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The vectorboson and graviton propagators in the presence
of multipole forces

by F. Jegerlehner
Fakultit fiir Physik, Universitiit Bielefeld, D-4800 Bielefeld 1, Germany')

(8.IX.1978; rev. 13.X1.1978)

Abstract. For a statistical mechanical system with short-range exchange and long-range multipole
interactions we investigate the effect of the multipole forces on the large distance behaviour. The euclidean
field theory corresponding to the large distance asymptote of the system exhibits the spin-1 and spin-2
particle propagators in a new class of non-local gauges. Some interesting properties of these cases are
discussed.

1. Introduction

It is well known from the theory of critical phenomena that the long-range
asymptote of the correlation functions of a statistical mechanical system represent a
renormalizable euclidean field theory near the critical point [1, 2]. Provided the
Osterwalder—Schrader conditions are fulfilled the euclidean field theory is equivalent
to a bona fide local quantum field theory in Minkowski space [3]. The generating
functional of the statistical correlation functions in the long-range effective form
constitutes the generating functional path-integral of a euclidean field theory. Thus it
intrinsically defines a quantum field theory.

Elementary particle interactions may thus be considered as the long-range
effective interactions of an appropriate statistical mechanical system having a
fundamental cut-off and exhibiting short-range exchange interactions. As a cut-off the
inverse of the Planck length 1, ~ 1073 cm presumably sets a fundamental scale [4].
The idea that such a cut-off has a physical meaning is rather attractive for several
reasons. It amounts to a new view of elementary particle interactions where most of its
simplicity and regularity may be attributed to universality of statistical mechanical
systems near a critical point.

Within this scheme the renormalizability of the long-range effective theory
acquires a natural explanation. The non-renormalizable couplings turn out to be
irrelevant since they are strongly scaled down at large distances. Even more exciting is
the possibility that symmetries may be generated dynamically at large distances [5].

We also know from the renormalization group (RG) analysis of statistical
mechanical systems that in a space of dimension d > 4 the Gaussian (free field) fixed
point describes correctly the long-range behaviour of such systems if we require them
to have a stable equilibrium state (ground state). The borderline case d = 4 where the

1 From September until March 1979: Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J.
07974, USA. ‘
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interaction sets in, as d — 4 from above, happens to coincide with the dimension of
physical space-time. Thus use of perturbation theory to a large extent finds a physical
justification.

From universality we expect that the long-range effective interactions depend in a
significant manner neither on the way the cut-off enters nor on most of the details of the
interactions of the original system. The cut-off serves only to set a scale. The
interactions are considered to be restricted only by such general principles as positivity,
existence of the infinite volume limit, and, to some extent, translational and rotational
invariance.

We have to expect that apart from the short-range exchange interactions, the
long-range forces are also present. Since the effect of such forces, which we assume to
have a multipole expansion, already shows some interesting features in the Gaussian
approximation, we present its investigation as a first step. As we shall see, the physical
parameters related to the multipole terms formally enter as gauge parameters in the
long distance asymptote. Gauge parameters thus can be considered as physical
parameters of the cut-off system which turn out to be irrelevant in the long-range
regime because of universality.

In Section 2 we specify the model under consideration. The corresponding RG-
transformations are written down in Section 3. Afterwards the dipole (spin-1) and
quadrupole (spin-2) propagators are discussed in, respectively, Sections 4 and 5.

We shall use the term ‘fixed point” here modulo the canonically marginal variables
(gauge parameters?). In order to investigate the fixed-point properties of these
variables, we have to go beyond the Gaussian case. This consideration will be the
subject of forthcoming publications.

2. Multipole interactions (see [5] for dipole interactions)

We consider a statistical mechanical system with the Gaussian fluctuation
variables S, , € {g(x), Di(x), Q;{x), ...}, where g(x) is a scalar, D{(x) a vector, Q;(x) a
symmetric traceless tensor under spatial rotations. The associated interaction energy is

Hy = = Y Ky 5isdy (monopole)
x,y

HD = - Z Kx—y,ikaiDyk (dlp()le) (1)
x, ¥

Hy= — Z Ky i Qxij Qi (quadrupole)
X,y

etc.,

where x and y are points on a regular lattice.

Mixed interaction terms are also present in general. The kernels in (1) consist of an
arbitrary rotation covariant short-range exchange interaction term K* and a long-
range interaction term K" having a multipole expansion.

The multipole potentials in d-dimensional space are the usual derivatives of the
monopole potential restricted to the lattice.
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The partition function (ground state expectation value) is of the form
- f [1dS. . e (3a)

where the Gaussian distributions

[T £(S,.0) = ¢~ 120 Ex S

X,

are included in a Hamiltonian H(S). The interaction Hamiltonians H(S) correspond in
field theory language to the euclidean action.
The generating functional for the correlation functions is written as

L Iy = F 1 JH S, , e TS ), (3b)
The long-range correlations are essentially unaffected if we replace the lattice by a
rotation invariant cut-off A = ¢~ ' in momentum space [1] in the thermodynamic

limit. The leading terms of the kernels (2) at large distances are then easily evaluated in
momentum space from the integral

K" (9) = [ d’x K . &% 4)
x| >a

(see Appendix A). Together with the exchange interaction and site spin distribution
terms [1] we have to order 0(g”) for the kernels of H(S)

K(g) = ap{lg™? + ay + a,4%} + (m§ + ¢q%)
Ku(g) = bo{(l + b1g%) (d% - 5ik)} + (m3 + ¢q%) Sy + hqiqy
_ 44941
Kiju(g) = Co{(d + 4)(d + 2) q_g — (d + 2)(0;;q19, + perm) + (5)

+ (0;j 0 + 0y 05 + Iy 5ik)q2} +

+ (m(Z) + qu)%(élk 5_}! + 5il 5Jk) + h’—(aikqqu + . ._.)
eie.
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In each expression the first term is the multipole term. The remaining terms are up to
the Gaussian contribution to m} rotation-covariant exchange interaction terms. We
notice that higher multipole contributions are 0(¢>) or higher. Thus they never
contribute to the leading behaviour which then is dominated by the short-range
exchange interactions. Up to the quadrupole—quadrupole interactions, however, the
multipole forces contribute non-analytical (non-local) terms.

3. The renormalization group

The long-range behaviour of a statistical mechanical system can be investigated
systematically by the renormalization group (RG) method of Wilson [1]. In the
Gaussian (free field) case the RG has the trivial form

K'(g, ) = 52(s)s-dK(%i). 6)

s is the scale parameter s > 1 and &(s) = s* is the renormalization factor of the
fluctuation variable S. The dimension of S is defined by d;, = d — x.

The scale exponent x is fixed by the condition that the leading g-dependent
exchange force term has coefficient 0(1) (wave function renormalization of the kinetic
term 0S 0S). In the Gaussian case we have thus x = (d + 2/2) and d;, = (d — 2/2) is
canonical.

The parameters of the kernels (5) transform as follows

mg = s*m}
g =g ’ (short range)
W =h )
N

a, =s*a,
apdy = s*aga, ¢ (monopole) (7)
aody = aod;
by = s%b

. ° (dipole)

ob1 = boby
& =L (quadrupole).

Below we shall discuss the infrared fixed point (s — o0) of these transformations
and the behaviour of the propagators. We require the thermodynamic limit to exist for
the system under consideration. Thus the monopole term has to vanish a, = 0. g(x)
then describes a scalar boson, which will not be considered further.

4. Behaviour of the dipole propagator

The propagators are given by the inverses of the kernels (5). The dipole
propagator has the form

1 g+ qu qiqx
Gl =, — 8
q) 5 qu{ k g4 hqz — cq"' qz (8)
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with g=bod, h=h+ bobd, ¢ =¢ — byb; and m> =mj — by,. g is a relevant
parameter of dimension 2, which relative to the Gaussian fixed point behaves like the
mass m” whereas ¢ and h are marginal and dimensionless. We may choose ¢ = 1. Itis
remarkable that there are two different fixed points for which Gy(g) stays regular

i) m*=0 and g*=0

(i) m*=0 and g* = .

©)

We notice that except for h= —1, Gy = 0(g ?) as ¢> — o and for m? =0, G
becomes independent of g in both regimes g2 — oo and g* — 0. At the dipolar fixed
point (ii) we have

1 ‘1:‘%}
Gi = 6!' — T3
¢ q2 { ¢ q2

which is the massless spin-1 (photon) propagator in a particular non-local gauge. If m?
= 0(a?) and g = fm? (8) can be considered as a massive vector boson propagator in a
class of renormalizable covariant gauges # and f'being the gauge parameters. Near the
propagator pole we have

1 qiqx
G s oo+ )

for arbitrary 4 and f. Thus G;; has the behaviour of a unitary vector boson propagator
2 2
as qg- — —m”.
If dipole interactions are absent, we are at the isotropic fixed point (i) and Gy, has
the form of a massive vectorboson propagator in the ’t Hooft gauge [6].

1 h
Gi=—75""39%— iqk (- 9a
y m2+q2{k m2+(l+h)q2qq"} ©Ga)
The gauge # = — 1 corresponds to the non-renormalizable unitary gauge, i.e. Gy

= 0(1) as ¢> — 0. For m* = 0 we have the photon propagator in the standard class of
covariant gauges. It is remarkable that in the absence of dipole forces the covariant
forms of the propagators of a vectorial fluctuation variable are obtained in a natural
way in the 't Hooft gauge. It also should be noticed that it is the potential and not the
field strength that enters in a direct way in this approach to quantxzatlon This fact has
no natural explanation in standard approaches [7].

In the presence of interaction terms S* it is known that the dipole interactions lead
to a new infrared stable non-trivial dipolar fixed point in d = 4 — ¢ (¢ > 0) dimensions
[5]. The usual non-trivial isotropic fixed point is infrared unstable relative to dipole
perturbations. The much more interesting dynamical fixed point appearing in the
competition of S* and S? dS interactions (Yang-Mills fixed point) will be discussed in a
separate paper.

5. Behaviour of the quadrupole propagator
The quadrupole propagator may be chosen to have the form (see Appendix B)

1

m i jkl(q) (10)

ijkl —
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with

1 99 959
Yijkl = —i|:(5lk - Ot q—zk)<5ﬂ - ; ! + perm
qi9 qiq
= V(aij q J)(&d ; l)

This requires the addition of two further terms

2

a,8;; 8, and az(a,.j%wk,iqigi) (11)

to the quadrupole kernel. These terms do not couple to Q,; because of the tracelessness
and, therefore, may be chosen so that (10) has a convenient form.
With the parameters

g=c0(d+4)(d+2)a h:h__ Co(d+2), C=E+C0 and m2=m%

we have
_ hq*
O(_mz-l-cqrszhqz
(12)
3 g(m? + cq*) — h*q? _ pm? +(cp—2)¢°
VS a9 + cg®) — B2 ] + i2g®  dpm?® + [d(cp — 2) + 2147
and
2 2yg — h2g2
— (m? + oy T qu )‘f T = —3m* + cg)24° - p(m* + cg*)1q >
d (13)
(m* + cq*)g — K¢
B = TR0 _ihiag? — pm + eg?)].

The canonical quadrupole fixed point is m* = 0.

The parameter p is defined by g = (p/2)h* - h and g (or p) are canonically marginal
(dimensionless). Obviously G;;; can be considered as the propagator of a spin-2
particle in a class of covariant renormalizable gauges g and A being the gauge
parameters. We are free to choose ¢ = 1. The coefficients a,, @, and y are non-analytic
functions of g and 4. a, and a, are analytic howeverin Aand p = (2g/h*). When m?* # 0
a, is non-analytic in g>. At m? = 0 the expression y_ ! = d — (2/2 — p) can attain any
value by the appropriate choice of p. Actually for m* = 0« and y are g-independent and
thus can be considered as the gauge parameters.

Spec1a1 choices of p are listed in Table 1. All coefficients are bounded for ¢ — o0,
which is identical with m? = 0.

For h = —1 we have o = —(¢?/m?) and hence a non-renormalizable gauge. & =
—1and p = 0for m? # 0is the unitary gauge of the massive spin-2 particle and p = 0,
a = (hq*/m* + (1 + h)¢q?) is the corresponding 't Hooft gauge. On the other hand, for
m? =0, a = (h/1 + h) we obtain the local and covariant Veltman gauge for the
graviton with o« = 0 and p = 1 [8]. One must remember that the gauge parameters
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Table 1
Some special gauges of the spin 2 propagator

p m ¥ 0 a
0 m’ L —a —a
d__ 1 1 3
2 e a a
1 m? 1 2m ; ——ial(Z ——;) —5(13(2———%)
(d—2)g* — dm q q
1
1 0 ) —3a —%a, (14)
©  m? 1 o0 oo(h # 0)
d 0(h =0)
2 -1
p 0 (d - 2—_5) —3a,2 - p) —3a5(2 — p)

originate from physical couplings on the lattice at short distances. They get their
physicalirrelevance (if so) in the long-range regime. The important thing to notice is that
within our class of gauges the massive and the massless spin-2 propagators with the
correct number of physical polarizations are related by a continuous change of the gauge
parameters. Thus this class of gauges may be important for the study of the
renormalization of gravitation, particularly in connection with the infrared problem.
This situation leads to the possibility of giving the graviton a regularization mass.
Physically the gauge g = 0 corresponds to the absence of quadrupole interactions. The
gauge h* = 2g involves quadrupole interactions except in the limit 2 — 0 (Veltman
gauge). Whether 4 and g are true gauge parameters has to be answered, of course, from
dynamical considerations. This question is under investigation.

6. Conclusion

By looking at spin-1 and spin-2 particles as long-range modes of a statistical
mechanical system involving some fundamental cut-off we find, in a natural way,
certain classes of gauges for the propagators. The multipole interactions lead to new
classes of non-local gauges. In the spin-1 case the new gauge includes the 't Hooft
gauge. For the spin-2 field we obtain a gauge which connects in a continuous way the
massive and the massless propagators in the standard covariant gauges. The new
gauge, therefore, may be important for the study of the quantization and the
renormalization of gravitational interactions.

Two further comments are in order. First, in our approach to quantization, the
potentials, not the field strengths, enter in a natural way. Second, if the short-range
exchange forces are present, the leading modes at large distances have a spin <2. This
statement means that the higher spin modes do not appear in the long-range

asymptote.



790 F. Jegerlehner H. P A

Appendix A

We have to evaluate the integrals

1 . 0 0
dx x; - - - X; —&* = (—i)" e K, . (A1)

J;ﬂ?a ! " lxld+ 6qi1 agi,, 1
with

Kq,a - J ddx |x|—(d+a) eiqx‘

lx|=a

We get

K, . = 2n)"af, o(alg) (A2)
where

e o]

Jo,0(2) =2° J dr r_[(d/2)+a]-](d—2/2)(r)-

z

J(r) 1s the Bessel function of index v, and z = alg|. Using then

G . 1d
aif(z)—a C]:;gz‘f(z)

k @
Jor(2) = (I ;;) Ja6l2) = g% % J dr r_[{d’lz)+"_k]J(d—2/2)+k(")

z :
and the relation

2
Jo1() + Iy (1) = = 1,0

we obtain the multipole kernels

a0

1 P——
K = —(277:)‘”2 ?J\ drr [(d/2) 2]J(d/2)_1(r)

alq|

K, = 2n)"2(d — 2) {di}—" » 5} J dr r=42J 45 41 (r)

alq|

2

K = —(2n)3(d — 2) d{(d + 4)d +2) qiqf"q’ — (A3)
—d+2)0ijqq + - ) +

+ (0 O + ')qz} f dr r_[(d/2)+2]J(d,2)+3(r)

alq|
etc.

The integrals in (A3) have a Taylor expansion in z = alg| at z = 0 given by

0 2n

J drr-“—“Jv(r):f drr Vg = Y =

z 0 n=12n!

K=Y (A4)

with A(z) = z~ "~ DJ(z). The multipole terms thus have the form given in Equation (5).
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Each multipole kernel is multiplied by a coupling constant which is included in the
coefficients a,, by and c,. The coefficients a,, b, and a, follow from (A4).

Appendix B
The quadrupole kernel has the form
K=G"'=) aX,
where the X; denote the following basis of operators:
= 0yj Ok
X1 = 3(0u 0y + 0y 0j3)

XZ = (5 qkql + 5kl lq}) — Zl + Zz
7’ 92

1 g9 qi9x qiq 99k 99 i
X3=5(5ik—qjl*§”+5 ‘; +(3qu +5ﬂq 2—;74——
QinfIkQI.

4

q
Their multiplication table is listed below in Table 2.

Table 2
Multiplication table of the matrices X;.

X4=

Xo X X5 X Z, 7

Xo dXo Xo O  Z, dZ, X,
Xy % X X X Z Z
X, O X;, X3 0 0 0

X, X, X, 0 X, X, Z,
2 X, & o0 Z, Z X
Z, dZ, Z, 0 ¥, i Z

X, is the unit operator and
GG '=G'G=X,.
For the propagator we find

G S Zb,'Xi
with
1
by =—; by = —by =
aq a, -+ as
aga; + A
bo 1
Eai ok (d = 1) A
a,dy — A
b, 1
Za,+(d—-1)A
b asa, + dA

'Ta, +d- 1A
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where
A= Aogdy — Aya,
E=da0+a1+2az+a4.

Since G ~! couples to a symmetric traceless tensor, the parameters a, and a, may be
chosen freely. G may then be chosen to have the following standard form:

G=b1Y

1 94 919
Y= 5[(5* - Ol—q-f’-“)(éﬂ - thj—zl) + - :| -
qiq a9
7| (00258 (0u %) |

This determines a, and a,. We find

gy =2 =
g = —— a, = —
as as as
and
dj =
o = 'y o [
a, +a3 dE+a3a3

Wlth == al(a4 — 2613) — dadsj.
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