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Abstract. The microscopic theory of superconductivity is expressed through a gap equation. The
construction of such equations, and methods for solving them under different simplifying assumptions, are
reviewed. The physical parameters in these equations have yet to be fully defined and to be determined by
complete first principle calculations. The way to further progress requires not only better band calculation
but also more rigorous theoretical determination of such physical qualities as elastic constants, and
comparison with experimental evidence.

1. Introduction

The modern microscopic theory ofsuperconductivity starts with the advent ofthe
BCS model. The idea of a collective pairing state stabilized by electron-phonon
interaction has since this time been at the basis ofall attempts of rational prediction of
Pc. The microscopic model has been so successful in explaining the thermodynamical
electromagnetic acoustical and tunnelling properties, that its basic soundness was
never in doubt. Nevertheless, as B. T. Matthias likes to point out, the model has so far
made no direct contribution to the discovery of materials of high Tc. In order to
understand this state ofaffairs, and perhaps to see the way to further progress, we want
to review three aspects of superconductivity theory :

(i) nature of the model,
(ii) techniques for solving the gap equation,
(iii) origin of parameters in the gap equation.

2. Nature of the model

The microscopic theory of superconductivity is most frequently expressed in
terms of a gap equation, giving the energy gap for pair breaking excitations. Pc is found
from the condition that the gap is vanishingly small. In the original BCS theory the gap
equation is based on an attractive interaction between the electrons via the phonons,
which is assumed to be instantaneous and weak, justifying the neglect of self-
consistency. When trying to understand high Pc, and therefore strong coupling
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superconductivity, one has to take into account both self-consistency and the retarded
nature of this interaction.

This has been done using Green's functions and the Nambu operators to couple
time reversed states. Writing down the second order self-consistent self-energy
expressions one gets the Eliashberg equations, having the following form in the
Matsubara representation (using imaginary discrete frequencies icon) [1]
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where ek are the band energies relative to the Fermi surface, Fis the screened Coulomb
interaction, D is the interaction between the electrons via the phonons, Z is the mass
renormalization, and A <p/Z plays the role of the superconducting gap. These
equations are largely valid for most superconductors. But when discussing extreme
materials, one has to be aware of possible limitations of their validity.

They are based on the Migdal approximation, closely related to the adiabatic
approximation, which relies on the fact that the ions move much slower than the
electrons, and that corrections of order 9D/EF are negligible. This approximation
becomes questionable when the Fermi level falls on a peak not much wider than 6D/EF.
This might happen in the Al5 compounds and in the Chevrel phases. The band
energies £k and the screened Coulomb interaction V include correlation effects, and
should in principle depend on frequency. Non-instantaneous Coulomb interaction will
modify the equation for Z.

Apart from these special effects, the Eliashberg equations should allow a first
principle calculation, within the adiabatic approximation. All screening and dressing
effects will have to be included correctly, however. Some of these calculations might be
avoided by determining parameters from experiment. This is done for the phonon
frequencies in all present calculations. The electron-phonon spectral function <x2F((o)

(being a convolution ofthe electron-phonon coupling a2, and the phonon density of
states F) and Coulomb repulsion pseudo-potential p* can be determined from
tunneling experiments [2]. However, difficulties have appeared for niobium where the
fit seems to give negative repulsion [3]. Another way to determine tx2F(co) is the study
of phonon line widths [4] [5]. The mass renormalization parameter can be inferred
from comparison of calculated bare masses with specific heat and de Haas van Alphen
(dHvA) results [6].

3. Solving the gap equation

Let us now examine the simplifying assumptions made usually before solving the
gap equation. Since the screened Coulomb interaction is assumed to be instantaneous
compared to the phonon interaction, one applies a Morel-Anderson type transformation

and obtains a pseudo retarded interaction which is about an order of
magnitude smaller. This explains why the repulsive interaction does not destroy
superconductivity.

The variation of electronic properties perpendicular to the Fermi surface is
commonly neglected compared to the variation of the phonon properties. This
assumption is again invalid if the Fermi level falls on a peak of width of order 9D.
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Preliminary calculations giving up this hypothesis have been done several times [7]
and an increased Pc was found. However, as pointed out already, the Migdal
approximation becomes questionable and a more complete formalism should be
adopted. The k dependence of electrons, phonons, coupling and gap function are
generally neglected. This isotropic approximation simplifies the problem considerably
by avoiding the k summation in the gap equations with the help of spherical averaged
quantities. But in the case of more anisotropic substances, and of more anisotropic
properties such as critical fields, bigger effects occur [8].

A further assumption used in most calculations of Pc is the separation of the
problem into a phonon part and an electron part. In this way, McMillan got his
analytical solution of the gap equation, and his famous semiempirical formula for Tc

[9]. There have since been many attempts for new versions ofhis formula, with the goal
of finding better fits while preserving the same functional form. However it seems to us
that more effort has to be put into developing algorithms for more exact solutions of
the gap equations, particularly in view of the efforts for obtaining the complete
parameters contained therein.

The use of imaginary frequencies (Matsubara representation) [10] [11] simplifies
the solution of the gap equations by avoiding the poles along the real axis. In order to
get the maximal physical information one needs ofcourse to know the gap as function
of real frequencies. But this problem can be solved starting from imaginary frequencies
by means of Padé approximants [12]. By use of such algorithms, it is not hard to solve
the gap equations without recourse to averaging approximations. Such approximations

appear therefore no longer justified as soon as the full k-dependence of
phonons, electrons and their interaction is known. Already the use of a two band
model helps in understanding the problem of anisotropy. Butler and Allen [13] have
treated this problem in the case of niobium by keeping separate phonon and electron
parts and expanding the second in Fermi surface harmonics. Thomlinson and
Carbotte [14] gave a complete treatment ofthe anisotropy problem for lead. But since
they calculated the gap directly along the real axis, they could not make more than one
iteration for computer time reasons. The authors have completed a calculation using
the Matsubara representation for the case of niobium [1]. The Fermi surface was
divided into 22 pieces* and all the interactions between them were calculated for up to
24 frequencies. It turned out that in this calculation the effect of anisotropy on Pc was
an increase of 0.24 K versus 0.06 K obtained by Butler and Allen. The discrepancy is

probably due to the different methods of calculating the electron-phonon coupling
constants. We noted that 60 % ofthe anisotropy effect could be obtained already from
a suitably chosen two band model. Markowitz and Kadanoff [15] have noted that
observation of such anisotropy effects requires the scattering lengths to be at least of
the order of the coherence length.

An important problem that can be examined by solving the gap equation is the
effect of various factors on the increase of Pc. Bergmann and Rainer [10] calculated
the functional dependence of Tc on a2F(co) and found a maximum for frequencies
slightly above 2nTc, which are then often interpreted as the optimal frequencies for
getting high Pc. However, such interpretations depend on the constraints imposed on
the variations of parameters. Allen and Dynes [11] examine PJ<[co} as a function of
the parameter X defined by

X 2 "fa»/^^^ (2)
o M(co2 >
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and find a monotonously increasing behaviour. Leavens and Carbotte [16] place their
emphasis on the size of the spectral function A

A
N(OKI2}<:m>

2M(co2}
dcoa2F(co) ä — — (3)

Again their most favourable frequency is of order 2%PC, and kBPc < 0.231 A.
Rainer (private communication) proposes to analyse the problem in terms of the

first moment of the spectral functions B

B 2 deo axx F(co) ä (4)
Jo M

since this moment depends mainly on electronic contributions. He finds that Pc

increases asymptotically as the root of this moment kBPc < 0.1827^/2?; the most
important frequencies being the soft modes. These studies, while thought-provoking,
merit to be continued with the precautions cited earlier.

Hanke et al. [17] and others have shown that the conditions for high Tc may also
be the ones for lattice instabilities.

4. Calculation of the physical parameters

4.1. Electrons

Rigid lattice electron parameters enter the Eliashberg equations through the band
energies and the Coulomb interaction. In principle, corrections due to lattice
vibrations should also be included, but they are small in the domain of validity. The
main theoretical problem in band calculations is the correct inclusion of exchange and
correlation effects. The most favoured way to do this at present seems to be the self-
consistent calculation in the local density approximation. In this approach, one
approximates the effects of exchange and correlation by means of a density dependent
potential V\n(r)] which enters into a single particle Schroedinger or Dirac equation.
Non self-consistent Slater local exchange approximation also gives accurate results.

There are three different types of approach for solving the effective single particle
problem. First there is the OPW or Pseudopotential method which uses a basis of plane
waves orthogonalized to the core orbitals. This method becomes complicated when
treating transition metals and their compounds which generally are the high Tc

superconductors. Second, there is the cellular type approach including methods such
as the localized orbitals, the APW, the KKR and the LMTO. In these methods one
starts from atomic type potentials and applies boundary conditions connecting the
atoms to form the crystal. Third, there are the LCAO and the Tight Binding methods
(Slater-Koster interpolation scheme). They are generally not useful in giving first
principle results, but allow fits with few parameters to more complete calculations. As
we will see, these fits are suitable for calculating derived physical quantities. Using this
scheme, energies and matrix elements are calculated in points in the Brillouin zone
(BZ), and a further interpolation is often made, by means of schemes by
Raubenheimer-Gilat, Jepson-Andersen and others. The authors have adopted an
interpolation scheme which is based directly on constant energy surfaces, which allows
simple treatment of the fast variations occurring in a direction perpendicular to those
surfaces in the BZ [18].
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These schemes can be fitted to reliable band results which begin now to appear.
For the Al5 compounds there are the new results by Van Kessel et al. [19] which show
impressive agreement with several experiments, including tentative positron results by
Manuel and others ; and also the calculations of Klein et al. [20] remarkable by their
energy resolution. For the Chevrel phases there are the calculations of Andersen et al.
[21], of Mattheiss and Fong [22], and of Bullet [23], for the ErRh4B4 the one by
Jarlborg et al. [24],

Coulomb matrix elements have been approximated by one or several parameters.
Trying to calculate them, all types of screening and dressing should be included. It
might be possible to obtain, within the local density approximation, an algorithm to
calculate these effects simply by studying changes in the effective potential V\n(r)] due
to virtual change of occupation of the electronic states and by calculating both the
diagonal and nondiagonal changes in the matrix elements due to this change.

4.2. Phonons and electron-phonon interaction

The phonon frequencies and the electron-phonon interaction parameters enter
into the retarded interaction D between pairing electrons (equation 1). Since no reliable
first principle phonon calculations have been done up to now, parametrized neutron
diffraction results had to be used in superconducting calculations. Recently, however,
encouraging progress has been reported on the theory ofthe calculation of phonons in
transition metals by several authors. Calculation ofphonon energies are closely related
to the calculation of electron-phonon coupling constants. In both cases, the main
problem is the correct treatment of screening due to charge redistribution.

There are two different formulations ofthe electron-phonon coupling problem. In
the Bloch formulation, the phonon induced lattice potential change is treated by
orthodox perturbation theory. The second approach was started by Fröhlich and
allows the localized parts of the wave-functions to follow the motion of the atomic
cores when a phonon is excited. It has been used for numerous tight-binding
calculations. It has been criticized since it is difficult to define the moving wavefunc-
tions properly so as to obtain a complete orthogonal set and to define a consistent
perturbation procedure. However, Van Hay has shown how to introduce orthogonali-
zation corrections [25]. Alternatively, calculations can be carried out on a non-
orthogonal basis, as done by Varma et al. [26]. The authors [27] have shown how both
the Fröhlich and Bloch approach lead to the same physical results, if one stays within
the adiabatic approximation, and considers both first and second order vertices. (The
simple exercise of treating a particle displacement by perturbation expansion shows
how different orders in perturbation contribute to the same order in the result.) For the
superconducting problem, however, only the first order elements are relevant.

The most common approximation for the calculation of the electron-phonon
coupling constants in transition metals is the rigid muffin tin approximation (RMTA)
first used by Sinha [28]. In this case one uses the Bloch approach and assumes that the
phonons rigidly shift the muffin tin potentials. Hopfield [29] used this approximation
to derive a formula for the average electron-phonon interaction by means of an
angular momentum decomposition, and claimed that p —> d scattering dominates in
transition metals. Gaspari and Gyorffy [30] followed Hopfield's idea and obtained by
spherical averaging a simple formula for <72 > in terms ofphase shifts. Butler et al. [31]
generalized this work including non-spherical terms, and found as Klein and
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Papaconstantopoulos [32] before that the d—>f terms dominate, where the /
components are due to the tails of the d functions from the neighbouring atoms.

Sinha and Harmon [33] have shown how to introduce screening corrections to the
RMTA by means of linear response theory. They could explain phonon anomalies and
instabilities in Nb, NbC and in many other systems. Their method is similar to the one
of Hanke et al. [17] and based on the tendency ofcertain charge fluctuations to appear
as resonance terms in the screened electron-phonon coupling constants.

The Fröhlich approach for electron-phonon coupling calculation has been
applied in tight binding calculations. Birnboim and Gutfreund [34] calculated the
averaged electron-phonon interaction for several transition metals. The authors [1]
calculated by the same method non-averaged electron-phonon couplings for use in the

gap equation for niobium. The mass enhancement anisotropy they obtained agrees
with dHvA results [6], whereas the RMTA calculations [35] give the wrong sign.
Using the same method, the authors [36] could explain anomalies in the temperature
dependence of the elastic constants in Nb-Zr alloys.

Varma et al. [26] used the same approach and included orthogonalization
corrections. This resulted in reduced electron-phonon coupling, allowing a good fit of
Pc in niobium. They used this approach also to explain the anomalies in the phonon
spectra of Nb, Mo, and the alloys between them. It may therefore be said that the
distance dependent tight binding method allows successful calculations of properties
involving first order electron-phonon coupling. The reason for these successes lies, in
our opinion, in the description of the phonon induced potential variation ôv. In the
RMTA approximation, the muffin-tin potentials are shifted, but not deformed,
whereas in the tight-binding approximation, there is deformation because of overlap
between shifted atomic potentials. This results in a more realistic change of potential
and screening. The fact that this deformation is non-spherical around the atoms might
explain the remarkable difference in the predicted anisotropic properties between
RMTA and tight binding, both for mass enhancement [1], [35] and for the effect on Pc

[1], [13].
In future calculations one will have to concentrate on the screening problem.

Frozen phonon calculations such as those by Gale and Pettifor [37] are a logical
improvement ofthe Fröhlich approach. This approach seems particularly appropriate
for quasi molecular crystals such as the Chevrel phases. Substances of this kind will
facilitate the simultaneous application of theoretical analysis and physical synthesis.
Alloys on the other hand are more difficult to treat because of deviations from rigid
band behaviour. Corrections of the type proposed by Miedema [38] might be

necessary, and complicate the problem. However, Papaconstantopoulos et al. [39]
have done both CPA and rigid band calculations on the palladium hydrides, and got
close results for states around EF.

5. Conclusion

In conclusion, we would like to point out three points.
First, the present difficulty ofobtaining proper phonon spectra shows that présent

schemes for band-structure calculations, developed to give plausible results within a

given symmetry, have troubles coping with symmetry changes and need to be improved
in this respect. The calculation of elastic constants should serve as a simple test of this
property for any band scheme.
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Second, in spite of fundamental difficulties, efforts should continue upon
calculations not only of band structures, but also upon the derived physical quantities,
including Pc. In this way, computing power and algorithms will develop in parallel,
until they converge to calculations of Pc in agreement with experiment. During this
process of computational improvement, progress should be judged by logical
consistency and realistic error estimates, even more than by striking fits to experimental

data obtained by judicious choice of adjustable parameters.
Third, we would like to point out that the choice of one-body potentials for band

calculations involves an element of arbitrary choice. Maybe there exist criteria for
'best' one-body potentials. Or maybe the present emphasis on band calculations is not
the best way to obtain other physical properties than Fermi surfaces. Definitive first
principle theories for critical temperatures may have to await further progress in the
understanding of these deeper questions.
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