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Nonlinear wave propagation in relativistic continuum
mechanics!

by Gérard A. Maugin

Université Pierre-et-Marie Curie
Laboratoire de Mécanique Théorique associé
au C.N.R.S., Tour 66, 4 Place Jussieu,
75230 Paris Cedex 05, France

9. X. 1978)

Sumimary. We present a unified approach to the foundations of nonlinear wave propagation in
relativistic continuum mechanics. The material descriptions of interest are elasticity and magnetoelas-
ticity and the limiting cases of relativistic hydrodynamics and magnetohydrodynamics. The interest is
focused on the propagation properties of infinitesimal discontinuities in finite initial states, the
properties of weak shocks and the thermodynamics of strong discontinuities (shocks). The study is

made for a particular type of motion, so-called one-dimensional relativistic motions.
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1. Introduction

Unless one is interested in very weak signals, which occur in the detection
problem (Cf. [1]-2] and the contributions of Pallattino and Pizella in [3]), either
physical circumstances (the dense solid-like matter of certain astrophysical objects
[4], the large velocities involved in galactic motions, the effects of strong magnetic
fields [4]) or the very nonlinearity of the field equations forces upon us the
consideration of nonlinear wave propagation in relativistic continuous matter.
Though sketchy as it is, this paper offers an attempt at a unified approach to this
problem for the states of continuous matter which may prove of interest in various
applications of relativity theory. We primarily consider relativistic elasticity
and magnetoelasticity, the cases of relativistic hydrodynamics and magneto-
hydrodynamics being obtainable by some adequate adjustments. In Section 2,
a general notion of deformation of matter in space-time is first given. In
contrast to previous papers of the author [5H9], a specialization is given to
so-called one-dimensional relativistic motions. Field equations and various simple
descriptions of relativistic elastic matter are also given. Section 3 is devoted to
recalling the precise mathematical definition of the two main types of singular
manifolds of interest (infinitesimal discontinuities and shock waves)?. Infinitesimal
discontinuities in nonlinear elastic bodies and hydrodynamics are dealt with in
Section 4. Section 5 offers a short (but probably the first one) treatment of shock
waves in relativistic elasticity. Section 6 is devoted to extending the above results
to the case of relativistic magnetoelasticity and magnetohydrodynamics. In
particular, the Hugoniot equation is constructed for such schemes once a plausible
model has been constructed and infinitesimal discontinuities have been
considered.

Since relativistic continuum mechanics is as old as relativity theory itself
(Einstein introduced the energy-momentum tensor for perfect fluids in his
pioneering papers), we think that combining this field of research with one of the
building blocks of twentieth-century applied mathematics, nonlinear waves, with
our modest means, is appropriate to a celebration of the genius of Einstein on the
occasion of the centennial anniversary of his birth.

2. Preliminaries

2.1. Notation

Let M= (V% g) be a space-time of general relativity equipped with a normal

2) Simple waves, of which the study constitutes a formidable task in the relativistic framework, are
not considered.
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hyperbolic metric g, (o, B=1,2,3,4; index 4 timelike; Lorentzian signature
+, +, +, —). u is the four-velocity such that g pucul+1= 0 (c =1 for notational
convemence) 8, and V_ denote the partial and covariant derivatives in a local
chart x> of M. D in general indicates the gradlent operator in the direction of a
vector field A. Thus D,=u~V,_-P_,=g,+uu, is the spatial projector which is
systematically used in the followmg development to write down the local
canonical space-time decomposition of any tensor field defined on M. The local
spatial projection of any geometrical object A is noted A, and admits u as zero
vector for all its indices in a local chart. Objects such that A=A  are said to be

. . . - - - —L
spatial. The transverse or spatial covariant derivative is defined by V_ =
P2 Vg - R%,s is the curvature tensor R of M in a local chart.

2.2. Deformation of matter in space-time

Following previous works (e.g., [SH9]), we admit that the motion of a
relativistic continuum is described either by means of a canonical differentiable
projection & such that  : 7[B]— M or with the aid of the space-time paramet-
rized congruence of world lines €:x=%(X, 7), Xe B, reR. Here J[B] is the
open tube of V* which is swept out by the material body B (whose constituent
parts are the material ‘““‘particles” X) and M =(V?, G ), K, L=1, 2, 3, is the
three-dimensional ‘“material” manifold which serves to describe the material
continuum. B is an open region of /. 7 is the proper time of X along €. M is
equipped with the local background metric Gx; and local charts X¥, K=1,2, 3.

We have thus

P XK = XK¥(x*), T=7(x%), €1 x* =F* (X" 7). (2.1)
These relations are in general assumed to possess a sufficient degree of continuity

and differentiability in their arguments so as to allow for the forthcoming
manipulations. For instance, one can define the inverse motion gradient X~ by

K=9, XX  (u*XX=D,XX=0). (2.2)

The Jacobian determinant of (2.1); is defined by

J =det||F|, (2.3)
where ‘
o a%a . a —_
- (25) =0

is the direct motion gradient two-point tensor field. J is assumed to keep the same
sign (say, plus) in the course of the relativistic motion of X. The chain rule of
differentiation yields

Xixg=8F, XExE=ppF (2.5)
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It is easily shown that

(D.x%), = e5xk, | (2.6)

2d,5 = (£,Pos), =£.Pug, @2.7)
where

ap = é’B“«m (2.8)

g =€y = 2V + V. u5), 2.9)

(,;EA,,B)l = (D,Aug), + Aye Vo' + A Vou?, VA=A, (2.10)

where £ indicates the Lie derivative with respect to a vector field V. In terms of
\"4

the differentiable projection 2, we have

(fA)L(x) —gp [5"’; P (A)(X, f)](x), VAR) = A, ). | @2.11)

2.3. One-dimensional relativistic motions

In the present work we focus our attention on the case of so-called one-
dimensional relativistic motions (cf. [10]). That is, we set forth the

Definition. A one-dimensional relativistic motion is a mapping (2,1); which,
at fixed 7, depends only on a scalar coordinate defined along a given curve C in

This definition is covariantly expressed as follows. Let AX be the components
of the unit oriented tangent to C on M. Then we call X the scalar coordinate such
that

By = Dy = A¥ 8. (2.12)
It follows from this and (2.1); that (2.4) reads
F=f®A or xE=f*Ar, Ax=G A", =00, ,. (2.13)

That is, the strain field is entirely defined by the (spatial) strain vector f. Let

Dsy=f*V,=f* ﬁa. Then for futher use we evaluate the commutator [D,, D;]. An
easy calculation leads to

[Du> Df]= uﬂfs[va’ VB]_@f, (2‘14)
where
@, =D;+e%f*V,, Dj=Dpp. (2.15)

Therefore, the commutator [D,, D;] in general involves the curvature of space-
time. When applied to a scalar field or for vanishing curvature (special relativity),
(2.24) takes on the operator form

[9,, 8x]1+ D¢ =0, (2.14)
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if 9, =D,, and since

D;=dx=D, (2.16)
as is readily checked. For instance, for flat space-time

D, f* =D ,D&* =3,0x¥* = 0x0, %> — B X* (2.17)
on account of (2.14"). Hence

(B.*) L = (Bxu™), +a*(us 3xZ*), (2.18)

where a* =0d,u” =(9,u”), is the four-acceleration of X. The second term in the
right-hand side of (2.18) represents a purely relativistic epect. Equation (2.18)
might be called the kinematic compatibility condition for one-dimensional re-
lativistic motions.?)

We finally note the following demonstrable result:

V.0 'x2)=0, ie, V,Jf*)=0, (2.19)

and the fact that the proper density of matter, p, is defined as being the image by
P of the invariant density p, in a reference configuration of the material (for
which J=1). That is,

p(xe®) = p(X)J Y, (2.20)
where x and X are related by (2.1),.

2.4. Field equations
In addition to Einstein’s equations
R*® —3g**R =kT*?, R*® =R" .g"g%, R=R?, (2.21)
where T°? is the total energy-momentum tensor, we have
V. (pu*) =0 (continuity), (2.22)
V. Tt =0, TERl=}T**-TF*)=0. (2.23)

In absence of electromagnetic fields and spins T*# admits the following simpleca-
nonical space-time decomposition:

T*® =p(1+&)u*u® —1*#, (2.24)

where t°? = P> = (¢*#) | is the spatial relativistic stress tensor, and ¢ is the internal
energy per unit of proper mass. Projecting (2.23), along u and orthogonally to it,
we obtain

pD, & = t°® d,e (energy equation), (2.25)

pFga® = Pf",ﬁﬁt"B (Euler—Cauchy equations), (2.26)

%) Compare the nonrelativistic case in Bland [11].



154 Gérard A. Maugin H.P. A.

where
FaB E(1+8)Pa8_p*ltaB=FBaE(Faﬁ)_]_ (2'27)

is the tensorial index of the continuum, cf. [5].

In absence of dissipative processes, the local statement of the second princi-
ple of thermodynamics reduces to the equation

D,m=9m=0, (2.28)

where m is the entropy per unit of proper mass.

For one-dimensional motions, (2.25) and (2.26) transform as follows. Intro-
duce the object with components T and the spatial vector field T (the spatial
stress vector) in such a way that

TE= X2 T =T"%Ax. (2.29)
Then

e =T 8T =TT, ie., t=J"'T®AL (2.30)
On account of (2.19) and (2.20), (2.26) takes on the form

poFs 0,uf = (9xu®),. (2.31)
By the same token (2.25) transforms to

Po 9.€ =T, (0xu™),. (2.32)

2.5. Constitutive equations for elastic solids
For nonlinear elastic solids we may consider
e=£&(f, ). (2.33)

Then we have the constitutive equations

d¢ 9€
T, = (——) , 0=— 2.34
Po af* ). an ( )
from Gibb’s equation
P08 dn = p, de + T, df*, (2.35)

where 6 is the proper thermodynamical temperature (8 >0, inf 8 =0), and (2.32)
is satisfied on account of (2.28) and (2.18) if and only if

g 9x%® =0, (2.36)

By use of P we can associate with A a unit spatial vector field on M by the
relation

X=L"52A% AE=LXT)5 (2.37)
where
L = (PuaX ZAXEAL) 2 = (B,of*f*)/ = |f| #0. (2.38)

These definitions will prove useful in the sequel.
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2.6. Isotropic materials

According to previous works [5]-{6], ¢ depends on the components of f
through a dependence on the strain tensor Ey; =3(Pgx%xf—Ggr). That is,
E =3[’ A®A —G]. If the material body is isotropic, then & depends on f only
through the three elementary invariants of E. Following Bland [11], it then is a
simple matter to show that £(f, n) reduces necessarily to

e=a¢(f, N, n), (2.39)
where

f=fi=fA  N=P-—f=8 =S,  fi=S8%f" (2.40)
with

St‘g = P":B_ AQI\B, Sf!ﬁua = S?LB’\a =0, S‘.la =2. (241)

It is assumed that m =0 is the entropy of the homogeneous, undeformed natural
state of the body. For the sake of simplicity, ¢ is supposed to be an analytic
function of its arguments, but additional conditions will be imposed as the need
arises. In particular, the following derivatives are always meaningful:

o P 9’ K

d)N = ﬁs ¢ff = a_fza ¢fN = W? (bNN - aN’z: (2-42)
_ ¢ P
i Cafom’ P “amoN

2.7. Neo-Hookean materials

If we expand ¢(f, N,n) about the natural undeformed state (f,N,n)=
(0, 0, 0) and retain terms in n and in the components of f up to the second order
inclusive, we obtain

C
& =6om +3¢if*+3¢iN+-m” — knf, (2.43)

where ¢, ¢r, C, k and 6,(>0) are suitable constants. ¢; and ¢y will be recognized
as the longitudinal and transverse disturbance speeds of conventional elasticity. It
is assumed that

c2>0, c2>2c2. (2.44)

The latter condition holds good for all knowh materials. The positive definiteness
of £ and the fact that 6 >0 require that

0=0,+C,—«f>0, C>3k%(3ci—4c2). (2.45)

C is always positive, but k may be either positive or negative according as the
solid expands or contracts on heating. The classical Lamé moduli A; and A, are
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defined by A, =p,c7>0 and A, =py(ci—2c3)>0. For neo-Hookean materials,
(2.42) reduce to

(bN = %C%"a (bﬂ = C%_a (be = (bnn =PyN = 09 d—’f-n =K (2-46)

3. Definition of singular surfaces (Cf. [12]-{13])

3.1. Infinitesimal discontinuities

Let W(x*)=0 be the timelike regular hypersurface that represents a discon-
tinuity front which propagates in V*, and thus separates 3= J[B] in two
subregions 8" and B~ at each time. We set

lo =0, W=L(A,—Uk,), U=L""(u",), (3.1)

where A, and L are given in (2.38) and % is the (nondimensional) speed of the
singular surface measured with respect to the moving matter. [, is oriented from
the “minus” to the “plus” face of W. A™ and A~ being the uniform limits in
approaching W on its two faces of a field A, we note [A]= A" — A~ the jump of A
across W. If A, g and u are continuous across W and if 8 denotes the Dirac
distribution with compact support on W, then we can write

SV Al=1,8A (3.2)

and
5IV.Al=Lr_ 86A, 3[D,Al=Lu5A, (3.3)

where the field 8 A is called the infinitesimal discontinuity of A across W. We call m,
the two-plane orthogonal to the unit spatial vector A,. Then S,z is the covariant
projector onto r,. The canonical decomposition of any spatial geometrical object
along the direction of A and onto m, is effected by applying the operator 8, e.g.,
wit an obvious notation and obvious properties for the elements of decomposition
thus introduced,

du* =8u+A%8u, A, 8u$=0, Su=A,u (3.4)
F,s=F,+2F A+ FAA; =F,, (3.5)

We call My(xe T[B]c M) ={p, &, n, u®, t*%, f*, gz} a solution of the system of
equations formed by egs. (2.21), (2.22), (2.31), (2.32) and (2.34) — provided such a
solution exists; this difficult problem of existence is not approached in this
paper)®. Then weak (or infinitesimal) discontinuities are defined by the following
set of hypotheses: h,: any typical solution I,(x) is continuous across W; h,:
except for the metric g, all space-time derivatives of the first order of the fields of
the solution IM,(x) suffer discontinuities across W (the case where [d,g.,s]1#0
requires a special study); h;: W is not a gravitational front, i.e., %> =1 is excluded;
h,: W is not a material wave front or, in other words, since D,n =0 implies
U én =0 in agreement with (3.3),, W is not an entropy front, i.e., 4=0 1is
excluded, so that én =0 necessarily.

%) See the early work of Pichon [14].
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In virtue of h,;, W is not a shock wave since [u®]=0. In virtue of h; and h,
the admissible range for % is limited to the open interval ]0, [ <R if % is to be
real and less than the light velocity in vacuum (relativistic causality).

We call principal wave fronts those wave fronts for which A, coincides with
an eigenvector of the initial state of stress t°; € IM,. According to previous studies
[6], if W is such a wave front, then the corresponding A, coincides also with an
eigenvector of the initial state of strains in the case of isotropic (even though
nonlinear) elastic bodies. Longitudinal wave fronts are those wave fronts for
which du#0, dus =0, and transverse wave fronts for which du =0, |dus|#0. We
shall not consider general wave fronts which may be called mixed wave fronts (Cf.

[5D.

3.2. Strong discontinuities

For strong discontinuities, or shocks, one must replace the system of conser-
vation laws by a system of jump relations at the point of discontinuity (which is a
mathematical idealization). Let Y~ and Y be the Heaviside (characteristic)
functions of %~ and %", respectively. Let T** be a tensor-valued function on
B < M, which is of class C{,,(®B) —i.e., piecewise continuous. Then with T°¢ we
can associate a distribution-tensor ®T** with compact support on & (in the sense
of distributions) such that

DT = YT + Y+ T, (3.6)
Then (cf. Lichnerowicz [12])
VaD’I'aB = loz 6_[[’1'\'13]]+D(Va'1"¢13), (3'7)

so that with the balance law V,T°# =0 in 83— W, there is associated the jump
relation

ILIT**]=0 across W. (3.8)

4. Infinitesimal discontinuities and characteristic manifolds

4.1. Wave speeds
For one-dimensional motions eqs. (3.3) are shown to take the form
S[oxAl=f>SA,  [a.A]l=f| U SA. (4.1)

Then we take the infinitesimal discontinuity of eqs. (2.18), (2.22), (2.31) and
(2.28) on account (2.36), (3.3) and (4.1), and obtain the following system by
noting that the operator of infinitesimal discontinuity is a “derivative”:

U Sp+p du=0, (4.2a)
u 5f* — || su® =0, | | (4.2b)
U lﬂ_lF?B duf — [‘bﬁ)\a + 2¢ﬂ\r(f4m)a] of

- [2(1"1‘1\11\(ll (EL)B + 4 (L) (EJ.)B] aff_ - [d’ana + 2¢N-n (fJ_)a] on =0, (4.2¢)
U én =0. (4.2d)



158 Gérard A. Maugin H P A.

This is a linear system of eight equations for the unknowns 8u, du?, (6f*), and n.
Since we discard entropy fronts, 8n = 0. Substituting then for (u®), from (4.2b)
into (4.2c) we are led to a linear system of three equations for (8f*), in the form

(U/)>F2g 8f° —[dgA™ + 2 (£)*] 8f
- [2¢ﬂ\r)‘a (E_L)B + 4ppn (£,)" (EL)B] 8fi=0. (4.3)

This we can decompose by using the canonical decomposition along A* and onto
m, by using the operator S and (3.5). Considering the case of principal wave
fronts, A® is an eigenvector of F7; according to (2.27) if A is an eigenvector of
t7a. Thus F*=0. Let (d,,d;) be two unit space-like vectors which form a
nonholonomic orthonormal basis in ,. Let F,=F?, and F;=F>; be the diagonal
components of F"B with d, and d; chosen along the principal dlrectlons of F.
Call f, and f; the corresponding components of f,. Then (4.3) admits a nontrivial
solution if and only if the determinant of the 3 X3 matrix

M = A, Uu)— DIR,) (4.4)

vanishes, where
UN? - [(UN? - [U\?

A, u) = diag ( (|f|) ,F, (m) ,Fs (m) ) (4.5)

and
¢’ﬂ= 2¢fo2 2¢’ﬁ\'f3
‘I’(ilfeo):(%mfz 208 t4danfz  AdnSafs ) (4.6)
2¢mfs  Adanfafs 208 HADS3

Since F, F, and F; are positive quantities, it follows that the system (4.3) will have
real disturbance speeds % if and only if the matrix ®(I,) is positive-definite [a
fact expressed symbolically by ®(I%,) > 0]. This is Hadamard’s celebrated condi-
tion. Thus,

dM,)=P(F) >0 (Hadamard’s hyperbolicity condition) 4.7)

Considering the case f;=0, this condition yields the inequalities (the principal
minors of @ must be positive)

¢r>0,  dg(2dnt4dnnf2) — Rdnf)*>0,  dn>0. (4.8)
Then the characteristic speeds of the system (4.3) are found to be

a2, = lt‘l2 (?”LMN + IjlzchNfz \/5),
- g (%f+ 2+ gf:wf% - JB), 4.9)
Ul = 2% LA qSN
where
. (%iu 2¢n + gbwfé)z _;F Ly (2 + Adnf2) — 42 2] (4.10)
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If £,=0, egs. (4.9) reduce to

[ 9] e

, 2P

@~ F,
We have a single root and a double root. For a neo-Hookean material (4.9)
reduce to (with |f|=1)

6”(1) =7 =c %/F,

Uty = Usy = U = 7/ . (4.12)
That is, we have a smgle root that corresponds to longitudinal elastic waves and a
double root that corresponds to transverse elastic waves.

From here one we shall consider only longitudinal waves. The study of the
polarization of the various waves is a straightforward matter and will not be

reproduced here (See [6] for a related study not limited to one-dimensional
motions).

¢N %(3) = OllT (4. 1 1)

4.2. The case of relativistic hydrodynamics

For perfect hydrodynamics £ depends on f* only through the determinant J
or, equivalently, through the matter density p. The deformation field is isotropic
so that J=|f>=p,/p, and the body must necessarily be compressible. Thus
£ = ¢(p, n). With p=p*(d¢/dp), it is found that t*# = —pP*?, ¢y =0, and ¢; =
€| >(ap/dp) after some calculation. Hence the results (4.9) coalesce to provide the
relativistic sound speed a by

a*(Mo) = F~(3p/op).,, F *=1+e+(plp), (4.13)

where F is Lichnerowicz’ index [15] of relativistic hydrodynamics. Of course, only
longitudinal (sound) waves can propagate in this case. Viscosity would be required
to allow for transverse waves.

4.3. Growth of infinitesimal discontinuities

The system examined above is a special case of that examined in Ref. [6], and
therefore is quasi-linear hyperbolic. This means that for certain initial conditions
the corresponding infinitesimal discontinuities will grow to infinity in modulus
after a finite interval of time along the corresponding ray. That is, taking du as a
typical magnitude, 8u is governed along the ray of longitudinal elastic waves (for
- nonlinear elastic bodies) by an equation of the type (cf. [5], [9])

Dg (6u)—A(GY, My)(8u)— By, M) (du)*=0, (4.14)

where Dy is the invariant derivative along the ray, A and B are scalars, and Gy’
symbolizes the second-order geometry of the wave front. For A and B <0, and
for a compressive wave (du <0), |6u|—>00 with a characteristic proper time

=|A|" log (8u°/(8u®—(A/B))], where &u° is an initial value. The infinitesimal-
dlscontmulty solution breaks out and we are led to study shocks.
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S. Longitudinal shock waves in relativistic elasticity

5.1. The Hugoniot condition for relativistic elasticity

We consider shock waves, i.e., singular surfaces across which [u*]#0,
[f*1+#0, etc. The space-time is assumed to be flat. On applying the formalism of
Paragraph 3.2, we find that the balance laws (2.22) and (2.23) give

[p(u*1)]I=0 or m=p(l*u,)=const. through W, (5.1)
and

m[(1+&)u=]-[t*1,]1=0. (5:2)
On using the decomposition (3.5) for t*#, (5.2) transforms to

mlFu*]-[LT* + TI*]=0, (5.3)
where F is the index in the direction of propagation:

F=1+¢—(T/p). (5.4)

Let (u*)=3((u*)" +(u*)"). Taking the inner product of (5.3) with (u,) yields, with
—_——1
T=p,

mle —(T)7]—(LT* — mFu*)u,]=0. (5.5)

This is the Hugoniot jump condition for relativistic continua)®. This can also
be written as

mlel+(T)Mu,J=0, T*=Tl, (5.5

The case m = 0, which corresponds to tangential shocks (so-called contact discon-
tinuities), is not envisaged. Furthermore, realistic shocks must be such that
[nl>o0.

For one-dimensional relativistic motions (5.5) can be transformed further.
Multiply (2.18) —on account of (2.36) —by p and take the jump of the resulting
equation in accordance with (3.8) to obtain

mlf*1= polu*], (5.6)
so that (5.5) or (5.5") takes the form

pole]+(T)f.J=0. (5.7)
It follows from (2.30), (3.1) and (2.20) that

o= m(1+£)u"‘—p;—8 Lf. (5.8)

[ad

%) For perfect hydrodynamics the shock is principal both ahead and behind and T* = F* =0, and
T = —p. Hence (5.5) takes on the form

mle +{p)r]+ m{Fu*)u,J=0. (a)

This can be shown to reduce to Lichnerowicz’s Hugoniot equation for relativistic hydrodynamics.
At the nonrelativistic limit (5.5) reduces to

m[e]=(T)- [v], (b)

where T is the stress vector in the direction of propagation (compare Duvaut [16]). In the same
condition (a) reduces to [¢ +{p)T]=0 (compare Jeffrey and Taniuti [17], p. 138).
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Hence (5.7) reads

po[[s]l+<m(1+8)u°‘—p§£ Lf>ﬂfa]]=0. (5.9)

This is the Hugoniot condition for one-dimensional relativistic motions in non-
linear elastic bodies.

5.2. Weak shocks in isotropic solids

These are shocks for which |[f*]| and [n] are small. On expanding &=
¢(f, N, m) in terms of its arguments, we have

(b, + SrmEDAED I3[ DT+ 3 [P+ - - =0, (5.10)

where “+- - - ”” stands for analytic terms of third and higher orders in [, ], [f] and
[n]. It follows from the implicit function theorem, (5.9) and (5.10) that [n] is an
analytic function in the components of [f*] and in fact is of the third order in the
components of [f*]. That is,

[n]=O(IflP) for weak shocks. (5.11)
More precisely, it can be shown that, with ¢, =6,
1
_ _ L ws 5.12
[l 126E) (D) (5.12)

for longitudinal shocks. The speed of these weak shocks is evaluated from (5.3)
and is given by

s () vota, 5.13)

which means that s does not differ much from the speed of infinitesimal
discontinuities ahead of the shock [compare eq. (4.11),].

The second law of thermodynamics imposes that [n]>0 across the shock.
According to (5.12), this requires that if ¢z >0, [f]>0 for realistic shocks which
are therefore tensive shocks, and if ¢;<<0, we must have [f1<O0, i.e., compressive
shocks only are thermodynamically admissible. The general study of longitudinal
shocks of finite strength mainly is a thermodynamical study concerned with the
convexity and the connectedness of the so-called Hugoniot curve (Compare the
classical elastic case in Duvaut [16] and the relativistic MHD case in Lichnerowicz
[18]). This will not be done here.

5.3. Compressive shocks in neo-Hookean materials

In this case [f]<0 and (2.43) holds good. We have

mlf*1=[pf*u<l, | (5.14)
while eq. (3.8) gives

lo(1+ £)fauu=1=[of? (ci—«?)f“n. (515
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Taking account of (5.14) in (5.15) and taking the inner product of the resulting
equation with [, it is found that the invariant speed of the shock is approximately
given by

ouzz(—%: (ci K [I[I?II]]) (5.16)

We see that if k <0, the right-hand side of this equation is positive for compres-
sive shocks since [[f]]<0 and [n]>0. (F)~ is the longitudinal index ahead of the
shock, i.e.,

(Fir =t e (5?"—‘ fPAd)
=1+ 0on~ —3ci(f>)~ = 1+relativistic terms. (5.17)

6. Relativistic magnetoelasticity

6.1. Basic equations

A simple realistic scheme for the relativistic magnetoelasticity of perfect
conductors of electricity can be extracted from the general theory presented in
Refs. [19]-{20]. First, as shown by Lichnerowicz, the whole of Maxwell’s equa-
tions for perfect conductors is contained in the covariant equation

V., (u*%® —%*u®)=0, (6.1)

where # is the spatial magnetic-field four-vector.

The continuity equation and the entropy balance, (2.22) and (2.28), are still
valid, i.e.,

Dp+pV u*=0, D,n=0, (6.2)
and eqs. (2.23) are replaced by
Vamgt) =0, TE:;t)] = (63)

where the total energy-momentum tensor TGh, contains all effects of matter,
electromagnetic interactions, and electromagnetic free fields (spin effects are not
considered). Since the spatial electric-field four-vector must vanish (g =0) for
perfect conductors, the formulas given in Ref. [20] yield

Tobhy =[p(1+&)u*u® — P ]+ 3B uu® —[B° %~ — 3(B* — 2M.B) PP} (6.4)

and
pD,¢ = pD,n +1**V u, — M*D, 3B, (Gibbs’ equation) (6.5)

where 3B and A are the spatial magnetic-induction and magnetization four-
vectors, respectively. For an elastic body undergoing one-dimensional relativistic
motion we may take

e=¢f B, mn). ) (6.6)
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Then (6.5) may be rewritten as

poD.e = po0D,n+ T, D, f* — pop*D,B,, p=M"/p, (6.7)
where we have used (2.20). If follows from this the constitutive equations
0€ 0€ 0E
0-2 mop(E) | e (X)), o
an Po\or=) H oB, /. L)

We uncouple the matter-field interactions described by (6.6) by considering the
following very special representation for isotropic bodies:

e=¢g4(f N, n)—%é%z, A =const., (6.9)
p
so that eqgs. (6.8) yield
6 :&, 1% = P(&) e, M= (6.10)
an of, /1

Setting w~'=1—A, so that #> = B> —M> = n 'RB*, an easy calculation allows us
to find the expression of T&S, as (for w # 1, astrophysical case)

Ty =p(1+e)uuP — t* + u92(3g™® + u*u®) — ua* %", (6.11)

The last two terms form the electromagnetic energy-momentum tensor used by
Lichnerowicz (up to the signature of the metric). Substituting from (6.11) into
(6.3), and projecting the result on the direction of u and orthogonally to it, we
obtain after a somewhat lengthy calculation:

1 1
pD, (81 +§ L—;ﬁ’t’z) = (t°“3 + u I AP ~5 p,?sz"‘B) %eua, (6.12)

and the Euler-Cauchy equations of the motion in the form [compare eq. (2.26)]
pE,a® = P V18 + w[%= V,9° +3¢° (V,96%), — V= (32/2)] (6.13)

where FaB is the “magnetic”’ tensorial index of the continuum [compare eq.
(2.27)] defined by

-~

Fm6=(1+81+§%2) PaB_pfltaﬁz Baz(ﬁtxﬁ)i' (6.14)

Equations (6.1), (6.2), (6.12), (6.13), together with (6.10),_,, Einstein’s equations
(2.21) and the kinematical compatibility condition

(0.f*), = (0xu®),, (6.15)

constitute the complete set of equations for the present theory. If £, depends on f
only through p, then the latter reduces to the theory of relativistic magnetohyd-
rodynamics as given, for instance, by Lichnerowicz [15]. Other models have been
developed by Bressan [21].
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Some other useful equations can be extracted from the above system. For
instance, by projecting (6.1) along and orthogonally to u, we obtain

u*uf v, %, +V, %> =0, (6.16)
#°V u>+(D,%?), —%> (V,u®), =0. (6.17)
Taking the inner product of (6.17) with %, yields

H>V u* + D, (3%/2) + uP 9>V %, = 0. (6.18)

Substituting then from (6.18) in (6.13), taking the inner product of the resulting
equation with %, and accounting for (6.16), we arrive at

p(1+e,)Vg#® +%,Vgt*? =0, (6.19)
which can be used instead of (6.12).
6.2. Infinitesimal discontinuities in isotropic solids®)
The system of equations we have to consider is the following one:
Dp+pV, u*=0, D, f* = Dsu*, D,n=0; (6.20)
uuP V % +V %> =0; (6.21)
#° V. u*+ (D%, —%> (V,u®), =0; (6.22)
p(1+¢&,) V%" +3€, Vt*# =0; (6.23)
pF=Du® — P> Vot — u[96= Vo 2® +%° (V™) —V=(2/2)]=0;  (6.24)
¢ . . -
t*F = pgf— B, e, =¢(f, N, ) in relativistic magnetoelasticity, (6.25)
op B 2 a‘b 3 T
1%¢ =—pP**, e, =¢d(p, M), p=p°5 in relativistic MHD. (6.26)
p

With U # 0, egs. (6.20) immediately yield
8p=—pU " éu, &f = fu ' du, 8T =fu ' du*, dn =0. (6.27)

Consider the case of principal infinitesimal discontinuities propagating in an initial
longitudinal state of deformation, i.e., f* =fA%, S,of® =0, (6.25) yields

28 = p(dA* + 2dnS%f*)f® = ppA*f? (6.28)
and, with &f = A, 8%,
81°8 = Bp(dAf®) + pbA*f® 8f + pbA* (8f°), (6.29)

on account of (6.27),. On substituting from (6.27),_; and taking account of initial
conditions, it comes

5t =AU (ppaf> A AP Su + pdfA™ Su®). (6.30)

%) Only the main steps in the derivation are reproduced.
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Setting #,=%,A°, from (6.21)-(6.23) we obtain

Lu(ug 53¢°) + (I, 5%) =0, 6.31)
%6%6+%B 8u—_%” du” =O, (632)
U1+ £,)(ly 5%°) + L(cbyf*9,)5u = 0 (6.33)

on account of (6.30). Finally, (6.24) yields
pLUF% 8u® — LU *dpfA* Su — ue* (I, 5%°) — L3, 5%
+ wLA* 8(%/2)=0. (6.34)
But from (6.31) and (6.32)

l, 89¢° = Luge,, du®, (6.35)
OH™ = %‘1(3'6]‘ ou* — ¥~ 8“), (636)
8(H>/2) = U (9€,9 Su® — K> Su). (6.37)

On substituting from eqgs. (6.35)-(6.37) into (6.34), we arrive at a linear system of
three equations for du®. On using (3.4), and a similar decomposition for #°, i.e.,
H* =HT+FHA*, this system reads

[0 (F*,— (/)9 1,.) — W3] ST, + A ., ] Su
+[pW(Frph® — (w/p)3e™ 9€) — (pdyf” + mAHA™ + 3, 35] du =0.
Setting
Al=p¥Hilp, Af=ud¥ilp, F=l+e-¢f+Al, GF=df>+AL,

and projecting the above equation in the direction of A and onto m, yields the
equations (|| # 1)

(1 - (/) o, SuT +(UWF,—f) Su=0,
{aP[S F2SP, — (w/p)%es9 L, ]— AT S} dutt + (1 — ) (ud€,/p)%s Su=0. (6.38)

Consider the special case for which 3¢,,=0. Then the compatibility condition for
solving (6.38) splits in two parts and yields

W =Y; = Aj/F,, E,.=1+e+(u¥?p), (6.39)
and | |

@ —-ep@* -6 =(1-w)’sdisd7, (6.40)
where we have defined various relativistic speeds and Alfvén numbers by

(€||———C| /F‘“, CgiEAi/F_L, FL51+8 +Aﬁ, ﬁ'=Aﬁ/F'”,

A3 =A%F,.
On setting
=3(6i+€1 2547 43), l=1-df

ame-e 1 (o
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The roots of (6.40) are obtained as

W=aA€2-VD), W=a AC*+VD). (6.41)

A long proof allows one to show that, in general, U= <U; (cf. the non-
relativistic case in [22] and relativistic MHD in [12]). (6.39) corresponds to a
purely transverse (so-called intermediate) mode. (6.41), and (6.41), correspond to
so-called slow and fast magnetoelastic modes. These two modes in general are
neither purely transverse no purely longitudinal in so far as elastic oscillations are
concerned. All modes, however, offer purely transverse magnetic oscillations.
Two special cases of obvious interest are:

(i) Purely longitudinal initial magnetic field: Then (6.39) and (6.41) yield

Us=U = Aj/(1+e+Af),  Up=(daf)(1+e—df);

(ii) Purely transverse initial magnetic field: Then we have
Us=Ur =0,  Up=(dpf*+AD/(1+e—¢f+AD).

The vanishing double root corresponds to stationary modes (in a co-moving
frame). The simplicity of the above-obtained results follows from the simple initial
mechanical state. The case of general three-dimensional initial states of strains
requires a generalization of the purely elastic case studied in Ref. [6].

6.3. Notions on shock waves

Here we give only some notions on how the shock-wave problem can be
envisaged in relativistic magnetoelasticity. Magnetoelastic shocks can occur for
certain initial conditions since the solution of Paragraph 6.2 can break out in a
finite interval of time, the corresponding system of field equations being quasi-
linear hyperbolic and each weak-discontinuity magnitude being governed by an
equation of the type (4.14) along its ray.

According to eq. (3.8) quantities of the form [, T*® are conserved across a
shock W if the conservation law V,T*# =0 holds true in 38— W. We can apply this
property to the general equations (2.22), (6.1) and (6.3),, in which T{s, is given
by (6.4). Let the symbolism o« INV (W, j) indicate that the quantity to which it
applies is conserved through W and has j independent scalar components in a
local chart of V*. Then, S~ representing the state ahead of the shock,

m(S7) =p(l*u,) xINV (W, 1), (6.42)
V(ST = (1, )u> -2~ (u°l,) < INV (W, 4), (6.43)

1
W*(ST) =m(S) (1 +g,; +§ %2) e —=R, +Ep3t’zl°‘ —pI= (1)
xINV (W, 4). (6.44)

But (6.43) shows that V[, =0, so that V* is tangential and in fact is INV (W, 3).
Define :

H(S)=m(S)V*V, = i"; _&e lg)z. (6.45)
P m
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Let v, be the tangential component of u,. Then (6.43) yields
m(S™)

VE(ST) = (%1, )u® — F°. (6.46)

Call «® the tangential component of #*°, so that (6.46) renders

s__ P
m(S™)

K

[(F1,)0° — VE(ST)]. (6.47)

Defining a magnetic pressure by p,, =3u %> and using (6.45) allows us to trans-
form (6.44) to

W (8T =[m(ST)(1+e)u” — t**lg ]+ p,l* + pm(STIH(S ) (pu*")

P eran
+—m(S") V(SN F’L,). (6.48)

This can be decomposed as
W*(S)=X*(S)+eé(S)I*, X*(S) xINV (W, 3), é(S7) « INV (W, 1).

(6.49)
We find that
e(ST)=&(S7)— um*(STH(S7) = p,, + (I7L,) " [m(ST)(L + e)(ul,) = 1°Plg]
« INV (W, 1). (6.50)

Call 7 the tangential component of [m(S™)(1+¢;)u® —t*?l;]. Then we have

X(S7)=F =+ um(S)H(S ) (pv*)+ m‘(’;_) 9€°1,) V*(S7) < INV (W, 3).
(6.51)

Other invariants can be found as follows. For instance,

Z(S)=—X*(ST)V,(S)=-W*(S)V,(S) = INV (W, 1). (6.52)
But it follows from the definition of v* that

0, = — [1+ "Zz(f—)], o0V, = —p(%°1,). (6.53)

p (I°,)

On account of (6.53), and (6.51) we therefore have

L(S7) = —T=V.(S) <INV (W, 1). |
Finally, consider -

H(ST)=m X (S)X*(S)X.(S7) <INV (W, 1). (6.55)
On setting (these are not invariants)

=9+ gy, (6.56)

°1,)



168 Gérard A. Maugin H. P. A

A, =(/m(S7)(@°1,)V,+m(STYH(S7)(pv.)

= (m(S)/p)H°ve — (K )key A%l =0, | (6.57)
it is possible to show after a lengthy, but simple, calculation that
H(S)=—u’H(SHEX+m*(S)T*(T, +2uA,) « INV (W, 1). (6.58)

In spite of the formalism eq. (6.58) is none other than the Hugoniot jump
condition for magnetoelastic perfect conductors in relativity. It is also valid in
relativistic magnetohydrodynamics since no mechanical constitutive assumptions
~ have been made.

In the case of one-dimensional motions in isotropic magnetoelasticity (6.28)
holds good; we have thus

T*=m(SH(1+e)v* +dfL(U°L,) ' 1°]—2pLpnfSf*. (6.59)

This, with (6.45), (6.56), (6.57) and (6.53) allows us to find the complete
expression of the Hugoniot condition #(S™) « INV (W, 1). This will not be done
here. We simply remark that the thermodynamic study of magnetoelastic shocks
in relativity must be based on the discussion of the properties of the Hugoniot
curve associated with the invariant (6.58). This invariant has not the usual form of
a Hugoniot invariant. Rather, on account of (6.55), it is most like the square of
the invariant considered in classical magnetoelasticity. Indeed, if we had worked
along the same lines as in Paragraph 5.1 a long calculation, that we do not
reproduce here, would have yielded the jump condition

mle]+(T*)u, ]= — mu (3> — ()], (6.60)

where 7=p', £ =g, +(u¥?/p), T* = m(1+&)u™ —t*?l. Equation (6.60) has the
same structure as in classical cases’). It can be shown on the basis either of (6.58)
or of (6.60) that some results of Paragraph 5.1 are directly generalized. For
instance, instead of (5.11) one obtains

[m1=0(lfl, [[%11) (6.61)

for weak magnetoelastic shocks, whose speed does not differ much from the speed
(evaluated ahead of the shock) of weak discontinuities found in Paragraph 6.2.

6.4. The case of relativistic magnetohydrodynamics

For perfect relativistic hydrodynamics where (4.13) holds true, setting 7=
F/p, it is immediately deduced from (6.58) that

F?—(°1,) 'm*(S)7*> =« INV (W, 1). (6.62)

7y Indeed, at the nonrelativistic limit, e.g., for classical magnetoelasticity, (6.60) yields
m
mllel+(T) - l=~=~ I3, Fi]

since, then (#>)—(¥#)*>=3{% [’ (Compare [22]). For classical MHD, one obtains (compare [17])

[e +(p)rl= —%ﬂ?ﬂlllzlhll.



Vol. 52, 1979 Nonlinear wave propagation in relativistic continuum mechanics 169

This is Lichnerowicz’s result [12]. For relativistic MHD, on setting a=
T+ wH(S™), the so-called Alfvén variable, (6.58) yields

F>—(1°1) '"m*(S") 7>+ 2uix — n2H(S)x <INV (W, 1). (6.63)
This can be written in terms of jumps and mean values as
[F?1-2(D)pl+ 2 (Plal+ ui(a)x]=0 (6.64)

across W. This is Lichnerowicz’s form. We refer the reader to this author [18] for
an exhaustive study of the corresponding Hugoniot curve.

7. Final remarks: Initial states and existence theorems

Attempts have been made to study nonlinear wave propagation in other
models of relativistic continua. For instance, Cissoko [23] considers the case of
relativistic anisotropic MHD. The same author, starting from a simplified version
of [24], envisages the case of relativistic conducting ‘“ferrofluids” (nonlinear
magnetic constitutive equations). Coll [25] devotes some attention to detonation
waves in relativistic MHD. Viscosity, however, is seldom accounted for, except in
the case of weak-signal detection (Cf. the work of Gambini [27] based on [2] for
viscoelastic solids) and discontinuities in Madore [28].

One important feature of nonlinear wave propagation is the fact that propag-
ation occurs through an initial state of finite deformation and/or pressure and
finite bias electromagnetic fields. This initial state may be such as to produce
remarkable results. For instance, it has been proven by the author on the sole
hypothesis that the body be isotropic [6] that the characteristic speeds of longitud-
inal and transverse elastic waves propagating through an initial state of high
pressure p, (case of neutron stars) are related by the universal relationship

U =3 +a* Do), ol

where a®, which is defined by (4.13) with p, replacing p, is the sound speed of a
fictitious relativistic perfect fluid which would have a law of compression corres-
ponding to the initial state J¢,.

The mathematical question arises, therefore, as to the existence of such initial
states. This problem has been solved for relativistic hydrodynamics [29] and
relativistic MHD (Cf. [15] and the mathematical discussion of Friedrichs [30]).
For more involved descriptions such as those of relativistic elasticity and mag-
netoelasticity, the problem remains open.

REFERENCES

[1] Maucin G. A., “Harmonic Oscillations of Elastic Continua and Detection of Gravitational
Waves”, Gen. Relat. Gravitat. J., 4, 241-272 (1973).

[2] MauGN G. A., “On Relativistic Deformable Solids and the Detection of Gravitational Waves”,
Gen. Relat. Gravitat. J., 5, 13-23 (1974).

[3] DE SaBBAaTA V., and WEBER J., Topics in Theoretical and Experimental Gravitational Physics
(Erice, 1975), Plenum, New York (1977).

[4] RUDERMAN M., “Pulsars: Structure and Dynamics”, in Ann. Rev. of Astronomy and As-
trophysics, Vol. 10, pp. 427-476, Eds. Goldberg, Layzer and Phillips, Ann. Rev. Inc., Palo Alto,
Ca. (1972).



170 Gérard A. Maugin HPA

[5] MaucIN G. A., “Infinitesimal Discontinuities in Initially Stressed Relativistic Elastic Solids™,
Commun. Math. Phys., 53, 233-256 (1977).

[6] MauGIN G. A., “Exact Relativistic Theory of Wave Propagation in Prestressed Relativistic Elastic
Solids”, Ann. Inst. Henri Poincaré, A28, 155-185 (1978).

[7] MaucIN G. A., “Wave Propagation in Prestressed General Relativistic Systems” in Proc. 8th
Intern. Conf. General Relativity (Waterloo, Canada, 1977), pp. 246-247.

[8] MauGcIN G. A., “Elasticity and Electro-magneto-elasticity of General Relativistic Systems”,
(Gravitation Essay, 1977), Gen. Relat. Gravitat. J., 9, (1978), 541-549, '

[9] MauGIN G. A., “Nonlinear Waves in Elastic Solids in Strong Gravitational Fields” in Nonlinear
Deformation Waves (Proc. Symp. Tallinn, ESSR, 1978), Vol. 2, pp. 123-126, Publ. Estonian
Acad. of Sciences, Tallinn, USSR (1978).

[10] MauGIN G. A., “One-dimensional Nonlinear Wave Motion in Relativistic Elasticity”, (in Rus-
sian), Doklady USSR Acad. Sci., 243, No. 2 (1978).

[11] BLanp D. R., Nonlinear Dynamic Elasticity, Blaisdell, Waltham, Mass., (1969).

[12] Licunerowicz A., in Relativistic Fluid Dynamics, Ed. C. Cattaneo, pp. 87-203, Cremonese,
Roma (1971).

[13] MauGIN G. A., “Conditions de compatibilité pour une hypersurface singuliére en mécanique
relativiste des milieux continus”. Ann. Inst. Henri Poincaré, A24, 213-241 (1976).

[14] PicHON G., “Théorémes d’existence pour les équations des milieux élastiques”, J. Math. Pures et
Appl., 45, 395-409 (1966).

[15] Licunerowicz A., Relativistic Hydrodynamics and Magnetohydrodynamics, Benjamin, New
York (1967).

[16] Duvaut G., “Sur les ondes de chec longitudinales dans les milieux élastiques nonlinéaires”, J.
Meécanique, 6, 371-404 (1967).

[17] JerFreYy A., and Tanruti T., Nonlinear Wave Propagation with Applications to Physics and
Magnetohydrodynamics, Academic Press, New York (1964).

[18] LicuNErOWICZ A., “‘Shock Waves in Relativistic Magnetohydrodynamics under General Assump-
tions”, J. Math. Phys., 17, 2135-2142 (1976).

[19] MAUGIN G. A., “On the Covariant Equations of the Relativistic Electrodynamics of Continua-I-
General Equations™, J. Math. Phys., 19 (1978), 1198-1205.

[20] MauGIN G. A., “On the Covariant Equations of the Relativistic Electrodynamics of Continua-III-
Elastic Solids”, J. Math. Phys., 19 (1978), 1212-1219.

[21] BrEessaN A., Relativistic Theory of Materials, Springer-Verlag, New York (1977).

[22] BazEer J., and EricksoN W. B., “Nonlinear Wave Motion in Magnetoelasticity”, Arch. Rat.
Mech. Anal., 55, 124-192 (1974).

[23] Cissoko M., “Sur la magnétohydrodynamique anisotrope relativiste”, Thése Doct. &s Sci. Phys.,
Univ. Paris VI (1975).

[24] MaucIN G. A., “Sur les fluides relativistes a spin”, Ann. Inst. Henri Poincaré, A20, 41-68
(1974).

[25] Cissoko M., “Etude relativiste des ferrofluides conducteurs”, C. R. Acad. Sci. Paris, 283A,
413-416 (1976).

[26] CoLL B., “Fronts de combustion en magnétohydrodynamique relativiste”, Ann. Inst. Henri
Poincaré, A25, 363-391 (1976).

[27] GamBmnI R., “Vibrations excitées par une onde gravitationnelle dans les milieux élastiques et
viscoélastiques”, Ann. Inst. Henri Poincaré, A23, 389-406 (1975).

[28] MADORE J., “The Absorption of Gravitational Radiation by a Dissipative Fluid”, Commun. Math.
Phys., 30, 335-340 (1973).

[29] CHOQUET-BRUHAT Y., “Théorémes d’existence en mécanique des fluides relativistes”, Bull. Soc.
Math. France, 86, 155-175 (1958).

[30] FriepricHs K.O., “On the Laws of Relativistic Electro-Magneto-Fluid Dynamics”, Commun.
Pure and Appl. Math., 27, 749-808 (1974).



	Nonlinear wave propagation in relativistic continuum mechanics

