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Measurement and interpretation of a->®Ni elastic
scattering from 27 to 49 MeV?)

by U. Kiebele,?) E. Baumgartner, H. P. Gubler, H. O. Meyer,?) G. R. Plattner and
I. Sick

Institut fiir Physik, Universitidt Basel, CH-4056 Basel, Switzerland

2. X. 1978)

Abstract. The cross section for elastic scattering of « particles from *®Ni was measured from 27 to
49 MeV in steps of 1 MeV. Data were taken for 120° < 6 < 172°, At 37, 43 and 49 MeV complete angular
distributions were measured. A thorough analysis in the framework of the optical model shows that neither
Woods-Saxon potentials nor ‘Regge-pole’ descriptions as proposed in the literature are adequate to interpret
our data. However, the measurements are well reproduced by a folding potential for the real part of the
optical potential, together with a phenomenological volume and surface absorption term.

1. Introduction

In the past, elastic scattering of « particles from various nuclei in the energy range
from ~ 10 to 50 MeV has been investigated thoroughly. Usually, the forward angle
cross sections can be well described by an optical model, while for backward angles
severe discrepancies appear between standard optical model calculations and the
measured cross sections. The enhancement of the cross sections in the backward
region, especially prominent for some nuclei near 4 = 40, and the pronounced
oscillatory structure of the cross section () as a function of 8 in the backangle region
have become known as ‘Anomalous Large Angle Scattering’ (ALAS) [1-5].

This phenomenon has led to the proposal of several new interaction mechanisms,
such as a-clustering in the target nucleus, quasi-molecular states and /-dependent
potentials [5-8]. A similar description which introduces so-called ‘Regge-poles’ into
the scattering amplitude [9] also has been used. These theoretical ideas all implicitly
involve resonances in the «+ nucleus system. If the mechanisms mentioned above
really exist, it should be possible to locate these resonant states. A possible
experimental verification of their existence is the measurement of excitation functions
at many different backward angles. Such a study is described in the present paper.

Since o scattering from *®Ni is not ‘anomalous’ according to the definition of Eck
[5], we decided to start our investigation with >®Ni as a target nucleus. In spite of the
‘normal’ behaviour of a->®Ni scattering, traditional analyses, i.e. in the framework of
the smooth-cutoff model or of the Woods-Saxon shaped optical potential cannot
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explain o(0) satisfactorily. We therefore attempted to interpret the data in terms of the
same models proposed for the explanation of ALAS.

We show that a satisfactory description of the o-*®*Ni angular distributions is
obtained when an optical potential resulting from a folding calculation is used. The
same conclusion was reached for «-*°Ca, the most notorious case of ALAS, which we
investigated in parallel [10] to the present work.

2. Experiment

Angular distributions of elastic « scattering differential cross sections have been
measured at the injector cyclotron of SIN. Beam intensities between 400 and 800 nA of
*He* * were obtained using the beam transport system in a non-dispersive mode,
resulting in an energy spread of about 100 keV. The beam spot on the target was 2 mm
wide and 3 mm high. We used a 1.2 m scattering chamber, containing a target ladder
for four targets and two arms carrying the detectors. Detector angles were determined
with an accuracy of 0.1°.

The beam current was integrated using a ‘split’ Faraday cup divided into four
sectors. Centering the beam at the location of the Faraday cup and at the target
allowed to align the beam axis parallel to the geometrical axis to within 0.2°.

As target we used a rolled nickel foil, with an isotopic purity of 99.96 %, >®Ni. The
target thickness of 1.08 mg/cm? contributed at most 350 keV to the energy resolution
for backward angles. :

The scattered o particles were detected with silicon surface barrier detectors an
position-sensitive ion-implanted detectors. At forward angles, three detectors moun-
ted 10° apart from each other were employed, while at backward angles we used two
position-sensitive detectors, each covering an angular range of 11.5°. A single detector
at 159° provided a control measurement of accumulated charge times target thickness.
The angular resolution of the detector systems was +0.4°. Thus the solid angles
corresponding to one data point were 6.5 msr and 4 msr for the single detectors and the
position-sensitive detectors, respectively. This angular resolution gave a contribution
of less than 80 keV to the overall energy resolution.

To process the signals from the position-sensitive detectors, an analog divider was
used. Energy and position signals were stored as a two-dimensional spectrum on the
PDP-11/45 on-line computer.

Differential cross sections for elastic « scattering as small as 0.2 ub/sr were
measured. For our experimental setup, this corresponds to 10 elastically scattered «
particles/hour in one position channel. Even for these small cross sections it was
impossible to use more than 800 nA beam current because of pile-up problems. In the
backangle region the ratio of elastically scattered « particles to the total number of
charged particles reaching the detector was about 1:10*. An investigation of the
spectrum with a AE-E telescope showed that most of these particles were protons and
deuterons, much fewer tritons and «, and only a few *He. While these particles led to
severe pile-up problems, they did not affect the identification of the elastically scattered
o particles. Figure 1 shows a typical spectrum of the particles detected with a 1 mm
thick silicon surface barrier detector. The elastic and the first inelastic « peak are well
separated, while the second excited state in *®Ni already overlaps with other states.

The results of our measurements are presented in Figures 2-5. Plotted is the cross
section for elastic scattering in the c.m. system divided by the Rutherford cross section
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Figure 1

Typical energy spectrum of o particles scattered from *®Ni, with E, = 37 MeV and 6, = 159°. Four
prominent states are labelled by their excitation energy (MeV) in *8Ni.
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The error bars contain the statistical error only, and they are not shown if smaller than
10%. The absolute normalization of the cross sections has been estimated to be
accurate to +59,. Tables of ¢(0) are available from one of the authors upon request.

The error of the measured cross section, as used in the fitting program, not only
contains the statistical error, but also the uncertainty of the angle, and it is set to a
minimal error of 5%, if all other terms are smaller than this.

OR,

3. Data analysis

The differential cross section a(6) for elastic scattering is given by the square of the
modulus of the scattering amplitude

f(8) = f(0) + Zlmlg zz: (27 + 1) e*"°(S, — 1) Pi(cos 0). (2)

Here f-(0) is the point Coulomb amplitude, S, the S-matrix element, ¢; the Coulomb
phases and P, Legendre polynomials.

For the elastic scattering of strongly absorbed particles one can obtain a first
approximation to the true scattering amplitude by phenomenologically parametrizing
the S-matrix elements S;, as in the so-called sharp-cutoff [11] or the smooth-cutoff
[6, 12, 13] models.
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Figure 2
Differential cross section for « particles elastically scattered from *®Ni. Error bars are shown only for
statistical errors greater than 10%;. The solid (dashed) curves correspond to fit I (fit II) of Table 3.

A more physical parameterization consists in describing the a-nucleus interaction
by a complex potential U(r). To calculate the values of the S-matrix, a one-dimensional
Schrodinger equation has to be solved. U(r) can be parametrized freely (phenome-
nolog1cal approach), or by using a folding potential [10, 14-17] extracted from a
microscopic model of the a nucleon interaction. This latter parametrization is more
satisfactory, because the potential is derived from physically meaningful parameters,
e.g. from the nucleon distribution and the measured a-nucleon interaction. While the
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Figure 3
Differential cross section for a particles elastically scattered from >®Ni. The solid (dashed) curves correspond
to fit I (fit II).
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Differential cross section for « particles elastically scattered from *®Ni. The solid (dashed) curves correspond

to fit I (fit II).
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Figure 5
Differential cross section for a particles elastically scattered from *®Ni. The solid (dashed) curves correspond
to fit I (fit II).
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real part of the potential can be calculated by this model, the imaginary part can only
be estimated [14], at least in the energy region covered in this work.

In this section, we present the interpretation of our data with these various
models. The goal of these attempts is to see whether any of these reaction mechanisms
allows a systematic description of the a-38Ni elastic cross section as a function of
energy.

3.1 Smooth-cutoff model

A simple model for a scattering, the sharp-cutoff model [11], is too stringent a
parametrization of S;. Even a generalization, the smooth-cutoff representation
[6, 12, 13], where the S-matrix elements are taken to be

S;=B()=(1+4 e *l-t)=1 (3)

is known to describe the data only qualitatively.
Here L is the cutoff angular momentum, A describes the diffuseness of the cutoff,
and « 1s a free phase introduced to allow for complex values of ;.

-
-
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Figure 6
‘Smooth-cutoff plus Regge-pole’ fits to the angular distribution at E, = 37 MeV. The solid curve is a
‘smooth-cutoff’ fit to the data for @ < 70° (fit 3 of Table 1). The dashed curve is a ‘smooth-cutoff plus Regge-
pole’ fit for 6 > 120° (fit 2), and the dotted curve is a ‘smooth-cutoff plus Regge-pole’ fit to the whole angular
distribution (fit 1).
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Astonishingly, when fitting the forward angle data only, this model predicts a
roughly correct pattern for the backward cross sections. As an example, the solid line in
Figure 6 represents a fit to the 37 MeV data for 8 < 70°. This fit not only describes the
data for 6 < 70°, but also for § > 140° rather well. However, it fails in the intermediate
angle region. This behaviour occurs also at other energies than 37 MeV, although the
back-angle agreement is not always as striking as in this case.

3.2. Smooth-cutoff model plus Regge-pole

The fact [1] that the back-angle cross section of ‘anomalous’ «-*°Ca scattering is
proportional to |P,,(cos 6)|* with one single /,, which depends on the bombarding
energy, suggested the introduction of ‘Regge-poles’, i.e. poles or ‘resonances’ in the
complex /-plane. If there are quasi-molecular or rotational states in the intermediate
nucleus, which strongly decay into the elastic channel, they might be described by such
resonances in /. All other contributions to elastic scattering must be accounted for by
choosing a suitable background.

Such a parametrization of S; was used by Gruhn [1]. Since the smooth-cutoff
representation of Blair [12, 13] could not describe the whole angular distribution, S;
was chosen as the S, from the smooth-cutoff model plus a é-function in /, emphasizing a
particular angular momentum.

In the present work, the S-matrix elements S; are taken as a background term B(/)
of the form of equation (3) in the smooth-cutoff representation multiplied by a ‘Regge-
pole’ factor:

S, = B(l)

I — Lo — iz(l) iD(l) ) @

[ — Ly — ip(l) [— Lo — (/2)T()

The Regge-pole factor [6] describes a resonance in /, where p(/) and z(/) give the pole
and the zero position in the complex /-plane. The resonance is centered at L, with a
total width I'. The /-dependence of D and I' is adopted to be the same as the /-
dependence of the background term itself, i.e.

D(l) = D(1 + /-8~ 1, (5)
(/) = T(1 + el=0ray~1, (6)

From past experience, one does not expect to find a good representation of the cross
sections in terms of the smooth-cutoff plus Regge-pole model. Nevertheless, we have
tried to fit our data at various energies using this descriptions, since it is a simple
parameterization, that allows a sensitive test for /-dependent effects. We have not
found satisfactory fits for the whole angular distribution at any energy. Only the
extreme forward and backward region can be well represented. Most discrepancies
between experiment and calculation occur in an intermediate angle region from about
80° to 140°. As an example, in Figure 6 a calculation is shown for 37 MeV. The
corresponding parameters are given in Table 1. The dotted curve is a fit to the whole
angular distribution, while the dashed curve represents a fit using data with 6 > 120°,
only. Apparently, the Regge-pole, while improving the fit in the backward region, leads
to a bad representation of the forward angle data.

Fits to backward angle data show only a small systematic energy dependence of
the parameters in the sense that L and L, follow more or less the appropriate / for the

- B(l)(l +
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Table 1
‘Smooth-cutoff plus Regge-pole’ fits to the angular distribution at E, = 37 MeV. The corresponding curves
are shown in Figure 6. Parameter definitions according to equations 3-6.

Angular x2/n of whole
region x2/n angular
of fit o L A D r Ly of fit distribution

1 All angles —09345 13.08 1914 1329 20.00 13.23 33.22 33.22

2 8>120° —1.571 1343 2979 3.08 1524 1638 11.28 367.8

3 6<70° 1.196 15.57 0902  — — — 12.10 49.55

grazing collision, where /4 = kr. Here r is the sum of the « and the >®Ni radii. Since the
parameters show strong fluctuations as a function of energy, and since they can not
describe the intermediate angle behaviour correctly, we conclude that the smooth-
cutoff plus Regge-pole model is not adequate for reproducing o scattering from >®Ni.

3.3. Woods-Saxon potential

Instead of choosing a phenomenological parametrization of the S-matrix, S, can
be calculated in the framework of the optical model. Commonly, the radial dependence
of the optical potential is taken to be of the Woods-Saxon form. In the past the optical
model in this representation has been very successful e.g. for the description of proton
scattering from elements throughout the periodic table [18]. However, one should not
forget that initially the Woods-Saxon potential was chosen for its numerically
convenient form. It is therefore not surprising, that there are cases where this special
form of U(r) turns out to be inadequate [10].

The optical potential in the Woods-Saxon parametrization is

, d
Ur) = Ve — Vf(xo) — l'l:Wf(xW) = 4Wn-d7f(xn)]’ (7)
: D

with ¥ the Coulomb potential of a uniformly charged sphere with R. = r.-A'/? and

1
s —_— L] 8
fe) =1= (8)
— .. A3

a;

In the past, many analyses of elastic scattering have been carried out in the framework
of this model. Often, different families of potentials give equivalent fits to the data
(ambiguities), since they lead to nearly the same S-matrix elements [18-24]. As an
example, Figure 7 shows fits to the 37 MeV data corresponding to four completely
different sets of potential parameters (see Table 2). Figure 7 by no means represents a
complete collection of ambiguities. Systematic searches [19] show several nearly
equivalent minima in ¥*, and we have found about a dozen sets yielding acceptable fits
to a given angular distribution.

It is easy to find an optical potential that explains an individual angular
distribution, at least for energies below 43 MeV. However, it has not been possible to
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Figure 7
Ambiguities of Woods-Saxon shaped optical potentials fitted to the angular distribution at E, = 37 MeV.
The curves correspond to the parameter set 1 (---- - - ), set 2 ( ), set 3 (———-) and set 4 (——-— ) of
Table 2.

find a weakly energy dependent Woods-Saxon potential for the whole energy region
from 27 to 49 MeV. Starting with potential 2 of Table 2, we have found fairly good fits
for all of the data between 35 and 40 MeV and also for some energies below 35 MeV,
but the parameters are not smoothly energy dependent, varying up to 50 %, of their
average value. Moreover, it has been impossible to get acceptable fits for the data
above 40 MeV with any parameter set we tried. Any potential describing the forward
or intermediate angle data in the region above 40 MeV always predicts a strong
oscillatory backward enhancement, in contradiction to experiment.

Table 2
Ambiguities of Woods-Saxon shaped optical potentials fitted to the angular distribution at E, = 37 MeV.
Parameter definitions according to equations 7-9.

v ro a w Fip By re x*/n
1 15.29 1.761 0.5878 25.96 1.390 0.5599 1.40 7.56
2 62.41 1.541 0.5654 13.07 1.617 0.4000 1.40 4.31
3 97.77 1.483 0.5458 16.47 1.561 0.4000 1.40 5.43
4 142.0 1.366 0.5825 33.31 1.292 0.4576 1.40 9.97
5 226.9 1.213 0.6915 24.83 1.518 0.4619 1.40 25.77
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3.4. Woods-Saxon potential plus Regge-pole

Although Regge-poles or similar /-dependent terms were introduced first to
improve the smooth-cutoff model [1, 6], their use is not restricted to this particular
model. One can also try to improve the Woods-Saxon optical model by introducing a
Regge-pole. Such a description would be convenient to represent ‘molecular’ states or
resonances with a well defined /. Although the optical model itself can be understood as
a superposition of many Regge-poles, the introduction of an additional pole
emphasizes the influence of one specific partial wave without changing the average
optical potential. :

In our study, successful fits using this model in general have lead to a Regge-pole
factor with L, near grazing angular momentum. Below 40 MeV, the new parameter
sets (with 10 free parameters instead of 6) have given fits with y* about half as large as
the one for a pure Woods-Saxon optical potential. Yet, the variation of the parameters
with energy has stayed as large as before. Also, it still has been impossible to extend the
description beyond 40 MeV.

3.5. Generalized potentials and the folding model

Since a detailed understanding of o scattering with a systematic energy
dependence is difficult, we can try to learn something about the potential by
investigating only the characteristic features of angular distributions such as the
positions of cross section maxima in the angle-energy plane. Taking a fixed optical
potential describing one of the angular distributions, we have systematically varied one
parameter at a time to study the behaviour of the maxima and compare it with the
experimental pattern. This investigation has shown, that the position of the diffraction
pattern in the forward region as well as the position of the very backward maxima
depends almost exclusively on the real part of the potential. In addition we have found
that the imaginary potential very strongly influences the intermediate angle region; it
determines the angular region where the forward fall-off changes into the backangle
enhancement, and it determines the width of the interference region. The deeper the
imaginary potential, or the larger the radius of the imaginary potential, the more the
backward structure vanishes. A stronger imaginary potential shifts the interference
region to larger angles and suppresses the enhancement of the back-angle oscillations.

Our study has shown, that a potential can qualitatively describe the position of the
cross section maxima in a whole angle-energy region, even though it does not give the
correct magnitude of the cross section. Suitable combinations of real and imaginary
potentizals also allow to produce a backward enhancement of /oy, without introducing
any special reaction mechanism.

Given this situation, it seems promising to investigate more general shapes of
V'(r). One possibility to generalize the optical model is to use form factors that are more
flexible than the commonly used Woods-Saxon form. The Woods-Saxon form factor
of equation (8) may e.g. be modified to

! 1 ¥
f'(xiﬁ V) = (1 + exl-f) ’ (10)
.. 4173
X, = P (11)

a;-v
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thus giving an additional degree of freedom [10, 25]. In several investigations a
squared Woods-Saxon form factor (v = 2) was adopted [26, 27].

The above model is phenomenological, because v does not have an obvious
physical significance. A more fundamental approach is to calculate the real part of the
a-nucleus potential using the folding model [10, 14-17]. Following the work of Vinh
Mau [14], we use the real part V(r) of the potential

Vin= Jp(r’)- Vin(r — r')-dr’, (12)

where p(r) is the nucleon point density in the target nucleus. For V, we use a local
potential

V() = = Up-(1 — & E;)-e™ "7, (13)

which is a good approximation for the effective a-nucleon interaction [28]. It has been
shown that this local potential, owing to its energy dependence, is equivalent to a non-
local potential [29] including exchange terms.

We have evaluated the real part of our *®Ni optical potential according to
equations (12) and (13). The nucleon density p(r) has been taken to be the charge
density of Reference 30, unfolded by the charge distribution of the proton, and
normalized to the proper number 4 = 58 of nucleons. The corresponding potential is
displayed as a solid line in Figure 9. For the imaginary part, we have allowed for
volume and surface absorption by admitting phenomenological Woods-Saxon
potentials (equation 7). By fitting at seven selected energies (where we had measured
complete angular distributions or where we could combine our back-angle data with
existing measurements of forward data, see References 22, 23, 31-36) we first obtained
a preliminary set of parameters. In these fits we had 7 free parameters, i.e. W, Wy, ry,
n, @w, dp (equation 7) and the normalization factor gg of the real part of the potential.
The real part was taken as gg- V(r), where V(r) is the potential calculated from
equations (12) and (13). These preliminary fits allowed us to fix the geometry
parameters ry, rp, @w and ap of the imaginary part at average values (see Table 3). It
was necessary to use volume arid surface absorption, because setting either W = 0 or
Wy = 0 resulted in strong fluctuations of the imaginary part of the potential as a
function of energy.

For the best fit of individual energies, we then have varied three parameters (fit I);
the geometry parameters were fixed, and only gz, Wand W}, i.e. the potential depth of
the real and the imaginary part were free. The results of fit I are shown as a solid curve
in Figures 2-5, the parameters are given in Table 3 and Figure 8. Since the energy
dependence of the imaginary potential depths W and W, from fit I can be
approximated by a straight line, we also have tried to fit our data with only one free
parameter gy (fit IT). W and W, were taken to depend linearly on energy, and ry, rp,

Table 3
Folding model potential. Parameter definitions of the imaginary part of the potential correspond to
equations 7-9, g, is the normalization factor of the real folding potential.

Igr w o ay, Wy n ap

I See Figure 10  See Figure 10 1.39 0.21  See Figure 10 1.20 0.55
11 See Figure 10  52. — 1.*E, 1.39 021 —18.2+ 1.14*E, 1.20 0.55
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Figure 8

Energy dependence of the parameters of fit I and II. The quantity g, is the normalization factor of the real
folding potential, while W and W}, are the strengths of the imaginary parts of the potential for volume and
- surface absorption respectively. Open circles (solid line) stand for fit I, solid dots (dashed line) for fit II. The
corresponding geometry parameters are given in Table 3. The quality of the fits is also indicated.
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Figure 9
Real part of the optical potential for various models. All potentials were fitted to the 37 MeV angular
distribution. The solid curve belongs to the folding model, the dashed curve to a modified Woods-Saxon
potential with V' = 221.4 MeV, r, = 1.58 fm, aq = 0.42 fm and v = 3.15. As a comparison the two Woods-
Saxon potentials 2 (---- - - Jand 5 (—-—-— ) from Table 2 are also given.

aw, ap were the same as in fit I (see Table 3 and Figure 8). The results of fit II are
displayed as the dashed curve in Figures 2-5. Clearly, we can describe our data or at
least the position of the cross section maxima fairly well with fit I, or even with fit II,
where only one parameter is adjusted.

Modified Woods-Saxon potentials of the form of equations (10) and (11) have a
shape quite similar to the one of folding potentials. As an example, we show in Figure 9
the folding potential used in our analysis and the corresponding modified Woods-
Saxon potentials, fitted to the same data. We also display a Woods-Saxon potential of
similar depth, and the Woods-Saxon potential giving the best fit at this energy.
Obviously, all four potentials are quite similar in the surface region. The main
difference occurs in the region r ~ 4 fm where ¥(r) has a shoulder. At small radii, the
potentials are very different, but this hardly influences o(6) because of the strong
absorption of a-particles in nuclear matter.
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4. Conclusions

Elastic o scattering from >®Ni in the energy region from 27 to 49 MeV shows
almost no backward enhancement of a(6) when compared to typical cases of ALAS.
However, attempts to describe the data with ordinary Woods-Saxon shaped potentials
lead to similar problems as in the case of so-called ‘anomalous’ large angle o scattering.
Customarily, ‘Regge-poles’ or other /-dependent terms have been introduced to
explain ALAS. In the case of a->®Ni scattering such terms improve the quality of the
fits to individual angular distributions, but they cannot provide a systematic
description over a wide energy range.

This paper shows that the scattering of o particles from *®Ni can be described by
the optical model, provided one uses an appropriate radial shape for the real part of the
potential. No special mechanisms are then needed to explain the general features of the
data. The scattering of o particles in this energy region is very sensitive to the shape of
the real potential in the surface region. It turns out, that Woods-Saxon form factors do
not have enough flexibility to reproduce the measured cross sections. Adequate
potential forms can be found by using modified Woods-Saxon potentials or folding
potentials.

After completion of our analysis, a paper on the same topic has been published by
Budzanowski et al. [27]. They agree with our conclusions concerning the choice of the
correct form factor, namely that a Woods-Saxon shape is not the best potential
parametrization for « scattering. However, the potentials resulting from our work
differ in detail from the ones found by Budzanowski et al. [27].

There remain several open questions. It is not clear whether the folding model
really gives the correct form of the potential. Contributions to elastic scattering from
compound processes have not been investigated, but might appear at large angles.
Furthermore, the basic problem of understanding the imaginary part of the a-nucleus
optical potential, and in particular its strong and erratic A-dependence remains a
challenge.

We would like to thank Dr. M. Pauli and the SIN cyclotron staff for their help
with this work.
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