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Helvetica Physica Acta, Vol. 51 (1978), Birkhauser Verlag, Basel

Equilibrium equations for classical systems with long
range forces and application to the one dimensional
Coulomb gas

by Ch. Gruber, Ch. Lugrin and Ph. A. Martin

Laboratoire de Physique Théorique,
Ecole Polytechnique Fédérale de Lausanne,
14, Avenue de I’Eglise-Anglaise,
CH-1006 Lausanne, Switzerland

(22.X11.1978)

Abstract. We consider infinite classical systems with long range forces, i.e. forces which are not
necessarily integrable at infinity, and propose a generalization of the classical KMS-condition to define
equilibrium states. We then show the equivalence between this condition and the BBGKY-hierarchy for
correlations, and discuss some consequences which are specific to long range forces. As an illustration, we
use the method of functional integration to exhibit explicitly equilibrium states of the one dimensional
Coulomb gas and give a new treatment of the one dimensional Jellium in the grand canonical formalism.

I. Introduction

This paper deals with the equations defining equilibrium states of infinite
continuous classical systems with long range forces. By long range forces, we mean
forces which decrease very slowly (or even do not decrease) at infinity. For instance the
Coulomb force in one dimension is proportional to sign (x-y), a quantity which is
constant up to infinity. Precisely we shall call a force long range if it is not integrable at
infinity. A short range force is not necessarily of finite range, but integrable at infinity.

The study of equilibrium states of infinite systems can usually be done in two
ways. One can either define them by means of thermodynamic limit of finite volume
Gibbs states with some boundary conditions, or one defines them as solutions of
equilibrium equations which are assumed to be valid for infinite systems on reasonable
physical grounds. In this work, we shall mainly be concerned with this second
approach. There are four types of equations which have been proposed to define
equilibrium states of classical systems. The two first ones, the static classical KMS
condition [1] and the DLR [2] equations, are used to determine the equilibrium
probability measure on infinite classical phase space. The two others, the BBGKY
hierarchy and the Kirkwood Salzbourg (KS) equation, are equations for the
correlation functions of the state. In the case of short range forces, the equivalence
between these equations (under some smoothness assumptions on the potentials and
correlation functions) is shown in the following diagram.
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Correlations Equilibrium measure

r BBGKY smooth correlations KMS

orees (+ Maxwellian distribution of velocities) [1] (Static)

[5]

[3]

[1] il_usl;g:,":iinsity %&4\‘4‘ Canonical Gibbs
' (&\\ - state
)
I [4]
Potentials K.S. DLR
(2]

All these equations involve in one way or another the fact that the force (or the
potential) exerted on a particle by the rest of the infinitely extended system is finite. It is
clear that in presence of long range forces, this property is far from being obvious.
Indeed one has to sum up the contributions to the force (or to the potential) of infinitely
many other particles, a sum which is precisely not convergent. For instance in the one
dimensional Coulomb gas the force on a particle of charge + 1 at the origin due to an
infinite configuration of particles

{o.ihyi}tpila g; = il,y,-EIR

is formally given by:
- Z o; sign (;)
i=1

i.e. an infinite sum of +1 and —1. Therefore the point is to find a natural
generalization of the equilibrium equations by giving a prescription to make sense of
such non convergent sums.

We notice that the KMS equation and the BBGKY hierarchy involve in their
formulation the interparticle forces whereas DLR and KS are expressed in terms of the
potentials (in this respect, DLR and KS can be viewed as integrated forms of KMS and
BBGKY respectively). Moreover, the force is the basic physical quantity and it has
certainly a better behaviour at infinity (faster decrease) than the potential. For this
reason KMS or BBGKY lend themselves easier to the desired generalization, and we
shall adopt these equations as the starting point of our investigation'). The
generalization consists in assuming that KMS is asymptotically satisfied when the
effects of the forces are first restricted to configurations enclosed in a sequence of finite

') InDLR one would face the problem of giving a meaning to the interaction energy between the particles
in a finite region with (almost all) external configurations. In K S one would have to deal with the non
integrable kernel (exp (— ¥ (x)) — 1). We do not touch here the possibility of generalizing these two
equations.
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volumes ¥, which converges to the whole space as A — oo (for a precise formulation,
see section 2.1). It is clear that this prescription can be dropped when the force is, say,
of finite range. In this case, the particles in any finite region interact only with the
particles located in some larger but still finite region. Thus, for 4 large enough, our
condition reduces to the usual KMS form. In the case of long range forces, a state
verifying the generalized KMS condition may depend genuinely on the sequence V;:
different sequences can distinguish different physical states. This is apparent in the one
dimensional jellium which is treated in the second part of the paper. Therefore one has
to consider such sequences of volume as participating to the determination of the
various phases which can exist at a given temperature. We emphasize again that the
prescription involving the sequence of volumes ¥V, applies to the state of the infinite
system, and must not be confused with the construction of such a state by taking the
thermodynamic limit of finite Gibbs states. The relation between the two procedures is
not studied here and deserves further investigation.

One has the following important feature which is specific to systems with long
range forces.

According to our definition an equilibrium state is defined with respect to a
temperature T, a family of k-body forcesF® k = 1,..., n < o0, and a sequence of finite
volumes V, — IR". It happens (see section 2.5) that the same state can also be an
equilibrium state with respect to the same temperature T but for another family of
forces F'® together with a different sequence of volumes ¥} (with however F'® = F®),

In the case of two body long range forces, this means that one body force has
no definite meaning without the specification of the sequence V. This feature reflects
the fact that for a given state there are various ways of dealing with the particles at
infinity, giving rise to different effective one body forces (because far away particles
have still a direct influence everywhere locally). Similarly, three body long range forces
will modify the two body part, and so on. Thus one must be aware that the external
fields and the forces which define the equilibrium state of the infinite system state are
not necessarily the fields and forces which define the Hamiltonian of the finite system.
A concrete example of this situation will be found in [6].

We shall motivate our generalized KMS condition in two ways: Firstly, we show
explicitly in the second part of the paper that it is satisfied by certain states of the one
dimensional Coulomb gas (the two component plasma and the jellium). Therefore, our
condition covers the simplest known examples of states with long range forces. Then,
in another paper [ 7] we derive some remarkable consequences of the generalized KMS
condition for v dimensional Coulomb systems: the neutrality and the non normality of
charge fluctuations.

The present paper is organized as follows. In the first part we state the generalized
KMS condition and prove its equivalence with the BBGKY hierarchy (with the
equivalent prescription for summing the long range forces). This is done in two steps.
First we show that, irrespective of the nature of the forces, the KMS equation implies a
Maxwellian velocity distribution. Therefore the configuration part and the velocity
dependent part of the probability measure decouple completely. The KMS condition
for the configuration part takes a simple form which, in turn, is seen to be equivalent
with BBGKY. In establishing this equivalence, no smoothness assumptions are made
neither on the forces (which can be n-body).nor on the correlation functions, and
BBGKY is understood to hold in the sense of distributions. This result can be
considered as an extension of part of reference [1]. Then we show that if the forces are
of finite range and smooth, the correlation measures are in fact C*-functions and
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BBGKY holds in the usual sense. Finally, we discuss some aspects of the equilibrium
equation which are intrinsically linked to long range forces.

In the second part of the paper we compute explicitly the density distribution
functions of the one dimensional Coulomb gas. These density distributions are
obtained as thermodynamic limits of grand canonical states, calculated by the method
of the Wiener integral which has been used in [8]. Although the method of functional
integration for Coulomb systems has been powerfully extended beyond one dimension
[9, 10], we find instructive that the state of the one-dimensional gas can be explicitly
exhibited and shown to verify the equilibrium equations. In particular, we give a
treatment of the one dimensional jellium which is mathematically analogous to that of
the two component system. This treatment differs from Kunz’s study of the same
system in several respects [11]: the finite system is not assumed to be neutral, the
formalism is grand canonical and functional integration is essentially used. This state
exhibits the same features as the state obtained in the canonical formalism: screening,
and spatial periodicity.

II. Equilibrium equations for long range forces
2.1. Notation and definition of KMS-states

We consider an infinite classical system of N different types of particles without
hard core, located in the physical space IR’ and interacting by means of n-body
potentials o™, n =1, 2...

LetI'= R x R’ x {l,..., N} be the one particle phase-space which is the space
of variables u = (p, ¢) = (p, x, o).

The states of such systems are defined as (regular) probability measures on the
phase space {Q, B} where Q= {U={w;} =T;  u; = (p;, xi, 67), |x; — x;| >0
for all i # j, and for all bounded A = R, |U,| < oo} with U, = {y; = (p;, x;, 6;) € U,
x; € A}, |U,| = cardinality of the set U,.

B is the g-algebra of subsets of Q generated by means of the symmetric Borel
subsets of

[R*x A x {1,...,N}]n = {U™}
= (g, ..., u)€[R* x A x {1,..., N}]"; |x; — x| > 0}

where A will always denote a bounded Borel subset of R® [3].
The interaction ¢ is defined by means of symmetric functions

o™ = ¢"(gy,...,q,) on [R" x {1,...,N}]", = 1,
which are assumed to be of class C! on

[R' x {1,...,N}]% = {O™ = (g1,-.-, ¢n); |x: — x;| > 0}

and which are zero except for finitely many #. The forces might be singular at points of
coincident particles in physical space.

To define KMS-states we introduce the algebra A® of real functions on Q which
are given by:

M=% Y MUY orsimply f=5f;

k=00l cU
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where ¥ are C’-functions?) on I'* which are symmetric, bounded, have compact
support 1n the Q variables and are identically zero except for finitely many k.

We introduce also the algebra A" generated by elements of the form: exp (i.¥3)f
with f€ A® and 9 a C*-function on I" with compact support in g. For any A = R we
denote by y, the function

1 1 -
XA(U)={ W= Uy

0 otherwise

In the following definition we shall introduce the condition that A® < £ '[u] for
any KMS-state u; it thus follows that any KMS-state u defines unique, regular,
symmetric, Borel measures, p®[dU®] = p® _[dP*dX*], 0,€{l,..., N}, on each
[IR* x R']%, called Correlation Measures and such that:

(1) for all
f=FfreU®

L dpf= J[p[dU]fr(U) o

where

{ ;
fp[dU]fT(U) = Z I’ J\l‘k p(k)[dul 5.5 ®ids duk].fi("k)(ul LA uk)

K=o k!
(2) for all
f=%freq® (2)

”fTHzl[p] = ”f”zl[,u]-

Definition. A state u is a static KM S-state with respect to the interaction ¢, the
inverse temperature B and the sequence of volumes {V,}, V, — R’ if:

(C1) AN = L' [4].
(C2) The correlation measures satisfy:

(a) fp‘k’[dU ®Nps, dxra(U) < o0

foralli=1,... . k,a=1,...,v

ox
foralli=1,...,n,a=1,...,v

(C3) for all 4 and g in AW

(m)
(b) JP("H)[G'U(") dV(l)] |a¢ (QIa- 4 o Qn)| XV;(U(H) V(l)) < o0

i |

ulih, g}1 = B lim ulg{h, H},,]

A= o0

%) To simplify we use the same notation U* to denote k points subsets of I" and to denote one point in T™*.
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where {A, g} denotes the Poisson Bracket given formally by

oh o9  oh dg
h,
{ g}(U) u,gU ag |:axi,a 6pi,a api,a axi,a](m

and

oh(Uy) pia  OWUy) < 0p(D)
{h, H}(U) = {h, H}(U,) = Y Z [ 6(x )pm - a;. )UZU ;ifU)}

ujelva=1

Remarks

(1) From conditions C1 and C2 follows that #and g in A implies that {4, g} and
gih, H},, are in £'[u] (see Appendix A). These conditions imply that for any finite
volume, the expected number of particles, the absolute value of momentum, and the
absolute value of the (cut-off) force are finite.

(2) If the potential has finite range, the condition C3 reduces to
uih, 911 = Pulgih, H}]
which is the usual KMS-Condition.

(3) Introducing the n-body force F{(U) on the particle »; in the configuration
U>suy; as

() 77N
Fao=- 3 200 o
mey OXig
U 3 u;
we have as soon as V; is sufficiently large
Oh(U) pia
{h H}VA(U) u,gl] az |:axlat m
511 —
ap(U) IED) FL:'L(U‘"’)MU‘"))]- @
ia nxl %((?;));ulli

Therefore, formally, the cut-off we have introduced to define KMS-states consists
in replacing the force FJ(U™) on u; € U™ by the force F{?(U™)y,,(U™). We could
have considered other types of cut—off functions y A(U‘"’) — 1; the characteristic
function we have chosen appears to be the simplest one which ylelds the usual KMS-
condition for finite range potentials.

(4) We shall need the algebra A" rather than A only to derive the
Maxwellian distribution of velocities.

We first show that the KMS condition remains true if only one of the functions 4
or g is symmetric. This property will be useful in the following.

Property 1. Let h = Sh, where the h are C'-functions on T* which are not
necessarily symmetric, then for any KMS-state

ul{h, g}1 = B lim u[g{h, H},,] for all ge AV
A= oo
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Proof.
(1) By definition for a cylindrical function f with basis A which is not symmetric

1
WA= X |, 0t dd e )

k=0

where u[du,,..., du,] are the density distributions associated with A
ie.

ulf] = plfym]

(i) For any function g which is symmetric

(fg)sym = .fsymg and {f; g}sym = {.fsyma g}
(iii) For h = Shy then h, = Fhy .

Therefore
M[{h, g}] = H[{h’ g}sym] = .u[{hsym5 g}] = I‘[{'yhnsym,g}]

= ﬁ hm .u[g{yh.T,syma H}V;l]

A= o0

= B hm #[g{hsymﬂ H} V;,]

A=

= f lim ulg{h, H}y,].

2.2. Maxwellian distribution of velocities

In this section we show that any KMS-state has Maxwellian distributions of
velocities.

Theorem 1. For any KMS-state and any bounded open set A in R’ the density
distributions u\" are Maxwellian in the velocities, i.e.

v - st

dp iy’ [dQ™].

Corollary. For any KMS-state the correlation measures p® are Maxwellian in the
velocities:

(k) ®7 — exp (— Bp?/2m)
PPLUET= 1L Gy

dpiﬁ(k)[dQ(k)].
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Proof. Let us first prove the corollary using Theorem 1. .
For any f = SfP0 N0 with OUP) = £(0"g(P™) where ¥ has support
in [A x {1,. N}]"

Jdﬂf M J WO LdU™f(U)

1 p (—Bpi2m)

nz0

% fr(Q"‘))gr(P”")]

| Ulk) = U(n)

_| J gr(PW) ] SR Pri/2m) dpi]

i=1 (2mn/ﬁ)v/2
[ Z ("’[dQ‘"’]-?f T(Q‘"’)]-

nZO

Therefore we have

J, - ka ariro) [ 2 CIEm |

ﬁ”‘)[dQ“"]fT(Q”")]-

But by definition of the correlation measures

1
-[ duf= L J pP[dP® dO W] g AP (Q®)
Q © JIRY x Ry x {1,..., N}

1
_k! [RY x {L,...,N}I¥

which concludes the proof of the corollary.

To prove Theorem 1 we then proceed in a way similar to [3]:
Let

h=%hrP, g=%g¥

be two functions in A" such that £ and ¢ have compact support in A (in the x
variable) and A is independent of p.

Let 9 = 9"(x)

be a sequence of C“-functions with compact support in A converging pointwise to
Fra, 3e R,

Since
{h, gexp (i I)} = exp (FF){h, g} + glh, exp (¥ )}
= exp (i F){h, g}
it follows that for any KMS-state
ulexp (F9)({h, g} — Bgi{h, K})] =0
where K denotes the kinetic energy function.
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Furthermore, since ({, g} — Bg{h, K}) € Z*[u] (Appendix), dominated con-
vergence theorem implies, in the limit r — oo

n=0

3 exp i) j AUPTUDI((h, g}~ Path, K))U™) = 0

and thus
u'[{h, g} — Bglh, K}] =

The positive Borel measure u("’ = exp (BK(PY ) satisfies therefore

A [{h, g exp (— BK)}] =
and by density

ih 911 =0

for all C!'-functions h = h(Q™) with support in A and g = g(U") with compact
support in {IR" x A x {1,..., N}]*
Repeating the argument of [3, prop 2] we then obtain

0
= — i = 0 as distribution

ld

and therefore

dji) = dpy,. .., dp, i [dQ™]
which yields:

WPLdU] = n G(p;) dp;A1d0 Y]

with
exp (— fp*/2m)
(2mmn/B)y"*
Remark. Since the velocity and the configuration part of the measure decouple

completely with the above choice of the functions / and g, the result is independent of
any assumption on the potential and remains valid for any sequence of cut-off y,(U).

G(p) =

Moreover, it is clear that the Maxwellian distribution of velocities implies that the
state is flow less (i.e. [ p®[dU®]p,, = 0). This follows from our formulation of the
KMS condition and is not an additional requirement as in [1]. (Notice, however, that
we use the slightly larger algebra A").)

2.3. Eguivalence of KMS-condition and weak BBGKY-equation
In section 2.2, we have seen that any KMS-state has Maxwellian distribution of
the velocities, i.e.
u'[dU] = G(P) dPi[dQ]
p“[dU] = G(P) dPp*[dQ] 6))
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where

£ exp (—fpi/2m)
G(P)dP =
Prar= = gy
We shall now discuss the properties of 5 [dQ] and a{P[dQ]; in particular we

shall show that the correlation measures p* are solutions of the weak BBGKY-
equation.

dp;. (6)

Theorem 2. Let u be a state which is Maxwellian in the velocities and satisfies the
conditions C1 and C2, then pis a KM S-state if and only if its correlation measures satisfy
the following BBGKY-equation as distributions of order 1:

pP1dQ] = BF,, (@)™ [dQ]

0X;,
+ B lim Z pEIdO® dO "y, ,(0)
A= o0 p > l
x Y FEi@9o")
06 ok
0®ag;
where
& 5¢(Q)
F, (0= ; FP(Q) = - Z a (7
Qaq} Xj,

Proof. (i) Using property 1 of section 1, let us choose g = 1 and h = #h{ where.
hEU) = hP(O(p; ), u; = (pi, g:) € U, '

A¥(Q) has support in [A x {1,..., N}]* and let us consider only the A such that
V}. D A.

For any KMS-state we then have:

lim “[{h’ H}V;.] = 0.

A= o0

Using lemma A4 of Appendix A together with ¢ = §, , and

= j G(p) dp % R(p)
we have
(k)
ﬂ[{h, H}V}_] = % {JA ‘"(k)[dQ(k)] ahgiQ )
—_ - a 272} -
+ Hﬁ[dg‘k) Q@1 (— “;(XQQ))]hT(Q‘”)}.

3¢qi
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Therefore the KMS-condition implies that:

a
— K — 5(k) (k)

La

. (O _
« 5 {ptagw 0@ % (- GO0) hrcgon

< Qk)

Using the condition on the potential together with the above equation which is valid
for any function A{¥(Q) of class C! with compact support, we conclude that:

00| ®

5xi,,,

3 — —
Wﬁ(k)[dQ(k)] = lim J[ﬁ[dQ(k) dQ1xv,(Q) Z [—
i,a A= Qcanik

in the sense of distribution, which is identical to equation 7.
(i) Conversely for any state which is Maxwellian in the velocities®)

ulih, 931 = }J[fp[dUdU’ dU"1{h(UU"), g-(UU")}

N
:J[Hp[dUdU'dU"] > [-aa—hr(UU")ap_ gr(UT)

uje UU” Jsa

0
_ 7 huun
apj,a d

=J[H y 0 p[dUdU’dU”]ahTa(UU’)gT(UU')

ax o

ujeUU” Js
3 o (UU") |
- 5 AU T g (UU).
J[](J( R pldU dU’ dU"] 5%, gr( )

uje UU” OPja

0
-y QT(UU’):I

e

Therefore

0
u[{h,g}]:ﬂ]fp[duwm Y ﬂfn— =

uje vy

hr(UU")g,(UU’)

1

+]fJ(][ > aa p[dUdU’dU”]%#ZlgT(UU’)-

uje U u” Jsa Jj.a
Using lemma A4 a state u which is Maxwellian in the velocities is a KMS-state if and
only if

H][ p2 [ 0 pLaudu’ dU"]]%;a;ﬂQgT(UU')

axl"a Jsa
— B lim ][ H > [][ p[dU dU’ dU” dU]y,,(U)
uje UU”

A= ©
a¢(t7(7)ﬂ oh (UU")
X — uu’)
0 cygU’U” ( ox . op . i

Usuj

*)  In the following the notation ), means 3 LA
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Thus p*® solution of the BBGK Y-equation in the sense of distribution implies that u is
a KMS-state. .
From the proof of theorem 2 we have also the following property:

Corollary 1. Let u be a state which is Maxwellian in the velocities and satisfies the
conditions CI and C2, then u is a KMS-state if and only if

lim p[{h, H},,1=0 for all he AV

A=

Corollary 2. (i) Let u be a state which is Maxwellian in the velocities and satisfies
conditions C1 and C2; if the density distribution i\¥ satisfy the equation

2 A9[d0, 1 = B hm:f fiy,[dQ, dOTF, (010) ©®)
6 ia 20 JV/A

then u is a KMS-state.
(if) If the forces have finite range u is a KM S-state if and only if equation 9 holds.

Proof.
(i) For any 4 in A" with basis in A we have (equation 4)

1
WL Hyyd= Y j A8 [dQ1G(P) dP

k20k!

k Oh(O\P) piy  OH(QAP
zZ((Q 2, PO

Fqi,a(Q))
i=1a=1

Therefore u is a KMS-state if and only if [Corollary 1]
p[ a

J Fv u}\"’[dQ]j G(P) dPH(Q,P)~ -
k>0 Ai=1a=10Xjq

= B lim Z Z J[ Vi i, [dOP A0y A 1F 4 (O Or,0)

l—'wk>ok Ai=la=1

X J G(P) dP(Q\P) " e,
N (10)

In conclusion if equation 9 is satisfied equation 10 is verified and p is a KMS-state.

(i) Conversely let & = Fhj ) with A = h"‘)(Q)h(pl .) and g = exp (i¥9") where
9 = 8"(x) is a sequence of C 00-functlons converging pointwise to 3y,(x). Then if the
forces have finite range the limit A — oo disappears and we obtain equation 9 using
dominated convergence theorem as in Section 2.

Remarks.
(1) The converse statement of Corollary 2 will remain valid for infinite range
forces whenever it is possible to permute the limit A — co and r — co.
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(2) Equation 9 can be written in a more suggestive form:

0o . .
o ALAQL] = BF,, (O IdO Y]

iy

¥ ﬁ lim Z %”’[dQ”‘) dQ "’]F’;[A:(Q(") Q(n))
A0 p> 1 n! ValA
(11)
where
c 2% a )0
Fyrend=- 3 3 99, (12
0coaQcO xi,a
Oagi 0#¢

The first term on the RHS is the contribution from the particles inside A while the
second term represents the effect of the outside of A.

2.4. Equivalence of KMS and BBGKY equation

The next result one would like to establish is that the p**) are absolutely continuous
with respect to the Lebesque measure, i.e. that there exist correlation functions
p*(X*a*) satisfying the usual BBGKY equation. However, to derive such a result we
shall need extra assumptions on the potentials (finite range potentials) and it is not
known how such conditions could be relaxed.

To show that the g*) are absolutely continuous with respect to the Lebesque
measure we shall show that all derivatives of rank 1 considered as distributions over
R** are measures [12].

We shall simplify the notation in the following by restricting ourselves to the case
of 1 and 2-body potentials; however as we have seen in section 3, we could discuss
exactly in the same way the general case of n-body potentials; for 1 and 2-body
potentials theorem 2 becomes:

o 0
p P(k)[dX“";a"‘)]z—ﬁ[a ¢ (x;0))

Ja ja

+ )

i#j

a ) ,,xa)] 50 [dX®; o]

N

—f lim ¥ j FEEVIX® dx; ¢®G]
Va

A= g=1i

X

O ¢(2)(xi0j; Xc). (13)

Jra
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For a given & let

m=(my,....,m)  m;=(my,...,my) m;,€{0,1}

|’11l = Z mj,a
Jya

We then have to prove that D,p® is a measure.
By definition of KMS-state (condition b) we know that for each bounded ¥V,

. 0
TE[dQ] = | p**V[dQ dqlyyv,(9) $?(q;, 9)
0X; 4

is a measure over (R® x {1, 2,..., N})* and that T{[dQ] —== T™[dQ] in the sense

of distribution of order 1. To be able to conclude that T®[dQ] is a measure we shall
introduce the condition that ¢® is a finite range potential.

Theorem 3. If the potentials ¢™, n > 1, have all their derivatives of rank 1 in C° and
have finite range for n > 2, then any KMS-state has correlation measures which are
absolutely continuous with respect to the Lebesque measure; furthermore the correlation
functions are of class C* and satisfy the usual BBGKY-equation.

d . 0 "
p pOX,0) = —B . [¢“’(xjaj) + Y ¢Pxj05; xia:):'P(k’(X, )

Jja Ja i#]
0

axJ',a

- B % jdiﬁ"‘”’(Xf, ¢G) ¢ (x0;; X0). (14)
5=1

Proof (By induction)

(1) For |m| = 1 Theorem 2 implies that
d 0

0x 0x

where F;, is a continuous function. It thus follows that (9/0x;,)p® are regular
measures since with our conditions on the potentials

Q) = Fup™aQ) — B |5 Va0: d57) 5 97 9

F;,p"(dQ) and jﬁ"‘“’(dQ; d56) =— ¢*(q;, %)

0x;

71,2
are regular measures.

(2) Let us then assume that D,/ is a regular measure for any m with |m| = M.
For m,, = 0 we then consider D, (6/0x, ,)p™®;

D, 2 5¥(dQ) = D, [FS,G(Q);S“’(dQ) - ﬁﬂﬁ“‘“)(a@; d56) 52

m
- axs,a s,

¢(qs, JE&)]

Therefore by the induction hypothesis and the condition on the potentials the RHSisa
regular measure and D, p is thus a regular measure for any m with |m| = M + 1.
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In conclusion all derivatives of rank 1 are measures from which follows that
pldX, a] are locally bounded functions [12, p. 189]; furthermore from theorem 2 and
the finite range condition on the potential all derivatives of rank 1 are functions from
which we conclude that j*(X, o) are functions which are absolutely continuous [12,
p. 189]; at last all derivatives of order 1 being continuous functions it follows that
p™(X, o) are of class C* [12, p. 61].

Remark. Theorem 3 can be extended to include potentials with singularities at
coinciding points; indeed it follows from the above proof that if the potentials ¢ ™ have
all their derivatives of rank 1 which are locally integrable with respect to p®[dQ],
k = n, then p®™(X, o) is an absolutely continuous function on IR* which is of classC*
on R%. (We remark that in the definition of KMS-state we have only imposed this
condition on the derivatives of order 1.)

2.5. Remarks on KMS-states

In this section we discuss some general features of KMS-state under the additional
assumption of clustering. To simplify the discussion here, we suppose that the
correlations are C' functions and that we have only one and two body forces.

0 _ 0 _
FY(q) = - P og), FP(q,q=— e ¢®(q, 9.

The two body force is assumed to be bounded at infinity and locally integrable
IFE2(¢. 9l <C  |x—x>R

f dgiF*¥(q, g)| < (15)
Ix—% <R i

According to the Theorem 2, the states verify the KMS condition with respect to the
forces F{"(q), F{*'(qq) and the sequence of volumes V; if and only if

0
K ﬁ(")(Q) = B[Fa(:”(q,-) T Z F;Z)(qj, Qi):|ﬁ(k)(Q)
+Fjim quff’(q,-, DA™ (0, D@ (16)

Xv; 1s the characteristic function of V. . _ .
We say that the state is #*-clustering if the truncated correlation functions satisfy

de’z:---,kolﬁ(rl"‘)(Qh‘12,~-,Qk)| < oC. (17)

The main observation is that for a #!-clustering state the limit in the right hand side of
(16) exists for the whole hierarchy of correlation functions if and only if this limit exists
for the one point function, i.e. if

lim J dgFi?(q, q)p"(q) exists. (18)
Va

A=
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Indeed p**1(Q, ) — p'*(q)p™(Q) is a sum of products of truncated correlation
functions where ¢ occurs always in conjunction with some other argument g; € Q.
Thus, by (17), this function is integrable in §; the condition (15) on the force with the
dominated convergence theorem allow to conclude that the limit in (16) exists as soon
as (18) holds.

Consider now a %' -clustering KMS-state with respect to the sequence of volumes
V,, and let us investigate in what sense the same state can be KMS with respect to
another sequence of cut-offs. Let y;(q) be a sequence of functions with compact
support on R* x {l1,..., N}, converging to 1 as A — oo, and such that

lim j dgp" (PFP(q, Pya(q) exists. (19)
A=

As above, the clustering implies that the lim,_ ., | dgp**(Q, F(q;, §)y(g) exists
for all correlation functions and we have

lim qup(k+1)(Q DF(q;, Drv,(9)

A= o

= lim quﬁ"‘* YO, PFH (g5, Dx:(9)

A=

+ lim qup”‘*”(Q DFP(g;, O(xvi — 1)@). (20)

A= 0

Using the clustering and dominated convergence again the last term of (20) is of the
form F{V(g;)p™(Q) with

FM(q)) = llim Jd@Féz’(qj, DI(DUy, — 1)(9)- (21)
We see that BBGKY equation (16) holds for the new cut-off y,(§) provided that the
one body force is replaced by F! + F(,

The following conclusions are in order?)

(i) If F F1)(q) is non zero, the one body force depends essentially on the limiting
process used to deﬁne KMS-states. If the two body force has long range, the
particles at infinity can still produce an effective field everywhere. This
effective field may depend on the cut-offs used to sum up the contributions to
the force of these faraway particles.

(i) Assume that the state has some translation invariance property (say, under
some subgroup of the translations), then the first equation of the BBGKY
hierarchy yields

J dgp(q)F;"(q) + lim J dqj dgp'(q, PF;(q,§) =0
Cell A= o0 JCell Va

This expresses that the total force (irrespective of a decomposition in one and
two body effects) acting on the cell is zero, as it should be the case in an
equilibrium state.

4 These features will be discussed in more detail in [7].
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(111) We see that a given state p can be considered as an equilibrium state with
respect to the parameters F''), F®, {y,. } as well as an equilibrium state with
respect to the parameters F() + FV F® {y,} This shows that there are
different equivalent parametrisations of the same equilibrium state (section
Gibbs states with Hamiltonian H,, the one body force with respect to which
p satisfies the KMS condition may differ from the one body force entering
in H,. An example of such a situation can be found in [6].

II1. Examples—one and two component plasma in R'.
3.1. Definition of the systems

In this part we give an explicit representation of the density distributions u$(Q)°)
for the one and two component plasma. We then check explicitly that the
corresponding states satisfy the KMS-condition. To compute these density distri-
butions we use the method of functional integration developed by Lénard [8], a
method which has been widely extended for Coulomb systems [9]. However the
application of this method to the calculation of the state of the Jellium (=one
component system) is new. Let us recall that:

n (_l)p - - A . e
MS\)(qla---s q':) = Z p' pdql dqpp( +p)(q1,-- vs Qns G154+« qp) (1)
. A

p=0

where

N
qu-zfdx 5.
A A Gt

In this first section we define the systems and summarize briefly the part of

Reference [8] which is relevant for our purpose.
The energy of a two component plasma with charges ¢ = *1 in the interval

[L,, L,] = R!is:

HQ™ = - Y  |u— xlow. ()

l<k<i<n

The energy of a one component plasma, or jellium, of positive charges in the
interval [L,, L,] = R! in the field of a uniform background of negative charges with

) Wealways assume Maxwellian distribution of velocities, and write simply x{(Q"), p™(Q") for i™(Q"),

Q).
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fixed density pj is:

n Ly
HQO™ = — Y |x—x|+ ps Y J X, — yldy
I<k<i<n k=1 JLi
1 Ly Ly
—“Pﬁf dXJ dylx — y|
L1 Lq

2

n
+ 22, - Ly - - Ly 3

Since we will treat both systems with the same formalism it is useful to write the
Hamiltonian for both cases in the form

HE") = = | s | @y i 0 ity 0) @

L1 Ly

where c(x; Q™) denotes the charge density and ¢, = SLZ c(x, Q™) dx the total charge:

L1
n

e(x; 0™y = > 6,0(x — x) €= ¥, O (two component)
k=1 k=1

c(x; 0" = Y 0x—x) —py ¢, =n— py(L, — L;) (one component).
k=1

The main observation is that with

xX+y
2

the energy can be written in the form

_ |x;)’| — min (x, y) —

H(Q™) = V(Q™) — ¢, rz (x = Ly)e(x; Q™) dx
and
™) = rz . J X dy c(x; Q") min (x, p)e(y; Q") — caL, (5)
L1 L1

is the covariance of the Wiener integral when L; = 0.
It is important for the following to notice that for n =0, V'® = 0 for the two
component plasma whereas

VO =pi3(L, — L)

for the jellium.
As in ref. [8], we shall consider the modified system described by V(Q™) instead
of H(Q™). In the strictly neutral case (c, = 0) both energy functions coincide. In the
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non neutral case, V(Q™) differs from H(Q™) by the effect of a suitable external field®).
States arising from other classes of boundary conditions are studied in [6].

For practical calculations we shall first choose L, = L, L; = 0, we shall then come
back to arbitrary intervals by a shift of the origin.

One introduces the space of trajectories (p(x) (Brownian paths), and the joint
probability distributions for trajectorles starting in ¢ = 0 at x =0 to be found in
do,...dp, around @, ..., at x,...x,.

P(@ix1,..., 0pXp) = P(Pp — Ppo1s Xy — Xp—1).-. P(@2 — @1, X3 — X1)P(@y, Xy)

P(p, x) =

2
\/;Wexp (— 1";—)() x> 0. (6)

We denote simply by (—) averages calculated with the probability measure defined by
(6). The Boltzmann factor is then represented as

exp (—BV(Q™)) = <expi J c(x; Q™)e(x) dx)
0

L

Cexp (ip(xy)) . ..exp (ip(x,)) exp (—ipp L o(x) dx)»
jellium. (7b)

{(eXp (io @(xy))...exp (io,0(x,))> two component (7a)

With the help of (7) we can express all statistical mechanical quantities as averages of
the form <exp (|3F(e(x'), x') dx')> which can be evaluated by the Wiener—Kac
formula

Cexp f Fo(x'), X') dx'y = r dpU.(p, 0). ®)

U@, ') is the kernel (in the configuration representation Z2(R, dp)) of the
‘propagator’ U, solution of

dU,
dx e r(x)st UxZO == I (9)
where I'(x) is the differential operator

2
dp?
acting on %R, do).

F(g, x) acts as a (possibly x-dependent) multiplicative potential on Z*(R, dg)
and we set U2 =exp (I'yx) for the semigroup generated by the free part I,
= f(d*/do?).

We denote p = —i(d/d) the operator canonically conjugated to ¢ on #*(R, do).

In connexion with (8) we shall make use of the following property. We say that an
operator 4 on Z*(IR, do) is periodic if 4 commutes with the discrete translations

I'(x) = + F(o, X) | (10)

®)  This external field can be produced by external charges at the boundaries.
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exp (2innp), n integer. If A is represented by a kernel 4A(p, @) this is equivalent with
A(ep + 2nn, @') = A(p, ¢’ — 2nn). (11)

To each periodic 4 on #?(R, dp) we associate the operator A acting on
L[ —m, 7], do) defined by

;4_: Z P exp (217'Cnp)A '392([—1!:. n], dp)

n= —a

where £ is the natural projection of #%(RR, dp) on L*([ —=, n], do).
If 4 has a kernel, one has

Alp, 9 )= Y. Alp +2mn,¢). (12)

If A and B are periodic, we have AB = AB and A* = (A4)*. In particular exp (ik¢), k
integer, and p are periodic.

It is easy to check that p is simply the operator — i(d/d¢o) with periodic boundary
conditions on L*([—mr, 7], dp).”)

If the propagator U, is periodic, then (8) becomes

<exp ([} Ao dx')>: " a000.0. (13)

We define also the Fourier representation of an operator 4 on ([ —n, n], do) by

_ 1 T n _
(klA|l) = o J J do do' exp (—ilke — lp") Ao, ¢'), k, I integers.

3.2. Density distributions of the two-component plasma

We treat first the case of the two component plasma which is simpler. We consider
the grand-canonical ensemble with partition function

Z(Ly= Y g—! Y j dxl...f dx, exp (—BV(Q™))
s050 o0

nz0 """ g, 0

= <exp (f 2z cos o(x') dx’)>. (14)
0

The corresponding semigroup U, = exp (Fx) is generated by I' = I'y + 2z cos ¢ and
is periodic for all x. Hence from (13)

Z(L) = f ) doU, (o, 0). . (15)

) We do not discuss here under what general conditions A is well defined. In all applications 4 will be
either exp (i¢) or a bounded function of p (see also [13, XIII 16]).
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The finite volume correlation functions are

pL(Q") =

ZiL) <exp (ig1¢(x1)) . . . exp (i5,¢(x,))

L
exp U 2z cos @(x') dx’)>
0 “

From (1) we find the finite volume density distribution functions
Z

HILO™) =

exp (f Flo(x'), x") dx’)>
0

2zcosp x¢A
0 xeA

<eXp (io19(x1)) . .. exp (io,0(x,))

with

Ko, x) = { (16)

for any A < [0, L].

To calculate uf’, by the Wiener—Kac formula we see on (16) that we have to
consider an x dependent but piece-wise constant interaction, i.e. we have to use the
semigroup U, for x¢ A, but the free semigroup U? for xe A, The full ‘propagator’
entering in (16) is then for A = [a, b], x4, ..., x, € [a, b]

U, W(Q™ b, a)U,
with®)
W(Q™|b, a) = T(Uy-,, exp (io,¢) ... Ug, _, exp (io1p)Uy, _,). (17)
Clearly W(Q™|b, a) is periodic, and thus from (13), we find
u (g = o 122400, s WO b, DT,)(9, 0)
.[—1: doU (e, 0)

In order to take the thermodynamic limit
(1) We shift the origin from 0 to L/2, replacing

L L i
L—b by 5—-1), a by sta X by X+ o
(i) We know [8] that T = — fp2 + 2z cos ¢ has a maximal non degenerate

eigenvalue y, with eigenvector |Q). (Actually the eigenvalue equation for I is
the well known Mathieu equation.) Hence as L — o0, U, behaves as

U, = exp (7 L)I(Q] + o(exp (yoL)) (18)

8) T is the ordering operator, i.e.

0 . 0 ; 0
W(Q™ | b, a) = U yiny €XP (i00m®) . Uz )~y EXP (i0,1)0) Usy)_,
where a < X ), <x,3 < ... £ Xy < b
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From (i) and (ii) one gets

HPQ™) = lim W) = QT Q" |5, )T, 1)

L— oo

= 2" exp (—yo(b — )QIW(Q™ | b, a)|Q). (19)

(19) expresses the system of density distributions u{” in terms of known quantities, the
fundamental vector |Q2) and the free propagator U?2. We notice that (z"/n!) W(Q™ | b, a)
is simply the nth order term of the perturbation expansion of the semigroup U, _,

¥ = z j dx, .. j dx, W(Q™ | b, a). : | (20)

From (20) it is easy to check the normalization and the compatibility relations of the
myHm
s Q™).
We can write the u{’(Q™) in a very suggesting way by looking at the Fourier
representation of W(Q™ |b, a). After a straightforward calculation one finds:

IW(Q™ | b, a)lk) = exp [ — BH(Q™, ka, —IB)] b, 11,0 21)

where H(Q™, ka, — Ib) is the Coulomb energy of a neutral system of (n + 2) particles
located at a, x4, ..., x,, b with charges k, 54, ...,0,, —L

HQ"™, ka, —lby= — Y oolx;—x;| —k Y, olx;
I<i<j<n j=1
+1Y ajlx;— b| + kilb — al. 22)
i=1
Then

u(Q™) = z"exp (—yolb — @) Y, U exp (—BH(Q™, ka, — b)) O, +k-1-

k,ieZ

Q, = (k| Q) are the Fourier coefficients of the fundamental vector Q. They are real and
positive:

Q. = Qk>0

Thus x4 is a convex combination of neutral Boltzmann factors with boundary charges
k and —/ at a and b. The boundary charges k and —/ represent the net effect of the
external configuration of particles on the finite region [a, b].

Finally we check explicitly that the state is invariant under the charge conjugation
operation ¢ — — g as it should be since it is already invariant for a finite volume. From
equation 16 we notice that the charge conjugation is implemented in #*(IR, dp) by the
operator C

(Ch)p) =¥(-9) CULC*=T,. (24)
Since the eigenvector () is even, we have CQ = Q and the relation
Q= (CQ), = Q. (25)
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3.3. Density distributions of the one component plasma

The grand-canonical partition function is now with (7b)

Z(L) = <exr> (L (z exp (ip(x")) — ippp(x')) dx’)> - (26)

We have to define here the semigroup U, = exp (I'x) generated by I' = I'y, + z exp (i)
— ipg¢. We consider first the semigroup U, generated by I'} = I’y — ipg¢. U, can be
written in alternative forms

— RBp2y3 2
= exp (—fl—p;i) exp (— p (p + %—)—C—) x) exp (—ipgxd). 27)
Taking (27) as a definition of U, we check directly on (27) that U, x > Ois a strongly

continuous semigroup of contractions. U, takes into account the presence of the
background density p, only. We note the following useful relations®)

UL, exp (i¢)U, = exp (—fppx*)U2 , exp (ip) Uy (28)
UL,pUs,=p — ppx. (29)

Then U, is defined as a perturbation of U, by the operator norm convergent series

U, = ¥ = L dx, ... J dx, T(U,_, exp (i¢)...U,, , exp (ip)UL,).  (30)

nZOn! 0

Here occurs the main difference with the two component case. U, (as well as Uy) is not
periodic for all values of x, since

exp (—iap) Uy exp (iap) = exp (inpzx) Uy

: 31
exp (—iap) U(z) exp (iap) = exp (ioppx)U(z exp (—ix)) o

implies that for o = 2zn, U, is periodic only if x = kp; !, k integer.

This fact, which is due to the presence of the continuous background, is at the
origin of the periodic spatial structure of the jellium.

To take the thermodynamic limit, we consider a discrete sequence of boxes
L =Ipz "', linteger. Then Up; 1 is periodic and we get in view of (13)

Fi4 4

doU,z1(9,0) = J doU'(e, 0) (32)

-_n

Z(lpg ") = j

-

where we write simply U = U,1. The existence of the thermodynamic limit is insured
by the next lemma proved in Appendix B.

?)  Occasionally we use the unbounded semigroups U’ ,, U, x > 0. Whenever they occur in the
following, there will be no problems of domain.
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Lemma B1. U is compact and has a unique eigenvector Q with positive Fourier
coefficients Q. The corresponding eigenvalue exp (yo) is positive and has the largest

modulus of the characteristic numbers of U. U* has a unique eigenvector QF, Q, > 0, with
the same eigenvalue.

As | — o0, [ integer,

Uzt = U' = exp (yo!)P + o(exp (yol)) (34)
with eigen (but non self adjoint) projection
(€Y
= 35

In fact U and U* are related by the charge conjugation. The charge conjugation ¢ —
—0, pp— —pg is again implemented by the operator C (24). One has now

CUC* = U™, € =L (36)
and
= (CQ) = Q_,. (37
With the lemma we find the Gibbs free energy ¢ in the thermodynamic limit
g= lim — g Zpg = — PR (38)
1= Plpg p

We study now the correlation functions. Their expression for finite volume is

Z(L)

pL(Q™) = <exr) (ip(x,)) . . . exp (ip(x,))

exp ( J:) (z exp (ip(x")) — ipz(x')) dX’)>' (39)

In order to exhibit the spatial periodicity of the jellium, we calculate first the one point
function. The application of the Wiener—Kac formula gives

o do(U,_, exp (i9)U,)(@, 0)
1 doU, (e, 0)

To take the thermodynamic limit

(i) We shift L — x— L/2 — x, x — x + L/2 and set L/2 = lp; !, [ integer.
(ii) The operator entering in (40) is U,,; 1U_, exp (i9)U,U,,51; (31) shows that
U711 and U_ exp (ip)U, are periodic'®)
(iii)) We use the lemma with (34) and (35) and find

pH(x) = (XU -, exp (i) U|Q). (41)

pr(x) = oE (40)

(9‘ 1)

10) It is important to note that the product U, is periodic for all x although U, alone is not.
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The fact that p™*)(x) is periodic with period p; ! appears now clearly on the structure of
(41)

p(x + pgh) (XU p;1€xXp (i) Uy 4 -1 1)

_ Z
(@19
_ Z
(@)

(U 1U-_, exp (i9) U, UIQ)

= G P (~ W@V exp (DU, 1) exp (70

= pV(x).

It remains to show that p'*)(x) is non trivially periodic. This is done in the following
lemma proved in Appendix B.

Lemma B2.

(i) For every x, p§)(x) is a holomorphic function of B in a neighbourhood of the
positive real axis § > 0.

(if) For any open set of values of B, p§’(x) is not a constant.

To find the density distributions u4” one proceeds along the same lines as for the
two component system. The density distributions are now from (1) and (39).

HOH(Q™) = Zi 3) <exr> (ip(xy)). . . exp (ip(x,))exp (L Flo(x), x’)dx’)>
with
_Jzexp(iQ) —ipsp x¢A
Ko, x) = {_ips(p e (42)

The Wiener-Kac formula for (42) involves now the ‘propagator’ U, _,W'(Q™|b, a)U,
with

W(Q™|b, a) = T(Uj-,, exp (i$) ... Uy, -, exp (i$) Uy, -a)- (43)

To go to the thermodynamic limit, we shift the origin as in (i) setting L/2 = lp; !, [
integer. We notice that the product U_,W'(Q™ |b, a)U, is periodic (although U_,,
W'(Q™|b, a), U, are not periodic separately). Then we use (13) and the lemma to find

n

Z

(€| Q)

KOQ™) =

(@U_,W'(Q" b, a)U,|V). (44)

The density distributions of the jellium have a structure similar to those of the two
component system (19) except for two important differences. U? is replaced by U,
which takes the background into account and they are invariant only under discrete
translations /pz !, [ integer.

We can also express the u! as convex combinations of neutral Boltzman factors.
From (28) we have

w'(Q@"™|b,a) = UyU2,W(Q™|b, a)U? U’ ,exp (——ﬁpB zn: x,z) (45)

i=1
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Inserting (45) in (44) and using (21) one gets

pxy, - X)) = 2" Y el@)e(b) CXP(—ﬁpB ) X?)

k,leZ i=1
X exp(_ﬁH((xla -“lsxn);kaa _lb)) 5n+kﬂl,0 (46)
where H((x,, ..., x,); ka, —Ib), is as in (22) (with a single type of charges). The
coefficients in the superposition (46) are
k| U7 U U, |Q)
@197

(|-, U, U%,10),
@)

Notice in (46) that as expected the background acts as a harmonic one body force.
It is clear that in addition to the state that we have just discussed, we have also all

its translates in the period p; '. These translated states are simply obtained by shifting
the origin in the process of the thermodynamic limit ().

cla) =

(47)

() =

3.4. Properties of the equilibrium states of the Jellium

We shall now show that the state of the Jellium defined by equation 44 is neutral and
independent of z for z # 0.

To study the z dependence of the semi-group U,(z) equation 30, we remark that
U,(z) transforms under the unitary transformation exp (iap) as in equation 31.

Since exp (iop) is periodic, the same relation holds in #*([ —r, n], dp) showing
that U(z) and exp (io)U(z exp (— i) equation 32, are unitarily equivalent. From this
we deduce that the eigenvalue of Lemma Bl verifies the identity

exp (yo(2)) = exp (yo(z exp (—in)) + iwt).

Moreover, by the same arguments as those used in Lemma B2 this eigenvalue is a
holomorphic function of z in a neighbourhood of the positive axis z > 0. Then this
identity implies that the Gibbs free energy is necessarily of the form

9=1(0s. B) —%ﬂlogz

where f(pg, f) is independent of z.
If g, denotes the finite volume Gibbs free energy, we have by definition

1 L
Bt g=1 f pf(x) dx
0
and hence

. d d
hm(—BZEZ—gL) = "BZEQ = Px

L— w

1 L 051
= lim ZJ p\D(x) dx = pg J pV(x) dx

L— 0 0
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showing that the average density of particles equals that of the bath. The exchange of
the limit and of the z-derivative is justified by the fact that g is a differentiable function
of z which is the limit of concave functions of z. The second limit results of the spatial
periodicity of p*(x), and of the estimate |p{*'(x) — p(x)| < C, exp (— C,(L — x)),
x > 0, which can be obtained on the basis of Lemma BI.

Finally, let us show that the correlation functions are indeed independent of z. We
note that (41) can be written in the form of a trace which is invariant under the unitary
transformation exp (ixp). We find

pM(x, 2) = z Tr P(2)U_ (2) exp (i$)U,(2)
= z Trexp (—iop) P(2) U (2) exp (i) U,(z) exp (iop)
=z Tr P(z exp (—ia))
x exp (—ioap)U_ (z) exp (i) U,(2) exp (iop)
= zexp (—in) Tr P(z exp (— i)
x U_ [z exp (—in)) exp (i¢)U(z exp (—in))
= pM(x, z exp (—in)).

Here P(z) is the projection (35) which transforms as exp (—iap)P(z) exp (iap) =
P(z exp (—ia)). Since for x fixed p'*)(x, z) is analytic in a neighbourhood of z > 0
(proof as in Lemma B2) this equality shows that p*)(x, z) is in fact independent of z.
The same is true for the full set of correlation functions. Thus in the thermodynamic
limit the state is determined by p, alone.

As a last remark we note that

B ( d ) N = (N,
gL =

dz I

is the square of the fluctuation of the number of particles by unit volume. The fact that
z(d/dz)g, becomes independent of z as L — oo shows that {(N — {(N>)*),/L tends to
zero as L — oo indicating that the particles fluctuations are not normal in the jellium.
Indeed by neutrality (N) ~ Lpgzas L — oo the particles fluctuations coincide with the
charge fluctuations for the jellium.

To conclude this discussion we note that the state of the Jellium is solution of the
BBGKY equation, as we shall prove in the next section. It is then a general result that
every clustering solution of the BBGKY-equation for Coulomb systems is neutral,
with charge fluctuations which are not normal (see [7]).

3.5. Verification of equilibrium equation

We shall now verify that the equilibrium states defined by equation 23 (two
component plasma) and equation 46 (Jellium) satisfy the KMS-condition with respect
to the forces defined for the original model by equation 2 and equation 3.

Using the result of section 2.3 it is sufficient to verify that the u{(Q™) are
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solutions of equation 2.11 for an appropriate sequence of volumes ¥ — R'. In our
examples equation 2.11 reads:

0
a0 Q) = BE(Qu(Q) +

fp lim ZLJM dg, - .. dgui " (QQ)F*(q;, 0) (48)

Vo Rl > k!

Q = (‘?1:---=qk) 7t (fiao'_i)-

N
J dq = J dx; > N =1 (Jellium), N = 2 (2-component)
VA VA =

k
F{* (g, Q_) = Z 0:6;sign (x; — X;)
ji=1

F(Q) = ) o,0;sign (x; — x;) 2-component.
J#i
For the Jellium the sequence of volumes V =[L;, L,] must be such that
XL, + L,) = x, is fixed; for a given x,

F(0) = Z sign (x; — X;) — 2pg(x; — Xo).
i
We shall first treat the two component plasma and then give the necessary
modifications for the Jellium.
We calculate first (0/0x;)ur(Q). For this we use the representation (23) of u,(Q) in
terms of Boltzmann factors. Since —(8/0x;)H(Q™, ka, —Ib) = F(Q™) + (k + I)a;
one has

0
F uQ™) = BF(Q™)uI(Q™) + Bvi(Q™) (49)

where

vi(Q™) = 62" exp (—yo(b — a)) Z (k+1) Sy exp (—BH(Q™, ka,—Ib)) b¢,+x-1-

k,le &

The first term of (49) is the usual force for the particles in A. v{?(Q"™) represents the
effect of the infinite system on A and has to be shown equal to the last term of (48). We
notice that by (21) and exp (—7y,0)IQ, = (QU_,pl)), vV(Q"™) can be written in the
more compact form

VAQ™) = a2 (QIIW(Q™ | b, a) + W(Q™|b, a)plIQ) exp (—yo(b — @)).  (50)

Let us then evaluate the remaining term of equation 48. For V' we choose an interval
[L,, L,] > [a,b] and we denote by R = (ry,...,r,), r; = (xj, ;) and S = (sy,..., §,),
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s; = (x{, o]) the configurations of particles in [L;,a] and [b, L,] respectively,
Q = RS
The force F(Q) can be decomposed into

Fi(Q_):Fi(R)"‘Fi(S):Gi(Z o;— Y, 0'}’) (51)

rieR 5;€8

which is simply the difference of the total charge of the left and the right of [a, b]. F{(Q)
is independent of the position of the i particle in A. The evaluation of the force due to
the outside of A, i.e. the last term of (48) is given by the following lemma.

Lemma 1.

:f | UAQRS)F(S) dR dS
=~ QT [p. Ty, 17(Q1b, ) T,I)

Proof. The integral over the R variables is just a compatibility relation. In an
explicit notation and introducing (19) we are left with

2" Z —U— Z J dx’| j dx’
v>1 ay,.
x (QU_,,W(SYQ|L,,a)T,JQ) ¥ o).
i=1
Using W(SYQ|L,,a) = W(S¥|L,, b))W(Q|b, a), we see that we have to sum the
series

d "7 <(v) i "

b>]U‘ Z J X1 L dva(S |L2,b)j§1 gj.
The result is obtamed if we use (20) and the fact that

7 oS | Ly, b

[, W(S?| Ly, b)] = {,-; WS L, 5)

52
0 ifo=0. (52)

The next proposition shows that (48) holds for an arbitrary sequence of intervals
V— R

Proposition 1. The state of the two component plasma defined by equation 23 is a
KMS-state with respect to the forces defined by equation 2 and any sequence of boxes
V— RL

Proof. Choose an arbitrary sequence of intervals ¥ = [L,, L,] converging to R'.
It remains to show that the limit in the last term (48) exists and is equal to v,(Q).

If we apply the Lemma 1 to the evaluation of

J\ ulQQ)F(Q) dQ = J PAQRS)F(R) + F(S)) dRdS
VA -
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we find exactly v,(Q) plus the two terms
—0,z"(Q) U._ 1'.215(71_2 U b I’I_/(Q |b, a) ﬁalg)
~ 0 QU_,(Q|b, )T,T-,,pT,,|0).

They converge to zeroas L, — oo and L; — — o0 in view of the fact that from (18) and
(25)

(QU-.,pU,, = [(QPIQ) + exp (—7yoL,)o(exp (yo(L2 NI
and

QIpIQ) = > kQ; =0.
k

To verify the equilibrium equations for the jellium we calculate (6/0x;)p"(Q™)
from (46), using successively equations 47, 21, 45, 29:

— WP(O™) = BF(Q™) — 20,)i(Q) + BHPQ™) (53)

n

QW) = =
(@19) (@1U-,pW' @7, &) + W (@7, )pU,1Q)

+ ps(b + a)u(O™).

In addition to the two body force occurs the one body harmonic force —2pzx which

can be seen on the Hamiltonian (3) (with L, = — L,). The lemma 1 and proposition 1
are modified as follows:

Lemma 2.

n = L c ’ n
LA uAQ™RS)F(S) = @ Q|U_,[p, Uy, IW(Q™ b, a)U,|Q)

— ps(Ly — b)u(Q™).

The proofis the same as that of Lemma 1 with W’(Q) replacing W(Q). This causes
only a modification of (52). With (45), (52) and (29), we have

Y o{W(SP|L,,b)=vW (S®|L,,b)
ji=1

=[p, W/(S“|Ly, B)] + pp(L, — B)W(SV|L,, b)
giving rise to the additional term (L, — b)u,(Q) in the Lemma 2.

Proposition 2. Let V' = [L,, L,] be a sequence of boxes such that Ly + L, = 2x is
fixed.

(i) The state of the jellium defined by equation 46 is a KM S-state with respect to the
forces defined by equation 3 and any sequence of boxes V such that 2x, = kpg !,
where k is integer.

(it) This same state is not a KM S-state with respect to the forces equation 3 for a
sequence of boxes such that 2x,py is not integer. However, if 2x,py is not
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integer, this state is a KM S-state with respect to a modified one body force which
corresponds to add an external field.

Proof.

(i) Let us first consider a sequence ¥V with L, = I,p; !, L, = L,p; ! where l,, [, are
integers, /; > — o0, [, > o0, I, + [, = k fixed.

The proof is then the same as that of proposition 1 because the operators are
periodic and we use now the charge conjugation relation equation 36. Indeed it follows
from Lemma 2 that

vi(Q™) = 1iml JdQ_JuV(Q—Q_)Fi(qu—) + po(Ly + L)u(Q™)
V—R
and thus equation 53 is identical with equation 48.
To conclude that the same result holds for arbitrary sequences of V' = [Ly, L,]
centered around x, = $kp, ! we use the fact the state is .#’'-clustering and equation
48 is equivalent to BBGKY:

é L, ,
. p®(X) = BF(X)p™(X) + B lim dxp®*V(Xx) sign (x; — X). (54)
' g
But
L, (L21 i _
lim J. dxp** D(Xx) sign (x; — X| = lim {j dxp®+(Xx) sign (x; — X)
Li— -0 JL, Li— - [L,]
L,— 4+ Ly,— +©
rL,
— dxp®t(Xx)
JI[L:]
(L]
4 dxp** 1)(X)"c)}
Ji,

where [L,]1=1Lpz", [L,]=1Lp5"' with [;, I, integers such that L, =[L,] — ¢,
L,=[L,] +e ¢€[0, pz'] (see Figure 1) and thus

L; [L2]
lim dxp**V(Xx%)sign (x; — ¥) = lim _ . _
Ly L £ ) Lo Jig dxp®* V(Xx) sign (x; — X) —
27 2T &

€ 0
—ﬂwmﬂjnﬁ¢W@—-JcﬁdW@}
0 —€

(since the state is clustering, and periodic with period pz ').

(L] [L.]

=1

> Fs

Figure 1
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The proof is thus concluded since p)(x) = p'M(—x).

(i1) Let us then consider a sequence ¥ = [L,, L,] centered around x, such that
(Ly + L,y)pp = 2xoppisnotinteger, but L, — L, = Np; !. We consider again equation
53 which we now write as:

L,—d L, L, '
o0 = pE0pP0 +p tim | [ [T =[]
i L,—5 L,-5

L14»~ 1_5

x dxp**V(Xx)sign (x; — X)
where L; — § = npy !

| Ll‘_é | (I) ‘:OI—(S XOI | L2|_5 [ ~1
| PR | — | l R
> - D
Ly Figure 2 L

We thus obtain

a L,—d
F pP(X) = BF(X)p™(X) + B lim J. dxp®*(Xx)  sign (x; — )

Ly—» - JL,-6
Ly— +

—~ 2Bp™(X) J " dxp(E)
0

or

T o) = [Z sign (x, — x,) — 2pB( = ”“2‘25)} p(X)

2
rL,— 5
+ B lim dxp** (Xx) sign (x; — X)
e e
]
= 2BpM(X)| dx(pV(X) — ps). (55)
Jo

In conclusion u,(Q) given by equation 46 is not a KMS-state with respect to the force
equation 3 if {3 dx(p")(x) — pg) # 0, since as we have seen in (i) its correlation
functions satisfy equation 54 without the last term.

Remarks.

(1) We would like to stress the fact that the state we have constructed using the
modified Hamiltonian V(Q™)is, as we have shown in the two propositions, a
KMS-state with respect to the original Hamiltonian.

(2) The example of the Jellium illustrates the remarks discussed in section 2.5
namely that a given KMS-state with respect to { F, F,, {¥'}} may also be a
KMS-state with respect to {Fy, F,, {V'}}:
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let
V=I[L,,L,] with L, + L,=2xy=kps!
then
Fy = —2pg(x; — xo)
let
V'=[L}, L5] with L)+ L), =2x,=kp;' + 2¢
then

Fi = —2pg(x; — x5) + 2 f dx(p'(X) — pp).
0

Appendix A

Lemma A.1. If the correlation measures of a state u such that W% < £ [u] satisfy
the condition

j pPLAU™]1ps, ol (U™) < o0
=

then, for all h and g in AV with basis in V,, g{h, K} € L[] where K denotes the kinetic
energy function, and

ulgih, K31 = ulglh, K}y, ] = Jj][J[p[dU dU' dU"] g (UU") Y Ohr(UU") pia

uje UU" 0xiy m
l<a<w

Proof. Following the algebraic derivation of Gallavotti and Verboven [1] we have
the following combinatorial identities:

(i) Forany h = Phrand g = Lgrthen h-g = S (h-g)rand {h, g} = L[{h, 9}1+

where
(gl = 2 2 hy(RVIgAU\V) (A.D)
@ = 3 ¥ {mRV),g:(U\D)} (A2)

RcUVcU\R

(it) ][P[dU]G(U) 2. Fi(U)F,(U\Uy)

UpclU

= ijp[dU1dU2]G(U1 U)F,(Uy)F,(Us) (A.3)



862 Ch. Gruber, Ch. Lugrin and Ph. A. Martin H. P A

To establish Lemma A.1, we just need to consider those g and /4 of the following form:
g=Sg¥ h=%hY

we then have:

:FP[dU]I[g-{h,K}]T(U)IS{P[dU] Y Y lgrRWMA K} (U V)

RcUVec UR

= J[ﬂp[dR dV dW]lgARV)| {h, K} (RW)

ORORW)) 1

< ]%[ pldRAVdW] Y |gR(RV)

u; € RW | axi,a | m
I<a<v
ah(l) min {k, /} 1 1
< g% .. sup || Y
i Xiallo n=0 n'(k_n)-

(l_n)' Z p[dR®™ dy &= gyt-n] Ll i’" o (RVW)

Therefore [g-{h, K}]1;€ £![p] and thus ?[g-{h, KYl;=g-{h, K} e L[] since
lgrll e1p,y = | grll ¢1p, for any gre L p].

Lemma A.2. If the correlation measures of a state y such that W® = L[ u] satisfy

JP("H)[dU(H) dV“)] M

e X (UMY < o0

i,o

then for all h and g in WY with basis in V,, g{h, U},, € L*[u] where U denotes the
potential energy function and

ulgth, Uy, 1 = — J[Hp[deVdWJgT(RV) > X

S < RW A c RW\S

0 ohy
x ¥ a¢ (SA)a L(RWNA) x yp,(D).
e MR

Proof. Form the identities equations A.1, A.2, and A.3 above

‘ ]f pldULg- {h, U}]T(U)' S Hﬂ p[dR dV dW g, (RV){h, U}y, (RW)

st][J[p[deVdW]lgr(RV)l > X X

ScRWAcRW\S?-eRW\A
dB(SA)| |0k (RW\A o
XI (g)(c )II Tép' \)iX”(RVW)

and the proof is concluded as before.
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Lemma A.3. For any h and g in AV with basis in V,

ulg-{h. U}V1]=J[Jfﬂp[dvdv'dv"dﬁ] Y 1D

ueUU”
I<a<v

op(TOY\ oh,(UU") ,

x Y (— (g( U)) :3( gr(uu).
0cuvr Xia Pi,a

Proof. Let us consider the expression of u[ g {h, U},,] as givenin Lemma A.2 and
write

Z 0P(SA) oh (RW\A)
SCcRW Ac RW\S axi,a api,a
dP(SR\UU) oh(UW\U)
= o s o O e
UcWUcRSc UMD i, Di,a

Using equation A.3 successively for U = W and U < R yields

ijp[deVdW](Z 2 X

ScRW A c RW\S uje RW\A

 09(S) oh(RW\A)
SN ) 1A (W)gRYV)

;J[Hp[deVdW] ox XY )

TcWUcR Sc UW\U ueUW\U

d(SR\UT) oh (UW\T)
a apl a

HH p[dR dV dU" dU]gT(RV)xVA(U) Y ¥ ¥

UczR ScUU" weUU”
aqS(SR\UU) Oh(UU")
0x; 4 OPi,x

H][][Jf pldU dR, dV dU" dU)g{UR, W)y, (U) 3
Scuu”
y dP(SR,U) oh(UU")
weUU" 0X; o OPi.a
(Setting R,V = U’ and using equation A.3 again)

= JfH][p[dUde dU" dU)gr:(UU 0 (U) 3, % X

ScUU" T< U weUU”

9r(RV)

y OP(STU) dhUU")
6xi.a api,a

_ ﬂﬂ pldU dU’ dU" dUg(UU Yy, (D) Y %

UcUUU" uje UU"

y o¢(0U) dh{UU")
axi,a api,a
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Combining Lemma A.l and A.3, we thus have:

Lemma A.4. For all h and g in WY with basis in V,, then
Pj Oh (UU")

u[g{h,H}mlzJ[Hp[dUdU’dU”] Y, gr(UU")
wevy: M 0X;,4
I<a<y
+J[][J[J[p[dUdU'dU"d(7] S o) X
- WL,
op(OU) | oh(UU") ,
|: axj,a ] apj’a gT(UU)

Appendix B

Proof of Lemma BI. To have the result of the lemma, it is enough to show by
theorem (") [14, p. 279] that U has the following properties:
(i) U is compact. N .
(11) The matrix elements U, of U in Fourier representation are non negative.

(iii) For any pair of indices (/, m) there exists an integer N(/, m) such that for
s= N, (U%, > 0.

To study U, it is convenient to introduce first K, = exp (i¢p,x)U,. K, is periodic and in
particular:

U = exp (—i¢) K,-1 (BI)

Since U, is defined by the perturbation series (3.30), we have the integral relation

U.= U, + j: U,_,zexp (ip)U, dy (B2)
we find from (B2) and (3.27) the corresponding relation for K,

K, = G(x,0) + J: G(x, y)z exp (i$)K, dy (B3)
with ,

65,9 = exp (~pitx — e | - - 0 12 -0 | @9

We notice that G(x, y) (acting as a multiplicative function of p) is periodic. G(x, y) acts
in #*([—n, n], do) by multiplication in Fourier space by the same function and
G(x, y) is bounded with ||G(x, y)| <1 for x > y.

Hence K, is given by the norm convergent series

. P Xn X2 _ _
K.=7% 2" | dx, J R J dx,G(x, x,) exp (ip) G(x,, x,_ 1)
0 0 0

nz=0

- (7(?52: X1) €xp (i‘f))g(xb 0) (BS)
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Since the function (B4) is positive and (exp (i¢)y), = Y-, is the shift operator in
Fourier space, all terms of K, are positivity preserving. Hence U's positively preserving
and this proves (ii).

We see on (B1) and (B5) that the nth term U™ of the perturbation series of U involves
n — 1 shifts, therefore U™ acts necessarily as

U™y = (F, exp (iln — DOW) = Fulk)Wie—n+ 1

where F,(k) is a multiplicative function of k. One finds from the structure of (B5) that
F,(k), n > 0, is of the form

p
| Fu(k) = exp (= pk*p; 2" f “dx, j Biyigsa
0

0

X2
X J~ dxl eXp (f(xla---:xn)k+g(x17---:xn))>0
0

S(xy, ..., x,) and g(x4, ..., x,) being polynomials. From this we get the estimate
(PB ‘z)"

F (k) <¢c, exp (—Bk’pgz ! + d k) — 0, for |k| — 0.

Thus the operator F, has discrete spectrum accumulating on zero, andis
compact. Consequently, U™ and the norm convergent series of the U™ are
compact'!). This proves (i). .

We obtain from (B5) the matrix elements of U

_ {F,_mﬂ(l) >0 m<Il+1
Ulm = 0

from which one deduces that (iii) is satisfied.

Proof of Lemma B2. Define Kg = exp (—ipzx¢)U¥ for x > 0the charge conjugate
of the operator K, introduced in Lemma B1. Then it is easily checked that p§(x) can be

written in the form
( o F l—xP*X: cxXp (_l¢(l 1))K Pl/’)
(x, PY)

where P is the eigenprojection (3.35) of U and y, x are two fixed vectors with Py # 0,
P*y # 0 and / is an integer chosen such that lp; ' — x > 0. Since G(x, y), x = y, is
uniformly bounded and holomorphic for Re > 0, we conclude that K, and U are
bounded holomorphic in the half plane Re f > 0. For any real positive f,, the
eigenvector Q;, of U is non degenerate, therefore the Kato—Rellich theorem insures
that the corresponding eigenprojection P and the eigenvalue y, are holomorphic in a
neighbourhood of f,. The same statements hold true for K¢ and P*, and the
holomorphy of p§’(x) follows from the formula (B6).

To prove (i1) we calculate explicitly the first and the second derivatives of pg(x) in
x=0. Using Q& =Q_, > 0 we find

dpj(x)

dx x=0

pp(x) = exp (—yol)z (B6)

=0

1y U™ =exp(—ip)Gl(py ', 0) is compact.
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and
d*pP(x) Bz
—_— = —2<2 Q_.Q _
dx? @10 |2 & -

x=0

keZ

+ Z B2k — 1) — ZPB)Q—ka—l}

a quantity which is clearly positive for f > 2p,. These derivatives are well defined in
view of the fact that Qs in the domain of p*® for all s > 0. We deduce indeed from the
integral equation

5K, = F'G(x, 0) + j Gix, )z exp (i0)(5 + 1, dy
0

that the following estimate holds
17°K; |l < Cllp°G(x, 0)]| < 0, x>0,

This implies with (B1) that | p*U|| < o0, and thus ||p°Q| < oo. The same argument
shows that K, and K¢ are infinitely strongly differentiable for x # 0, and therefore it
follows from its representation (B6) that p§'(x) is a C*-function of x for every § > 0.
We conclude that pg (x) is not constant for B, > 2p,. Choose x such that pg,(x)
# pgo(0). Then by (1) the holomorphic function pz(x) — ps(0) cannot vanish on an
open set of the real positive axis g > 0, proving (i1).
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