
Zeitschrift: Helvetica Physica Acta

Band: 51 (1978)

Heft: 5-6

Artikel: Methode zur schnellen und genauen Berechnung des Vakuum-
Polarisations-Potentials der Ordnung (Z)

Autor: Dubler, Th.

DOI: https://doi.org/10.5169/seals-114971

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114971
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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Methode zur schnellen und genauen Berechnung des

Vakuum-Polarisations-Potentials der Ordnung a(Za)1)

von Th. Dubler2)

Physikalisches Institut der Universität, 1700 Freiburg, Schweiz3)

(16. X. 1978)

Zusammenfassung. Es wird eine Methode zur schnellen und genauen Berechnung des Vakuum-
polarisations-Potentials der Ordnung a(Za) beschrieben. Der Approximationsfehler ist kleiner als 2.5 ppm
für Radien r ^ Xe.

Abstract. A method for the fast and accurate computation of the vacuum-polarization potential of
order ot(Za) is presented. The accuracy of the approximation is better than 2.5 ppm for r < Xe.

Die experimentelle Technik hat in den letzten Jahren einen Stand erreicht, der es

erlaubt, Uebergangsenergien in myonischen Atomen auf etwa 20 ppm genau zu
bestimmen [1]. Mit den neuen Kristallspektrometern wird eine noch höhere
Genauigkeit erwartet.

In den letzten Jahren wurden mehrere Experimente durchgeführt, die eine
eventuelle Diskrepanz zwischen den experimentellen und den mit der QED berechneten

Uebergangsenergien aufdecken sollen [1-4].
Um diesen Vergleich durchführen zu können, müssen die theoretischen Energien

mit einer Genauigkeit von einigen ppm berechnet werden. Dies wird durch numerische
Integration der Dirac-Gleichung für den ausgedehnten Kern erreicht. Da die meisten
Korrekturen relativ klein sind (< 100 ppm), werden sie zweckmässig in
Störungsrechnung berücksichtigt. Die (e+e~)-Vakuumpolarisationskorrektur der
Ordnung a(Za) (Figur la) hingegen beträgt etwa 0.5 % der Uebergangsenergie und ist
deshalb bei der geforderten Genauigkeit eine grosse Korrektur.

Diesem Umstand wird dadurch Rechnung getragen, dass man das (e + e~)-
Vakuumpolarisations-Potential der Ordnung oe(Za) zum Coulombpotential addiert
und die Dirac-Gleichung für dieses Potential numerisch integriert. Durch dieses

Vorgehen werden automatisch alle iterierten Feynman-Graphen eingeschlossen (Figur
lb u. c), was bei der Berechnung der Korrekturen höherer Ordnung berücksichtigt
werden muss.

Die Berechnung des Vakuumpolarisations-Potentials ist unabhängig von der Art

A Diese Arbeit wurde teilweise vom Schweizerischen Nationalfond unterstützt.
2) Die vorliegende Arbeit ist Teil der Dissertation Nr. 765 der mathematisch-naturwissenschaftlichen

Fakultät der Universität Freiburg in der Schweiz.
3) Gegenwärtige Adresse: Kreuzeggweg 27, 8400 Winterthur, Schweiz.



744 Th. Dubler H. P. A.

e+e-x—(_y~\ +

e+e- \ *h3~\
e+e~ \

e+e-

*~-T \—
e+e-

e+e-

Figur 1

Feynman-Graphen der Vakuumpolarisation der Ordnungen (a(Za))".

der betrachteten Atome ; die in dieser Arbeit angegebenen Formeln gelten also sowohl
für elektronische als auch myonische und andere exotische Atome. Die angegebenen
Formeln sind auch allgemein für die Vakuumpolarisation durch elektromagnetische
Erzeugung von Fermionenpaaren des Spins 1/2 anwendbar. In den Formeln ist jeweils
die entsprechende Comptonwellenlänge X einzusetzen. Im folgenden sprechen wir nur
von der Vakuumpolarisation durch (e + e~)-Paare.

Das (e+e~)-Vakuumpolarisations-Potential der Ordnung a(Za) KVP1 (sog.
Uehling-Potential) lautet für eine beliebige Ladungsverteilung [5] :

twiOO -Za
2a

37t

p(r) 7~=i ~ ^o
r - r'\

d3/,

wobei

p(?)d3r' 1.

Die Funktionen Zn(x), (x — \r — r'\/Xe), sind dabei wie folgt definiert:

Z„(x) exp(-2xÇ)[l+^2
1

2T2 z2+n dt

1

exp (-2 -Vi + $y2)s/l - yV"1 dy.

Es gilt:

d_

dx Z„(x) (-l)Zn-x(x)

Z^(x) (-2yzn.y(x).
Für eine kugelsymmetrische Ladungsverteilung ergibt sich

Pvvi(r)= -Za- ___£
3 2 P(r')-

o r
Zx -Zx r + r'

dr'.

(1)

(3)

(4)

(5)

Da die Funktion Zx(x) durch ein nicht elementares Integral [Gl. (3)] definiert ist,
erfordert die Berechnung des Vakuumpolarisations-Potentials Fyp, an jeder Stelle r die
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numerische Integration von zwei Doppelintegralen [Gl. (5)]. Der dazu erforderliche
Rechenaufwand ist bei der geforderten hohen Genauigkeit beträchtlich.

Es ist deshalb von grossem Interesse, Approximationen genügender Genauigkeit
für die Funktion Zx(x) zu finden.

Für kleine Werte von x entwickelte McKinley [6] Zt(x) in eine Potenzreihe nach x
und Inx:

z.W | + 2*((r + m *>{i - *•(! + 4*2{i +y
38 + 7l,x4949 + ix2f2987+138778H949+^*2(2882 96 V 1815

+ (y + In x)0(x13) + 0(x13),

Zx(0) ~, (6)

wobei y die Eulersche Konstante ist [7].
Der relative Fehler der Approximation von Zx nach Gl. (6) beträgt bei x 1 etwa

2.5 ppm, bei x 2 aber schon 30%. Sie ist also nur bis x 1 brauchbar.
Für Radien weit ausserhalb des Kernradius r » RK wird die Differenz

sehr klein, so dass sich numerische Fehler bei der Berechnung von Zx stark auf FVP1

auswirken. Aus diesem Grunde erweist sich die Entwicklung der Differenz an der Stelle

r in eine Taylorreihe als zweckmässig :

Mit den fc-ten Momenten der Kernladungsverteilung

{P} An p(r')r'k+2 dr', (8)

erhalten wir zusammen mit Gl. (4)
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Die Entwicklung der Z„ in eine Potenzreihe ergibt für kleine x :

Z0(x) + ln,){-l+I^(l + I^{l + l^(l + Tl-^

HhHHx0~M3+H7+^x2
127 1 2/949 6079 2

9 +784X \2 +
405 *

+ (y + \n x)0(x12) + 0(x12). (10)

Der relative Fehler der Approximation von Z0 beträgt für x 1 17 ppm, für x 2

67%.

Z_2(x) (y + Inx) l-x2U + x2{^ + I*2 jl + lx2
11 3 « 2L, 2^ 1

2

4x2 4 2 16 [ 3 V 400

239 + Tïf *' 1 1+ + ln x)0(;cl 0) + 0(xl 0)' l1}

Der relative Fehler der Approximation von Z_2 beträgt für x 1 0.21 %, für x 2

25'000% (d.h. unbrauchbar). »

Z_4(x) (y + lnx)M^ + x2(l +\^2Y- + z^x2

3 1 1 (3 ,/7 1 [21 203
+ 8^-8{4 + Xl3 + 2Xi32+1575X
+ (y + ln x)0(x8) + 0(x8). (12)

Der relative Fehler der Approximation von Z_4 beträgt für x 1 12%, für x 2

15'000% (d.h. unbrauchbar).
Da die Approximationen nach obigen Gleichungen nur für x <, 1 gute Resultate

liefern, müssen wir für x > 1 andere Approximationen suchen. Wie man schon aus Gl.
(3) sieht, fallen die Funktionen Z„ für x —> oo etwa wie exp — 2x). Wir machen deshalb
folgenden Ansatz:

Z„(x) exp(-2x)./„(x). (13)

Die Funktionen fi„(x) approximieren wir wie folgt : Wir transformieren das Intervall
(b„, oo) in das Intervall (—1, +1):

y^-i (14)
x

und approximieren /„ durch ein Tschebyscheff-Polynom.
Zur Bestimmung der Koeffizienten transformieren wir das Intervall (—1, +1)

nochmals in das Intervall (0, n) :

5 arc cos (y). (15)
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Anschliessend führen wir eine Fourieranalyse der Funktion/„ durch. Dadurch wird

\Af„(S)\2-dS minimal. (16)

Auf diese Weise erhalten wir eine Approximation der Z„ folgender Form :

m„ /2b Y
Zn(x) « exp(-2x) £ 4..*- — - 1 I •

k=o \ x
(17)

gültig im Intervall b„< x < oo.
Die Wahl des Polynomgrades M„ erfolgt nach der gewünschten

Approximationsgenauigkeit ; b„ wird so gewählt, dass für x bn beide
Approximationen etwa gleich grosse Fehler haben.

In den Tabellen 1 bis 4 sind die Koeffizienten A„k für n 1,0, —2 und —4

zusammengestellt.

Tabelle 1

Koeffizienten Aik für Mt 23, èt 1.0

Genauigkeit der Approximation
\AZt(x)\ jl ppm für 1 <x<4

exp — 2x) ~ (8 ppm für 4 < x < co

-4.,, ^i.J

0 0.1060726757789 12 -15.97995'30030'1
1 0.10100T3498'104 13 37.25354'10047'4
2 -1.65013'46151'4410"2 14 32.20037'45979'3
3 -1.33867'34290'42-10-4 15 -68.56890'45659'0
4 -4.78114'94859'5310"3 16 -41.58378'92235'3
5 2.97983'80738'80-10"2 17 82.11155'46525'4
6 0.1168735777T09 18 33.28462'23289'0
7 -0.41824'90107'946 19 -61.63524'96961'3
8 -1.00198'44129'76 20 -15.03469'27758'0
9 3.00949'70880'79 21 26.33613'02021'2

10 5.07958'22967'91 22 2.93027'67618'86
11 -13.23452'40085'0 23 -4.88835'28135'62

Da für x > 1 das Vakuumpolarisations-Potential zweckmässigerweise nach Gl.
(9) berechnet wird, werden die Koeffizienten Alk nach Tabelle 1 in der Regel nicht
benötigt. Dasselbe gilt für die Koeffizienten A-4k nach Tabelle 4, da für x > 1 der
Anteil der Funktion Z_4 am Vakuumpolarisations-Potential auch für die grössten
Kerne immer kleiner ist als der Fehler der Approximation von Z0 nach Gl. 17) mit den
Koeffizienten A0<k aus Tabelle 2.

Die Wahl des Radius rM, bei dem bei der Berechnung von Vypl von Gl. (5) auf Gl.
(9) übergegangen werden soll, hängt von der gewünschten Genauigkeit ab. In unserem
Programm wählten wir rM 90 fm (x x 0.233). Bei diesem Radius beträgt der Anteil
des Gliedes Z_4 max. 2.5 ppm. Wenn wir die Reihe in Gl. (9) nach dem 2. Gliede
abbrechen, beträgt der Fehler für x 0.233 also je nach Kern max. 2.5 ppm, für x 1

max. 0.1 ppm.
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Tabelle 2
Koeffizienten A0Ji für M0 23, b,

Genauigkeit der Approximation

0.87

IAZoMI 1 ppm für 0.87 < x < 2

exp — 2x) ~ (10 ppm für 2 < x < oo

A0,i Ao.i

0 0.15253'66795'627 12 -19.65119'99773'0
1 0.16180'26249'636 13 45.85599'19698'6
2 -1.11965'63506'89- IO-2 14 39.59381T7983'9
3 -4.52213'39877'46-10"3 15 -84.39392'85217'4
4 -4.24610'29605'83 10"3 16 -51.12594'67340'3
5 3.61368'61724'5M0-2 17 101.05124'12781
6 0.14391'92425'145 18 40.91736'32797'4
7 -0.51497'98119'205 19 -75.84321'42344'8
8 -1.23245'98793'36 20 -18.47994'55985'3
9 3.70518'92771'77 21 32.40306'06341'4

10 6.24714'72973'52 22 3.60121'55549'09
11 -16.29212'80971'5 23 -6.01364'06627'55

Der Fehler von VVPl(r) verhält sich wie folgt:

r <rM=90fm:
In diesem Bereich verwenden wir zur Berechnung von FVP1 Gl. (5) mit Zx nach Gl.

(6). Da der Fehler von Zt für kleine Radien kleiner als 10"9 ist, wird der Fehler durch
die Integrationsgenauigkeit bestimmt. Er ist abhängig von der gewählten
Integrationsmethode und der Schrittweite.

xM 0.233 <x<0.87:
In diesem Bereich berechnen wir FVP1 nach Gl. (9) mit Z0 und Z_2 nach Gl. (10)

und (11). Für xM 0.233 beträgt der Approximationsfehler max. 2.5 ppm (bedingt
durch die Vernachlässigung von Z_4), bei x 0.87 2.15 ppm (bedingt durch den
Fehler von Z0). Dazwischen ist der Approximationsfehler kleiner.

0.87 <x < oo :

In diesem Bereich wird ebenfalls Gl. (9) verwendet, mit Z0 und Z_2 nach Gl. (17)

Tabelle 3

Koeffizienten A. 2>lfür M^2 7, b-2 1.0

\AZ.2(x)\ _Genauigkeit der Approximation
710"5 für 1 <x<2

exp(-2x) ~ (2.610"* für 2 < x < oo

0 0.2198182
1 0.32603'87
2 8.384317 -10
3 -1.26526'3 10

4 —1.91135'6 10-3
5 6.93444'8 10"3
6 8.93042'010"3
7 -9.37820'610"3
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Tabelle 4
Koeffizienten A~itk für Af_4 3, è_4 1.0

Genauigkeit der Approximation < 10~2 für 1 < x < oo
exp( — 2x)

0 0.42994 2 0.65643
1 0.91559 3 0.17577

bzw. Gl. (11). Der Approximationsfehler beträgt

^^(x)<2.7-10-6-x1-7. (18)
^VPl

Unabhängig von dieser Arbeit befassten sich in letzter Zeit auch andere Autoren
mit dem Problem der schnellen und genauen Berechnung des Vakuumpolarisations-
Potentials [8, 9]. Die Ergebnisse der verschiedenen Approximationen sind innerhalb
der angegebenen Fehlerschranken identisch.

Ich danke den Professoren Dr. L. Schellenberg, Dr. L. A. Schaller und Dr. H.
Schneuwly für die anregenden Diskussionen und dem Leiter des Physikinstitutes der
Universität Freiburg i. Ue., Prof. Dr. O. Huber, für sein stetes Interesse.
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