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Relation between the critical current and the order
parameter in a Josephson array

by B. Giovannini and L. Weiss

Département de Physique de la Matière Condensée,
Université de Genève, 32 Bd. d'Yvoy,

1211 Genève 4, Suisse

(28.IX.1978)

Abstract. We give a definition of the order parameter for the paracoherent-ferrocoherent phase
transition in a Josephson array and we show that the amplitude of the critical current in the array is

proportional to this order parameter. We then discuss some qualitative properties of a Josephson array.

1. Introduction

Systems formed by a large number of weakly coupled superconducting grains can
be classified in two categories : granular superconductors, in which the grain size and
the intergrain coupling vary from grain to grain, and Josephson arrays, which are
regular lattices of superconducting grains. Granular superconductors have been
studied quite extensively in the last ten years [1], and they show many interesting
properties, but it is quite difficult, in these systems, to distinguish between effects due to
disorder from possible cooperative phenomena due to the interaction of a large
number of grains. On the other hand large Josephson arrays are very difficult to
construct experimentally; only one- and two-dimensional systems have been
constructed and experimental work is only preliminary.

Many properties ofJosephson arrays promise to be quite interesting, in particular
coherent behaviour in response to electromagnetic radiation (supercoherence) and
phase transition properties. Ideas about a second phase transition below the intrinsic
superconducting phase transition of the grain have been pioneered by J. Rosenblatt
and his coworkers [2]. The intuitive picture is very simple in the limit where the grains
are small compared to £,, the coherence length. In that limit, the order parameter varies
slowly over a grain size, one can attribute an order parameter A„ |A| ei<Pn to each

grain, and we have therefore at first sight a system analogous to a lattice of two-
dimensional rods interacting through a potential

X' -J £ cos(<pn - <p„)
n,n'

Note that this would be the plane rotator model, except for the fact that there exist
additional relations between currents and fields. As emphasized by Kosterlitz and
Thouless [3], these distinguish a neutral superfluid from a charged superconductor,
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and recent theoretical progress in the two-dimensional plane rotator model cannot be
applied readily to this problem.

Still one expects that at some temperature TCJ smaller than Fco (the transition
temperature ofthe grains), phases will orient 'ferromagnetically' and the system will go
from a 'paracoherent' to a 'ferrocoherent' state.

Descriptions of this phase transition have already been given [2, 4], and they rely
on a brownian motion analysis of a single junction in the noise created by all the others.
It would be satisfactory however, from the conceptual point of view, since we are
dealing with a large homogeneous system, to give a description more in keeping with
the standard description of phase transitions, and to define in particular a Hamiltonian
and an order parameter. To understand clearly the underlying physics, we first
investigate the properties of a (hypothetical) granular ferromagnet (Section 2) and we
then use the strong coupling model of superconductivity to investigate Josephson
arrays along the same lines (Section 3).

2. The granular ferromagnet

A granular ferromagnet is a rather academic system, consisting of N perfectly
isotropic ferromagnetic grains containing each n spins, the ferromagnetic grains being
coupled to each other by an exchange interaction. Both n and AT are large but finite
numbers.

(a) Fhe model

We first write down the interaction within the grain v as a Heisenberg exchange
interaction

Xy — —Jj^SyiSyj (1)

The sum is over the nearest neighbours in the grain. In the following, Greek indices will
refer to grains whereas Roman indices will refer to a definite position within a grain.
We then couple each grain with its nearest neighbours via an exchange interaction of
the form

•^=-^(lSw)(£Sw.) (2)

The complete Hamiltonian of the system is then

X= -h^Sli + ^Xy + YXy, (3)
V, i V Vß

where h gpBHz, and j « J.

(b) Qualitative properties of a single grain

Since n is large, each grain will undergo a sharp phase transition governed by the
interaction /, and develop below Fco ~ J\2Z S(S + \)]ßkB a spontaneous magnetization,

which is a large magnetic moment m0 pointing in a random direction.
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\t is the magnitude of this macroscopic moment which represents the order
parameter of the grain ; since we want this magnetic moment to be a constituent of a
much larger ferromagnetic system governed by j, we must treat this moment as a
dynamical variable and apply the rules ofstatistical mechanics to calculate its averages.
In particular, the magnetization itself will be zero at zero field.

Let us cite briefly that :

(1) The susceptibility of the grain is of the order n above Fco, i.e.

l~n——— F»FC0 (4)
1 * co

(C [g2p2BS(S + \)]ßkB, Fco ~ J[2ZS(S + l)]ßkB, Z number of nearest
neighbours).

The susceptibility will be ofthe order n2 below Fco, i.e.

2iwf
T « Fco (5)

ikRF

where m0 is the order parameter ofthe grains which varies with Pand is ofthe order nS.
For arbitrary fields, the magnetization mz is of the order

CD (gpBS(h + Xmz)\
mz ngpBSBA — 1 F » FCQ (6)

and

m0H
kFmz M0BmolmB 1-P-) F«FC0 (7)

One notes in the last expression that for H » kF/m0, mz =* m0 ; for a grain of IO8 spins,
f.i. mz ä m0 for H > 10~4 Gauss at 1°K.

A ferromagnetic grain is thus always saturated, and it would take extremely low
fields to measure the linear susceptibility (5).

(2) The transverse susceptibility for F < Fco is given by

*-W «,-*(,)-Ì + I>,q)
(8)

for q + 0.

The point here is that the numerator of x+ -(q) is m0 the order parameter, not mz
(except at q 0). In other words this numerator does not go to zero when h —> 0 in a
finite system, except at q 0. Although it is intuitively rather obvious, it goes against
the usual result which one would obtain, f.i. with the equation ofmotion method. Since
this fact is essential for our discussion of the granular superconductors, it is worth
giving an explicit derivation. We do it in the simplest possible manner: starting from a
block Hamiltonian [5] for the system, we show that for the limit (co—> 0, q—> 0), x+ -
~ m0/h.

The block Hamiltonian is written in the usual manner

X(a) „_— a0V+l^ok-ak{a2 + ck2}

+ V'1 £ a4(okGk,)(ok„a^-k,^,)-Vli2o0h (9)
k.k'.k"
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where a2 a'2(F — Fc); a0,a2, a4 and c are parameters, Fis the volume ofthe system
(the grain) and

ff^r1'2^-"»«, (io)
i

We then calculate <|axk|2> in the Gaussian approximation [5], with the only difference
that we do not fix the direction of <r0, but keep fluctuations in the angle S between <r0

and h. This means that in averages of the form

<fi«^,. ..)>.m^—/(.)
\X[daike-*™

j da0<J20 sin SdS f\ doike-*{°)IT f(a)

\\~\daike~ jT(ff)/r (11)

we want to make a rotationally invariant gaussian approximation. That is, we must
first do the integral over # exactly, then look for the minimum of the remaining
probability distribution and expand around this minimum. This minimum fixes the
most probable value of a2., i.e. m\, the length ofthe effective moment. The calculation
is straightforward and leads to

lim <|crxk|2> h- ^ (12)
k^o h

in the gaussian approximation, which is the desired result.

(c) Qualitative properties of a granular ferromagnet

We can now infer, from the discussion above, the basic properties of a granular
ferromagnet. We must now distinguish two transition temperatures

2JZS(S + I)
F,

ikB

ljZ'S(S + 1)
F

5kB
(13)

The proper description of these transitions is that at Pco, the system develops Af
effective moments, each of magnitude m0 ~ nS, whereas at FCJ, the system develops
one effective moment of magnitude M0 ~ nNS.

One sees here the relevance of a rotationally invariant formulation : ifone fixes the
magnetization vector in the z direction, then it will be of the order NsS below FCQ

already, and nothing special will happen at FCJ, except perhaps a small
renormalization.

Again, one sees that
(1) The susceptibility will be of order nN above Fco

l^nN—^— F»FC0 (14)
¦* ¦* co
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of the order Nn2 for FCJ < F < FCQ

y*N ™5 (15)X
5kB(F-FCj)

and of the order N2n2 for F < FCJ

y ~ (16)k 5kBF
v ;

where M0 is the order parameter for the whole system, i.e. M0 ~ nNS.
(2) For the transverse susceptibility, we have to distinguish between different

wavelengths. If a is the spatial extension of a grain, we will have for FCJ < F < FCQ

< ^ Nmo nn\x+-(q)~ r\—i r<—r (17)
03 - to(q) - A + £ (to, q)

for g > \/a; and
A^w

*+_(q)^ 7* (18)
« - «(q) - A + £ (co, q)

for # < I/a, so that /+ _(co, q) 0 for h 0 and q < I/a. (Note also that co(q) ~ /g2
for # > \/a, but co(^) ~y'^f2 for q < l/a).

For P < FCJ, one has

to - co(q) - h + X (co, q)

for all q # 0.

So, if one considers the value of x+ -(&>, q) for h 0 and <7 < l/a, one sees that it
goes from zero at F > FCJ to a finite value at F < FCJ. The analogous property for a
Josephson array will be important, but before turning to this system, we briefly
comment on the specific heat.

The ratio of the specific heat discontinuity at Fco and FCJ

^h^n^ (20)
(AC), FCJ

K '
because

(AQo « fiv«^rco
(AQj * \NkBFCj

Similarly, the ratio of the specific heat divergent terms can be estimated at

Ç«~ nA PY12
C,' F2\j^ify*) (2D

for equivalent temperatures: \FCJ — F\ \FC0 — F\. This follows from the expression

c~fj(^\'2 (T-Fcyil2

valid in the gaussian approximation for F> Fc, and the estimates c ~ J/n at Fco and c

~ j/N at FCJ.
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So one sees that in a granular ferromagnet, the specific heat anomalies at FCJ are
very small compared to the same anomalies at Fco.

3. The Josephson array

A Josephson array can be represented by a Hamiltonian very similar to (3), and
most of our qualitative conclusions about granular ferromagnets can thus be taken
over simply for Josephson arrays.

(a) Fhe model

The BCS Hamiltonian can be written as [6, 7]

X=-2ZtEk<Tk-Vliak-crï (22)
kk

if one excludes simply occupied k states. The sum over fc's runs over the n states
contained in a shell of width hcoD (the Debye frequency) around the Fermi surface, and
ak,. are Pauli matrices. If one makes the approximation ek ~ ef one gets the so-
called strong coupling model of superconductivity :

X=-lefY.al-VY.ck-ok+. (23)

In this model the superconducting phase transition has a very simple interpretation : at
some temperature FCQ, the system develops a macroscopic magnetic moment in the x-y
plane, whose size is proportional to the gap, and whose direction is random. Indeed the
ground state of Hamiltonian (23) is the state with maximum S and Sz 0 (if one
chooses properly ef), whereas the BCS ground state is not the true ground state but a
coherent superposition of all states with maximum S and all values of Sz.

The Hamiltonian (22) is readily extended to a Josephson array by writing

X -lY.efolk-VY, a;ka:k,
vk vkk'

- v E fò c7vWk + h.c.\ (23)
vv' (kk' J

Since Oyk(Oyk) destroys (creates) a Cooper pair in the grain v, the last term is a two-
electron tunnelling Hamiltonian. The sum runs over all (v, v') nearest neighbours.

Formally and physically (24) is very similar to (3), and the transition at FCJ < Fco
is marked by the formation of a large macroscopic magnetic moment in the x-y plane.
This moment is not directly observable however, and we now analyse the behaviour of
the resistivity at FCJ.

(b) Fhe Josephson conductivity

To study the resistivity we consider the response of the system to an
electromagnetic field. We first define a Fourier transform for the granular system in the
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following way. If Rv denotes the coordinates of the vth grain (f.i. the centre of the
grain), we define

fiik) N-v2Yie + **fiRy)
v

fiRy) N-v2Y,e-™fiik) (24)
k

Then the interaction with an electromagnetic field can be defined as

X' -£ {/>vSv+Sv" + PÏSy-S'} (25)
VV

where the sum over v' is over the nearest neighbours of Rv and we assume that ev varies
slowly with v. Or in Fourier transform

jf AT1'2 £ 5k+S:k_k.,pk.^(k") + h.c. (26)
kk"

where

<7(k) Xe-*Rä

Rs being the vectors leading from a given site to its nearest neighbours. We now
consider the variation of the charge on the vth grain : S*. If the current varies slowly
over a distance a (the intergrain spacing), one has

Sv=-ia3k-ik (27)

where jk is the Fourier transform ofthe current. So, for simplicity, we just consider the
response of S£ to the external field. Since

Sy l\_jf, Sy ]
-ivY.(s:s;- -h.c.) (28)

v'

the amplitude of supercurrent will be proportional to the amplitude of response
functions of the type

X+_(k, t) -iS(t) £ g(k - k')g(k + k")<[SktSk-_k..jSktSk-+k»]> (29)
kk"

This response function is very similar to the transverse susceptibility.
One can apply standard many body techniques to evaluate it [8] and one gets

expressions of the form

*+ -(kW) auVr IA t30)
co — co(k) + 2^ (tok)

and we have taken into account, to calculate the numerator, of arguments similar to
the one developed for granular ferromagnets : Mx is here the amplitude of the order
parameter ofthe whole system, and goes to zero at FCJ, and a is a constant.
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To understand the meaning of equation (30) we consider a single junction in an
electromagnetic field. The supercurrent flowing through the junction will be

(le
Js J0 sin <-— p sin (cot)

nco

where p is the amplitude of the electromagnetic field. In the linear approximation

(31)

2e
Js JoP T— sin (cot)

flCO

x(o>)p sin (cot) j
using the definition x(w) corresponding to (30). We see therefore that indeed

Xico) ^ (32)
nco

and that the amplitude of x(oo) is proportional to J0.
If one applies for a single junction problem the formalism used here, one finds the

effects of fluctuations described by Boltzman factors, so that the amplitude of Js goes to
zero for

kF» vn2

This will be discussed in detail elsewhere [8].

(c) Qualitative properties of a Josephson array

From the discussion above, we can now summarize some properties of a

Josephson array.
(i) If the condition

Z'vn2 < kBFC0

is satisfied, i.e. if, for the constitutive junctions of the array

hJ0 2evn2 <2ekBFJZ' (33)

there will appear a second phase transition at a temperature FC] < Fco.
To evaluate condition (33), we set

~ n A
Jo 2e~R

so that one must have

hZ' tiA

Meaningful arrays have to be constructed with very weak links.
(ii) Below FCj, the critical Josephson current will rise from zero to a finite value

following an order parameter law, i.e., in the molecular field approximation

z /^i-^-)1/2 (34)
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This law is compatible with known experimental results [9]. Above FCJ, Ic will be zero,
i.e. the array will be resistive.

(iii) The specific heat anomalies at FCJ will be smaller than the corresponding
anomalies at Fco by a factor \/n at least (equations (20) and (21)).

(iv) Below FCJ, the array will behave essentially as a superconductor, except for
possible supercoherence properties, which we will not discuss here. Thus one has to
determine the parameters in the Ginzburg-Landau theory.

f fno + *m2 +^MA + y (jV-ÇaV (35)

We will now focus on the situation where

£GL « a « X

where £GL is the intrinsic Ginzburg-Landau correlation length of the material of the
grain, a is the diameter of the grains and X is the penetration depth. In that case the
amplitude \\j/\2 is practically constant throughout the system, only the phase varies due
to currents and fields and the corresponding term can be written

/h e* Vy\-\<p--A\m2 (36)

and this gives directly
c2

Ktf o I / 12 *2~' W')
%n\\j/\ e* y

Let us analyse how the phase varies on a large scale compared to the grain size if we
have a current flowing in the system. Within the grains, the current density is given by

e* / p*

m* \ c

whereas at each boundary

\^J0[A(p-e— Adì

This means that if J0 « (e*/m*)\il/\2 so that J0 « e*jm*\ip\2h the phase varies much
faster between the grains than inside, and if we look at a large scale compared to the
grain size

j J0al\q> -t~A
So the parameter

J0a
1 ~ le*h\ip\2

in equations (35) and (37) and therefore
he2

e" 4ne*J0a
If J0 is very small, Aefr becomes very large.

Large penetration depths are indeed observed in granular superconductors [10].
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