixed m-morphism iff the atoms in f(P(%)) satisfy condition (3.17).
Proof. The fact that (3.16) compels f to be an m-morphism was proven in the
first part of the proof of Lemma 3.6. The other implication can be proven as

follows: Let P, Q be two atoms in f(#(9€)), and let x, y be normalized vectors in
% such that

fx)=P  f(y)=Q
Because of (3.8) we have
PQP | P — F(x,y)xyF(y,x)vx = F(x,y)(y,x)xx
= |(x, Y)|2 lf(i:)
Hence

PQP =|(x, y)I* P

We prove now the second statement in two steps. Suppose first that f is a
non-mixed m- morphlsm Let P, Q, R be three atoms in f(®(3)), and let x, y, z be
normalized vectors in % satisfying (%)= P, f(7) = Q, f(£)= R. Applying (3.8), we
obtain

PQRP IPBE = B, yixyLty, zipal @20z

(3.17)
= F(x,y)(y, z)(z,x)xx
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Since f is not mixed we have either
PQRP | e = (x, y)(y, 2)(2, x)Ls5,
or
PORP , ree = (x, 2)(z, y)(y, x)

In both cases there exists an « such that PORP = aP, which implies that (3.15)
holds. Suppose now that condition (3.15) is satisfied. (3.16) being a special case of
(3.15), this implies that f is an m-morphism. We can then again use the F,, and
their properties to obtain (3.17). If f were mixed, we could choose x, y, z as in the
proof of Lemma 3.6, and we should obtain:

1/ 3. 1({. 3
PQRP|m=Z(1+ZI)P’{+Z(1 4’)P2,

where both P and P; would be non-trivial. But this would imply that condition
(3.15) is not satisfied, which is false. Hence f is not mixed.

Condition (3.15) gives us an easier criterion to decide whether the main
theorem is applicable or not. It is interesting to note that condition (3.15) contains
both conditions that f should be an m-morphism and that f should not be mixed.
On the other hand, the proof that (3.15) is a necessary condition holds indepen-
dently of the dimension of %, while the properties of the F,, can only be used if
dim % = 3. These properties are used several times in the preceding proofs, which
1rnphes that the restriction dim % =3 plays a vital role in Theorem 3.8 as well as
in Theorem 3.3. Since we have to use Theorem 3.2 to prove Theorem 3.7, the
same is true for Theorem 3.7. We will give here two counterexamples with
dim%=2. In the first one we have P(¥")2 % although condition (3.15) is
satisfied; in the second one we show that the ﬁrst statement in Theorem 3.8 does
not hold any more if dim % = 2.

3.9 Counterexample. Take % = C*, % = C2. The one-dimensional projection
operators in £(C?) are given by

Py, =€, with e,, = cos e, +e™ sin fe,
9 [0, g] ¢ <[0, 2]

where e,, e, is the standard basis in C>. Let f,, f, f3, f4 be the standard basis in
C*. We define

fo, = cOs Of  + €' sin 6f5 0 [

T
& o 0, —], 0,2
8o, = COs Of,+ e sin 0f, € 2 Ll 2ar)

We define now a map f from ?(C?) to #(C*) by
f0=0 f(le)=1c

f (P ecp.) - {PrOJSDa" (o (o4 Booray)

rO] Span (fe[(..?-e-h)m;, Lol(e+3w)/a])

if ¢@el0,nw
if oeelm2n]
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It is almost trivial to check that this { is a unitary c-morphism, which implies that
£ =f(®(C?) is a sublattice of P(C*), isomorphic with #(C?), which contains 1.
We will denote the atoms f(P,,) of £ by Q,,. We have now

3'17
44

using this and the fact that (fo, fo',") = (8o, 8o'.) fOr any 0, 6', ¢, ¢’, we see that

QﬂchG’cp'QB"q:"Qﬂtp = (fﬁé" fe’@') (fe'q"p" fe"@") (fe"é"v fe«é)Q&pa

which implies that condition (3.15) is satisfied. On the other hand, we know that
& contains the projections

Qoo X = foz (foz> X) + oz (8es» X) Where =2 — X, 20{®)

1 0 0 O 1 010
Q=g 0 o o) ™ Cemgly o 1 o
0 0 0 O 0o 1 0 1
which implies
££’C{(‘3 ,2)’ Aeff(Cz)}.
But this implies that the projection operator
10 i .0
17010 —i
2¢-i 01 O
0 i O 1

is contained in &£”, although one can check that it is not an element of £. We have
thus £ < P(£"), although condition (3.15) is satisfied. This is due to the fact that
£ is 1somorph1c to a 95(3’6’) where % has dimension smaller than three.

3.10 Counterexample. Take again # =C", 9% = C2. For any 6 in [0 11-/2]
define § by §=(2—cos20)w/4. With the same notations as in the previous
counterexample, we define a map f from #(C>) to 2(C*) by

f0)=0 f(le)=1ce
f(Pﬂcp) = Rﬂcp = ProjSpan(fo.,, 2é)
One can check (see also [6]) that this map is a unitary c-morphism, i.e. that
£ = f((C?) is a sublattice of P(C*), which contains 1 and which is isomorphic
to ?(C?); A simple calculation yields
cos> @ 0 0O O
0 0 0 0
0 0 cos’6 O
0 0 0 0/

for ¢ {0, 7/4, /2}, this is clearly not a multiple of R, which implies that not

Ry Re.Ro, =
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only (3.15), but also (3.16) is not satisfied. One can immediately check that
= 1
cos? @ —cos2 0

(Q()chOq:QOq: —cos® OQOCP)

is an element of £"\ %, which implies P(¥") 2 %. This is a natural consequence of
the fact that the necessary condition (3.15) is not satisfied. On the other hand, we
see that, though f is an m-morphism, (3.16) is not satisfied: this is due to the fact
that £ is isomorphic to a P(#) with dim ¥ <3.

4. Generalization to reducible propositional systems

Up till now, we have restricted ourselves to the case where the propositional
system is irreducible. This is however not a crucial point, and we will now
consider the general case. We first remind the reader of some results obtained by
C. Piron (see f.i. [1], Theorem 2.37).

4.1 Theorem. Let & be a propositional system, Z its center. Then Z is an
atomic Boolean sublattice of L. If (P;);.; is a maximal set of stoms in Z, we can
write ¥ as the direct union of the segments [0, P;]

£=V[0,F]

jel
Remarks

1. If P, Q are two different atoms in the lattice Z, then P and Q are
orthogonal (i.e. P<Q’), for they commute with each other:

2. For each atom P in Z, the segment [0, P] is an irreducible sublattice of &£.
Using Theorem 4.1 we can prove the following:

4.2 Theorem. Let % be a complex Hilbertspace; let £ be a propositional
subsystem of ¥ such that € ¥. Let (P,);.; be the set of atoms in Z, the central
sublattice of £. Suppose that for each jeJ, there exists a complex Hilbertspace 3’6’,,
dun?f =3, and an isomorphism ¢, mapping [0, P;] onto P(%,). Let i;:[0, P,]—
P(F) be the canonical injection of [0, P;] into 9?’(%) Then P(¥")=Ziff V]e

J:ijo@; " is a non-mixed m-morphism.
Proof. Since the P; are orthogonal, and
we have
H=D PxK

jeJ

Since all the P, are elements of £ N.¥ (they commute with &£), we have (see [8],
p- 20)

:Hgg;;j

jeJ
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So if Q is a projection in &, there exist a family of projections (Q,);c; with
Q,; € £, such that

Q=) Q=VaQ.

jiel ieJ
Applying Theorem 3.3 to the propositional subsystems [0, P;] of 2(P;%) yields
[0, P,]=P(%p)
hence Q; [0, P;,]= ¥ for each j in J. This implies

Q=VQe¥%,
jeJ
hence P(¥")< ¥, which implies P(¥") = £. The necessity of the condition can be
proven as in Lemma 3.6. Indeed, suppose that

i ot P(J, )— P(%) is not a linear or anti-linear f-morphism.

Then (see the proof of Lemma 3.6) it is possible to find atoms Q,, Q,, Q; in &
which are smaller than P, and for which Q,Q,Q;Q; is not a multiple of Q,. (If f
is not an f-morphism, one can even choose Q, and Q; to be equal). From
Theorem 3.7 one infers that

P(c'(fg’k) % [O: Pk]'

This implies that a projection exists for which
Re %p, R¢[0, P.]

The projection R defined by R|P,%#=R, R|#©P,%=0 is then clearly an
element of ¥” and not of ¥:

ReP(¥'N\&

Remark. One can again replace the necessary and sufﬁment condition in
Theorem 4.2 by the condition

VP, Q, R atoms in £:a€C such that POQRP = aP (4.1)

Indeed, it is obvious that any atom is contained in a [0, P;]. If the P, Q, R belong
to different [0, P;], condition (4.1) is automatically satisfied with a = 0. If we write
(4.1) for all the P, Q, R smaller than the same P;, we see from Theorem 3.8 that
we get a condition equivalent to the one in Theorem 4.2. On the other hand
Theorem 3.7 can be proven using only Theorem 3.2, and not Theorem 3.1 (See
the remark made previously). Since the dimension condition dim #=3 in
Theorem 3.2 can be replaced by dim % # 2 (for dim %¢ = 1 Theorem 3.2 is trivial),
we can reformulate Theorem 4.2 as follows:

4.3 Theorem. Let % be a complex Hilbertspace, & a propositional subsystem |
of P(3); let Z be its central lattice, and A(Z) the set of its atoms. Let (P;);; be the
set of atoms of Z, and suppose that for any je J there is a complex Htlbertspace %,

with dnn% #2 such that [0, P;] is isomorphic with 90(?6’) Then £=
P&)iff VP,Q, Rc A(¥):JaeC Such that PORP = oP. '
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One sees immediately that in this general form, the theorem can be applied
to Boolean atomic lattices, which yields a trivial special case of Bade’s theorem.
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