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Physical justification for using the tensor product to
describe two quantum systems as one joint system

by Dirk Aerts') and Ingrid Daubechies')

Theoretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, B 1050 Brussel

(17.VIL.1978)

Abstract. We require the following three conditions to hold on two systems being described as a joint
system: (1°) the structure of the two systems is preserved ; (2°) a measurement on one of the systems does not
disturb the other one; (3°) maximal information obtained on both systems separately gives maximal
information on the joint system. With these conditions we show, within the framework of the propositional
system formalism, that if the systems are classical the joint system is described by the cartesian product of the
corresponding phase spaces, and if the systems are quantal the joint system is described by the tensor product
of the corresponding Hilbert spaces.

Introduction

As we know the states of a physical system are described by the points in a phase
space in classical mechanics and by the unit vectors of a complex Hilbert space in
quantum mechanics. If we consider two classical systems S; and .S, with corresponding
phase spaces Q, and Q,, then the joint system S is naturally described by means of the
phase space Q which is the cartesian product Q, x Q,. For two quantum systems S,
and S, with corresponding Hilbert spaces #, and , it is one of the axioms of
quantum mechanics that the states of the joint system S are described by the unit
vectors of the tensor product #; ® . ,. This not obvious procedure to construct the
states of the joint system in quantum mechanics originated in the wave-mechanics
formalism. Indeed if we describe both S, and S, by means of the Hilbert space L*(IR?)
of all square integrable complex functions of three variables, and a state of .S, resp. S,
is represented by a function ,(x) resp. Y,(y) such that j ly(x)]* dx =1 and
| W2(y)1* dy = 1, then it is natural to represent a state of the joint system S by a square
integrable complex function of six variables ¥(x, y) such that [ |y(x, y)I* dxdy = 1.
This amounts to saying that we take the Hilbert space L?(R* x R?) to describe the
joint system .

Since not every complex function of six variables can be written as a product of
two functions of three variables, L?(IR® x IR?) contains functions that are not in the
cartesian product L2(R3) x L?(IR®) and in fact one can prove that L*(R* x R?) is

') Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in het
kader van navorsingsprogramma 21 EN).
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isomorphic to L2(R?*) ® L2(R?)([1], p. 51). This s the reason why in general, when we
consider §; and S, to be described by abstract Hilbert spaces .#"; and # ,, we take
H | ® A, to describe the joint system S.

Our aim in this article is to try to understand the physics behind these coupling
procedures for two systems. We shall see that some very general and physically
intuitive requirements on two systems S, and S, lead us in a natural way to describe the
joint system by means of the tensor product of the corresponding Hilbert spaces if .S
and S, are quantum systems. The same requirements for classical systems force us to
describe the joint system by the cartesian product of the corresponding phase spaces.

To carry out this program, we used the propositional system formalism of Piron
[3] because we think it gives a clearer insight into the physical notions behind quantum
mechanics which are often not so easy to grasp in the ordinary Hilbert space
formalism. Moreover it is a formalism capable of describing both quantum systems
and classical systems by means of the same mathematical artillery.

The origins of the propositional system formalism go back to [2]. The physical
interpretation exposed here is given in [3]. It was realized long ago [4], [5] that the
observables of a system are more fundamental physical notions than the states of the
system, which is the opposite of what is done in the Hilbert space formalism, where one
defines first the states and afterwards the observables. This idea gave birth to the C*-
algebra approach of quantum mechanics. But still, an observable being represented by
an operator is not a physically very clear idea. One can remark however that it is always
possible to split an experiment into different yes-no experiments (observations which
permit only the two alternatives yes or no as an answer).?) Indeed, in general the values
of an observable cover a subset of the real line. A determination of the observable is
obtained by dividing the real line into small intervals and then deciding for each one of
these intervals whether it contains the measured value. The collection of all the yes-no
experiments obtained in this way determines completely the observable. In phase space
formalism of classical mechanics this collection is the set of all subsets of phase space of
the form f~'(4), where 4 is a subset of the measuring range of the observable
represented by the real function £, and f'is completely determined by the knowledge of
this collection (see [3] theorem 1.21). In the Hilbert space formalism of quantum
mechanics this collection is the set of all projection operators of the spectral
decomposition of the corresponding selfadjoint operator. So the idea grew to make a
quantum formalism by considering the collection of all the possible yes-no experiments
on a physical system and to study its structure.

Taking into account some very basic physical facts Piron shows in his excellent
book [3] that one is led in a very natural way to define operations on this set, which
turn it into a complete, orthocomplemented, weakly modular lattice, a well-known
mathematical object. The structure of this object is now a direct consequence of
physical arguments, which is not the case for, e.g. linearity in the C*-algebra approach.
Work on such lattice formalisms has been done by Mackey [6], Jauch [7], Piron [3],
and many others. In [3] it is proven that with some additional suppositions (for
instance the possibility to define states for the system), this approach yields a structure
which is isomorphic to the structure of ordinary quantum mechanics in the Hilbert

3 A yes-no experiment is represented in the phase space formalism of classical mechanics by a function f
from the phase space to the set {yes, no} (or, which is the same, by the subset /! (yes) of the phase
space). In the Hilbert space formalism of quantum mechanics it is represented by a projection operator
P (or, which is the same, by the closed subspace P# of the Hilbert space ).
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space formalism. Assuming a different additional property, named distributivity, the
formalism leads to a structure isomorphic to the one used in classical mechanics. We
will give a short review of the basic notions and definitions involved in the
propositional system formalism in the following section.

1. The propositional formalism

If S is a physical system we will denote by & the collection of all the yes-no
experiments on S. Let us remark that in fact % is just the collection of all the properties
of S because with every property corresponds a yes-no experiment and vice-versa. This
to point out the great generality of this formalism which starts by studying the
structure of the set of properties of a physical system. If S is a classical system,
described in phase space formalism, . is the collection of all the subsets of the phase
space Q. We'll denote this collection 2(Q). If S is a quantum system, described in the
Hilbert space formalism, .% is the collection of all the closed subspaces of the Hilbert
space #. We’'ll denote this set likewise 2(.#).

We will say that a yes-no experiment is ‘frue’ whenever we are certain that the
answer yes will be obtained. For a classical system described by 2(Q) this will be the
case when the point of Q representing the state lies in the corresponding subset A4 of Q,
otherwise we get with certainty the answer no. For a quantum system described by
P(#) this will be the case when the state vector x belongs to the corresponding closed
subspace G of #. Remark that only when x € G* we get with certainty the answer no.
In both classical and quantum cases we’ll say ‘A4 is true’ and ‘G is true’.

1.1. Structure of &

The above defined notion of truth for a yes-no experiment gives rise to the basic
structure of & : we'll say that b ‘implies’ ¢ (notation b < ¢)iff ¢ is true whenever b is true.
It is easy to see that this defines a partial order relation, i.e. a reflexive, antisymmetric
and transitive relation on .#. This partial order relation is the inclusion on 2(Q) and on
P(H).

(1°) &, < isacomplete lattice. This means that for every family (b;);, of elements
in & there exists a greatest lower bound N ., and a least upper bound V ;. b;.

In 2(Q), the greatest lower bound of a family (4,);.,1s M;; 4;, the least upper
bound is v;; 4;.

For a family of closed subspaces (F;);., in (#) we have a greatest lower bound
Mie; Fi, and a least upper bound span;_,(F;).

Physically speaking, A, ;b; will be true iff all the b;’s are true. The physical
interpretation of the least upper bound is less obvious: it may happen that V,; b; 1s
true while none of the ;s is true. For a classical system, this last possibility is excluded.

(2°) &, < is an orthocomplemented lattice, with orthocomplementation . This
means that ' is a bijection mapping ¥ to ¥ such that for b, ce &

by =>

b<ec=cd <b .

bvb =I, bAb =0 wherel=V,.,b,0= Ay, b
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For 4 € 2(Q) we have A’ = Q\4 and for G € Z(#) we have G’ = G*.

The physical interpretation is easy : if b is true, then we’ll get for certain the answer
no for &’. This interpretation holds in Hilbert space formalism as well as in phase space
formalism. |

(3°) A lattice &, < is said to be distributive if"
Vb,c,d:bv(cand)y=((bBve)abvd

It is easy to see that 2(Q) is distributive, whereas 2(#°) is not if dim # > 1. This
distributivity gives us the fundamental difference between quantum mechanics and
classical mechanics. Although we see that not any % is distributive, there exists a
weaker condition which is always fulfilled:

(4°) & isweakly modular. This means that whenever b < c, the sublattice generated
by {b, ¥, c, ¢’} is distributive. This condition is verified in 2(#).

Pairs which generate distributive sublattices are interesting in themselves because
they show classical features. This motivates the following definition:

(5°) Definition: b, c € & are said to be compatible iff the sublattice generated by
{b, b, ¢, ¢} is distributive.

We shall denote this by b < c.

In a #(#) the relation F« G holds iff the corresponding projection operators
commute. In 2(Q) any two elements are compatible.

Other pairs of elements can also be interesting:

(6°) Definition: b, c € & are said to be a modular pair iff
Vx <c¢ bvx)yanc=(bBnarc)vx

We shall denote this by (b, c) M.

One easily sees that b < ¢ implies (b, c)M.

In the following we shall always assume that the lattice .Z of yes-no experiments of
a system satisfies axioms (1°), (2°), (4°). For a more complete physical justification of
this assumption the reader is referred to [3].

1.2. The states of a physical system

Let us consider a system S, described by the complete, ortho-complemented,
weakly modular lattice & of its yes-no experiments. The next step in the study of the
system is to investigate which yes-no experiments are true at a certain moment. These
are indeed the properties which are elements of reality for the system at that moment:
they represent the state of the system. This collection of ‘true’ yes-no experiments is
completely characterized by its greatest lower bound which is again a yes-no
experiment (see 1.1 (1°)). One usually represents the state by this yes-no experiment.

Moreover we want the system to be totally described by this collection. This
compels its greatest lower bound to be a minimal element of % : no additional yes-no
experiment can give us more information. In mathematical language, this means the
following for the proposition p corresponding to a certain state: x€ Z, x < p=x =0
OF &% = B
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An element p which has this property is called an atom of #. Since on the other
hand for every property of S there has to be a state in which the system possesses this
property, we have the following axiom:

(1°) & isan atomic lattice. This means that for every element b of &£ there exists an
atom p such that p < b.

In 2(Q2) the atoms are the points of Q and in 2(#) they are the one-dimensional
subspaces of #. There is one more axiom to be fulfilled by .#. For its physical
understanding which requires a deep analysis of the measuring process we refer the
reader to [3] ch. 4.

(2°) & satisfies the covering law. This means that if p is an atom of & and a, x € &
suchthatanp=0anda<x <avpthenx=aorx=avp.

A collection % of yes-no experiments on a physical system which satisfies 1.1 (1°),
(2°), (4°) and 1.2 (1°), (2°) will be called a propositional system.

As we said before a classical system is described by a distributive propositional
system which implies that any two propositions are compatible. When the opposite is
true, i.e. no element of ¥ except 0 and I is compatible with all the others (& is
irreducible), we say that the system is a pure quantum system. In general a system is
intermediate between those two extremes. It is in fact a quantum system with
superselection rules and can be considered as a combination of pure quantum systems
(see [3] chapter 2). 2(#) is a pure quantum system.

The following two representation theorems show us that although we took 2(Q)
and 2(A’) as examples for a classical system and a pure quantum system, they are
already the most general realizations. A

(3°) If & is the propositional system of a classical system, and so a complete
orthocomplemented distributive atomic lattice, then & is isomorphic to 2(Q) where Q
is the set of all the atoms of .# (for proof see [3] p. 9).

(4°) If Z is the propositional system of a pure quantum system, and so a complete
orthocomplemented, irreducible, weakly modular, atomic lattice satisfying the
covering law, then % is isomorphic to the set (V) of all biorthogonal subspaces of a
vectorspace V over some field K. The orthocomplementation defines on K an
involutive anti-automorphism and on V a nondegenerate sesquilinear form; the weak
modularity ensures that the whole space is linearly generated by any element and the
corresponding orthogonal subspace (for proof see [8] and [3]). If we take the field in
this representation theorem of Piron to be € and the involutive anti-automorphism of
C to be the conjugation then the vectorspace V' becomes a Hilbertspace over € and so
& is isomorphic to our example (). In the following we shall always restrict
ourselves to the case where K = (.

2. The description of two systems as a joint system

Let us consider two physical systems S; and S, with their corresponding
propositional systems ¥, and ¥,. We want to describe the two systems as being one
joint system S with corresponding propositional system .#. Which wili be the physical
requirements to ask on ¥, &, and £?
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— First of all we do not want S, and S, to lose their identity by coupling them. So
every property of S; and every property of S, has to be a property of S. The
mathematical translation of this requirement is the existence of a map 4, from
£, to Z and a map h, from ¥, to Z.

— We also require the physical structure of .S; and S, to be conserved when they
are considered as parts of S. So 4, and 4, have to conserve the structure of .,
and &,. It 1s sufficient to ask the following:

(1) for ay, by € &, and a, «— b, we have h,(a;) < h,(b;)

(i) for (a;);c,a;€ &4 we have hy(V,.,a) = V. hy(ap).
From these two requirements follows immediately that

(i) A,(0,) =0

(iv) hy(a}) = hy(a,) A hy(1y)

(V) hi(Aia) = N hy(ai).
So (1) and (ii)) make %, to conserve the structure of ¥,. We ask the same
properties for /,.%)

— hy(Iy) 1s a yes-no experiment on S which is true whenever S, exists, so it is
always true. From this we conclude that 4,(/,) = I and in an analogous way
hy(ly) = 1.

A c-morphism such that the identity is mapped to the identity is said to be
unitary.

2.2 We also want to couple S, and S, in such a way that it remains always possible to

2.3,

consider only one of them without disturbing the other. No measurement on S,
may disturb S, and vice versa. The mathematical translation of this requirement is
the following:

Ifa, e ?,, a,e¥, then hy(a,)< hy(a,).

We do not lose information in coupling S; with S,. So we will ask that when we
perform a measurement on S; which gives us maximal information together with
a measurement on S, which gives us maximal information this will give us a
maximal information measurement on S.
The mathematical translation of this requirement is the following (see 1.2):
If p;1sanatomof &, and p, anatom of .¥,, then: 4,(p,) A hy(p,)isanatom
of &.

These three rather weak requirements will be sufficient to prove the following two
theorems.

2.4. If S and S, are two classical systems described by 22(Q;) and 2(Q,) then the joint

Z:3,

system S is described by 2(Q, x Q,).

If S| and S, are two pure quantum systems by 2(#,) and 2(# ,) then the joint
system S is described by #(#; ® #',) or P(H#'| ® #'%) where #'% is the dual of
H .

In the next sections we will prove those two theorems.

3)

A map from a propositional system ¥ to a propositional system . with these properties is called a
c-morphism, An isomorphism of two propositional systems is a ¢c-morphism such that the inverse map
is also a e-morphism (i.e. a bijective c-morphism).
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3. The classical case

Let us consider two classical systems S; and S, described by 2(Q,) and 2(£2,) and
the joint system S described by 2(Q). First of all we remark that requirement 2.2 is
always fulfilled since we want S to be a classical system. So we will prove 2.4 by using
only 2.1 and 2.3.

Theorem. If there exist two unitary c-morphisms
hy: P(Qy) - P(Q)
hy: P(Q,) — P(Q)

suchthat hy(py) A hy(p,)is an atom of P(Q) whenever p, is an atom of P(Q,) andp, is an
atom of P(Q,), then P(Q) is isomorphic to P(Q, x Q,).

Proof. Consider the following map:
1: Ql X Qz — Q
(P1>P2) = hy(p1) A ha(py).
(1) 1 is injective
Indeed suppose

hi(p1) A hy(ps) = hi(gy) A hay(q,)
= hy(p1) A hy(ps) = [hi(p1) A Ba(p2)] A [hy(g1) A ha(g2)]
= hy(p1 A q1) A hy(py A q2)

fpy #q1=p1 Aqr=d=>h(p1 A q1) = =hi(p1) A ha(p2) = ¢.
(1) 1 is surjective
Indeed
Q= hi(Q) A hy(Q,) = hl(vp;6Q1 P1) A hZ(vpzeﬂ.z P2)
= {Vpl Q1 hl(pl)} A {szeﬂz h2(p2)}

Vopiear VY paea, (B1(P1) A ha(p3))
{hi(p1) A hay(p2) | (p1, p2) €Qy X Qz}'

If we consider now the map i: 2(Q)—> 2(Q,,Q,) such that
i(A) = {(p1,p2) | I[(py, p2)] € A} then it is easy to check that i is an isomorphism.

4. The quantum case

To prove 2.5 we will make an intensive use of a study of structure preserving maps
of propositional systems made in [9]. We already defined a c-morphism to be a map
preserving the physical structure represented by the axioms 1.1 (1°), (2°), (4°). In 1.1
(6°) we defined modular pairs. It is easy to see that not every c-morphism will map a
modular pair into a modular pair. If it does we will call it an m-morphism [9] [10].

In [9] it is proven that every unitary m-morphism from 2(#°) to 2(#”) can be
generated by a family of unitary and antiunitary maps from 3# to #”. If all these maps
are unitary the m-morphism is said to be linear and if they are antiunitary the m-
morphism is said to be antilinear. Otherwise it will be called mixed.

We will also need the following results of [9].
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4.1. Proposition (see [9] proposition 2.5)*)

Let # and H#" be two complex Hilbertspaces and f a c-morphism from P(H) to
P(H"). Then f is an m-morphism iff Yx, y non zero vectors in #:f(x —y) < f(X)
+ /().

4.2. Theorem (see [9], theorem 3.1)

Let # and #" be two complex Hilbert spaces, with dimension greater than or equal
to 3. Let f be an m-morphism mapping P(H) into P(H"). Then for every couple (x, y) of
non zero vectors of # , there exists a bijective bounded linear map F,, mapping f(x) into
f (), such that the set of maps {F,,; x,y € #} has the following properties:

yo

Fox =1y (1)
Foy = (Fye) ™ (2)
F\ Fy = F,, (3)
Fyoon=Fyy+F., )
Fiw=F.,, AeC, A1#0 ()
F, . is an isomorphism if || x| = || y]. (6)

 For every non zero x in # , there exists moreover two orthogonal projections P} and
%3, elements of 2(f(x)), such that

P{-P5=0 ©

P§+P§=Hf(i) (8)

PI= Fo iy, 1=1,2 9)
and

Fo = AP% + AP%. (10)

If for one non zero x in # the projection P%(P3) is zero, then all the P%( P) are zero
and f is a linear (anti-linear) m-morphism. (11)

We will also use the following result of [9].

-4.3. Theorem (see [9], corollary 4.2)
Let #, #’ be complex Hilbert spaces with dimension greater than two. Let f be a

unitary c-morphism mapping P(H) into P(H") such that there exists one atom of p of
P(H) which is mapped to an atom of f(p) of P(H ). Then f is an isomorphism.

4y If xisa vector of a Hilbert space #, we will write X to denote the one dimensional subspace generated
by x.
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4.4. We will also need a few results from lattice theory which we will use
frequently in the calculations.

(1°) In a weakly modular, complete orthocomplemented lattice . if b € & and
a,€e £ Vie £ and b aq;Viel, then:

Vielb na) =b A (Vi a) (12)

(see [3], theorem 2.21)

(2°) In a weakly modular, orthocomplemented lattice . we have two criteria
which enable us to see whether two elements are compatible:

Ifbcel:bocesbrc)a(B Ao)=c (13)
<>bv)nc=bnac (14)

(see [3] Section 2.2)

(3°) In a weakly modular, orthocomplemented lattice &, the triplet (b, ¢, d) is
distributive whenever one of the three elements is compatible with each of the two
others.

(see [3], theorem 2.25) (15)

4.5. We will now consider two pure quantum systems .S; and S, described by
P(H () and P(H ,) and the joint system S described by 2(#) where 5, and ¢, are
complex Hilbert spaces with dimension greater than two and # is a complex Hilbert
space. We will also suppose that 2.1, 2.2 and 2.3 are fulfilled; so

() there exist two unitary c-morphisms

hy: P(H ) — P(H) hy: P(H,) — P(H). (16)
(i1) such that for every G, € Z(#',) and G, € #(H# ;) we have:

hi(Gy) © hy(G). (17)
(iii)) and such that if p; is an atom of 2(#,), p, an atom of (s ,), then

hi(p1) A hy(p,) is an atom of P(H#). (18)

With these different assumptions we will first prove some lemmas in preparation
of the proof of 2.5.

Lemma 1. If we define the following maps:
Uz, P(AH 1) — P(hy(x,)) Gy hi(Gy) A hy(X3) (19)
Vgt P(H 3) = P(hy(X1)) Gy hy(Gy) A hy(Xy) (20)

then u;, and vy, are isomorphisms.

X

Proof. _ _
(1) Take (G})ic; so that G € (H# ) V..,

Uz, (Vier GY) = hi(Vie GY) A ha(X2) = (Vg h1(Gi1)) A hy(X3)
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because h,(G}) <> h,(x,)Vie I and (12) we have:
ufz( \ iel G'1) = Viel (hl(Gil) A hz(fz)) = Viel ujz(Gil)'
(n) Take Gy, H; € () such that G, — H,. Let us first calculate u.,(H)

ug,(H1) = hy(H7) A hz(j_z) = h(Hy) A hy(x,) = (hl(Hl_)’ v hy(X2)) A hy(X3)
= (hy(Hy) A hy(x3)) A hy(X;) = u;;(HJ A hy(X5).

It is easy to see that if a € (h,(x,)), then @’ A h,(x,) is in fact the orthocomple-
ment of a in 2(h,(x,)). We can see that:

(Uz,(G) v (ug,(Hy) A hy(X3))) A uz,(H,) = (ufz(Gl) v ou,(HY)) A ug,(Hy)
== )zz((G1 v Hi) A Hy) = ”xz(G1 A Hy)
= uiz(Gl) A ufz(Hl)'

This proves (14) that u;,(G,) <> u;,(H,).

(ii)) If p; is an atom of 2(H#;), then uy,(p;) = hy(p;) A hy(X,) is an atom of
P(H) (18), so an atom of P(h,(x,)).

(iv) ujz(jfﬂ = hy(H1) A hy(xXy) = hy(x,)

So we proved that u, is a unitary c-morphism which maps atoms onto atoms.
Using theorem 4.3 we conclude that u;, is an isomorphism. In an analogous way
we prove that v; is an isomorphism.

Lemma 2. h, and h, are m-morphisms.

Proof. Take two non zero vectors x;, y; € #'; and a vector x € hy(x; — yy).

From lemma 1 we know that v;—; is an isomorphism of Z(#,) to 2(h;(x; — y;)).

Hence there exists an atom xze?]’(yf’ 2) such that va—:(x,) = x.
So

X = hy(x;) A hy(xy — yyp). (21)
Since x; — y; < )_c: v yT we have

hy(ey = y1) < hixp) v (1) = ho(xs) A By = p0) < Ba(s) A (Ry(x0) v hy(3y)
from (15) = [ho(x2) A hyGen)] v [ha(x2) A hy(rp)]
from (18) = [h;(x) A hy(x))] + [ha(x2) A hy(¥1)].

From (21) we see that x = y + z where y € hl(;;) and z e hl(z).
Since x was chosen at random, we have:

hi(xy —y,) = h1(;CT) = h1(I)-

Using proposition 4.1 we conclude that 4, is an m-morphism. In an analogous
way, one proves that £, is an m-morphism.

Since h,; and h, are m-morphisms we can consider the mappings

Fy1 x1- 1(x1)—>h (M)

K, x: 2(x2) —* hz(yz)



Vol. 51, 1978 Physical justification for using the tensor product 671

defined in theorem 4.2, with their corresponding properties proved in [9]. We can
prove then the following:

Lemma 3. Ifxehl(;c_l) A hy(x,) and y, € #,, y, € H 5, then:

Fypxy(X) € hy(p1) A hy(x) 22)

Ky, x,(x) € hy(x1) A ha(y,) (23)
and

Fylsle}’z-xz(x) = Kyz,szyl,xk(x)- (24)

Proof. Take x € hy(x;) A hy(x,) and y, € #,, then:

x=K,, .,(x)+u where uehy(x, —y,), K,, ,,(x) € hy(y2).

We have to show that K, ,,(x) € hl(xl).
Since hl(x1)<—»h2(y2) and hl(xl)-«—alzp_(x2 — y,) we have (13)

ho(92) = [ha(y2) A hy(x0)] v [ha(p2) A hy(xy)] B
hy(xz — ;) = [hz(xz Y2) A k1(x1)] Vv [hy(x; — y2) A hy(x)].

So K|, ,,(x) =v+ w where v ehz_(yz) A hl(xl) and w e hy(y,) A hy(x,)" and
u=z+4 twhere ze hy(x, — y,) A hy(x,) and t € h,(x, — y;) A hy(x,)".

So: x —v—z=w+t hence w+ t € hy(x;) A hy(x;) which implies w + ¢ = 0
and since hy(x; — y;) A hz(yz) =0 we have w=t=0. So we see that
Kypoi(®) = 0 € Iy(x1) A ho(32). B

In an analogous way we prove that F,, , (x)e hl(I) A hy(x,).

To prove (24) we proceed as follows:

x=K,, (x)+u
Fy (X)) = Fy 1, K, ,(0) + F, ., (1)
and
Fy () € hy(30) A hy(x3)
Fyp Ky x(®) € hy(01) A ha(32)

Fyy@) € hy(p1) A hy(xy — p2)
So:

K

a2l v, 21 (%) = Fy 2, K55, 25(X).

Lemma 4. hy and h, are both non-mixed m-morphisms.

Proof. Suppose ki, to be mixed. Then P [A,(x,)] # 0 and Pi[h,(x,)] # 0. Take
ze P{[hy(x,)] and te Pi[hy(x,)]
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Since from lemma 1 the map v;,: 2(H#,) — P(h 1(2_(.';)) is surjective, there exist
elements z, and ¢, € #°, such that

vi(z) =2 and vi,(t) =1 or zeh(x;) Ahy(z;) and te€hy(x;) A haty).
Take K,, ,,(z) =t €t
Ktz.zzFAxl,xl(Z) = Ktz,zz(’lz) = ’lt,'
On the other hand, because of (24), we must obtain the same result if we calculate
F}.xl,letz,zz(z) — lel,x1(t’) = ﬂ/'
But At" # At"if Im (1) # 0. So &, cannot be mixed. In an analogous way we prove

that 4, cannot be mixed.

Lemma S. Takez,e #,,z,e #,,andz€ h(z,) A hy(Z,) such that z,, z,, z are

non zero vectors. Put

_ Nzl llz2|

29
21 )
and define the following maps:
U:Ez: %1 =2 h2(x_2) X3 Hm Fxl,lexz,zz(Z) (26)
- x
V)El . %2 — hl(xl) X2 Hm sz,zzFxl,zl(Z) (27)

then the U, are all unitary maps or antiunitary maps according to whether h, is linear or
antilinear (see (11)) and the v, are all unitary maps or antiunitary maps according to
whether h, is linear or antilinear.

U, generates u;, and V., generates vy, . (28)

Proof. It follows from (22) and (23) that U,, and V7, are well defined. It follows
from the definition and (10) that Uy, is linear or antilinear according to whether 4, is
linear or antilinear.

Take now ||¢,]| = ||z;|| and ||z, = ||z2|| with ¢; € X; and ¢, € X,

U, Gl = —— [ Fey2, Kooy )]
™y

A NES

12l iz 0l Nz

||Ft1,let2,zz(Z)” .

Using (6) and (25) we see that:

Izo Il z2ll Il 112

U' e
10l ="l Tz izl

Izl = llx4]l-

So U,, is an isometry (or anti-isometry).
In an analogous way we prove that V;, is an isometry (or anti-isometry).
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From (22) and (23) we see that:

Us,(x1) = hy(R1) A hy(%y) = Vi (x,) for x, € #; and x, € #,.
If we define:

Ugy: P(H 1) — Plhy(X,))

G, '—>'{ w2(X1); X1 € G1}

Uy P(H3) — P(hy(Xy))

G, {V' (x2); X5 € Gy}

then it is easy to check that #i;, and 7, are unitary c-morphisms different from the zero
morphism, mapplng atoms onto atoms. Take now an orthonormal base {¢;};.;in G,.
Then {U,,(e;)}:c; is an orthonormal base in #,(G,), and:

ufz(Gl) = U, V,er€1) = Vieluiz(ei)
Vier(hy(e;) A hy(xy)) = Vg sz(ei) = ﬁiz(Gl)'

Sp Uz, = Us, and anal‘og(_)usly Uz, = Ug,. Since u;, and v;, are surjective, U, and
V;, will be unitary or antiunitary.

Lemma 6.

If llxo|| = lx2ll - for xy € #'y and x; € H 3, then U, (x,) = Vi, (x,). (29)

If {€:)ic; is an orthonormal base of # | and { f;};., an orthonormal base of # ,, then
{Us(€:)}ic1, jes is an orthonormal base of H . (30)

Proof. (29) is a direct consequence of the definitions (26), (27) and of (24).

Let us prove (30). Supposej # j’, then, since fJ i f} ,we have h,(f;) L hy( fJ ). This
makes Uz(xy) L Uz (x;) Vx; € #y.

Smce Uz, is a unitary or antlumtary operator we have also

Ur(e;) L Us(ey) fori#7v
and
1Up(e)ll =1 Vi, j
So {Ur(e;)} is an orthonormal set in ",
Take
Vie],je.! U_T,-(ei) = Vie[,jeJ(hl(e-i) A hz(f_;)) =h(H) A hy(H ) =H

Hence {U7(e;)} is an orthonormal base in #.

Let us consider now the dual space #F of # , and the canonical antiisomorphism
Y > HY xy+>xT  where x{(yy) = {xy, y> Yy, € #4.

We know that if {e;};., is an orthonormal base of #, and {fj};., is an
orthonormal base of 5#,, then {e} };.,is an orthonormal base of #°}, {e; ® f;}ic/, jesis
an orthonormal base of #, ® 4 ,.
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We will consider now the following maps:
(1) If A, and A, are linear, we define

bog: H 1R Hy —> H 2ixiie ® [y Ly;x;; Ur(e;)
(i1) If Ay and A, are antilinear, we define

Yey: H1 Q@ Ay — H XX ® fir>Zijxi; Uf‘"j(ei)
(1i1) If Ay is antilinear and /4, is linear, we define

Hog: KT @ H > A Zyxiel @ fi—Lijx;Urle;)
(iv) If A, is linear and A, antilinear, we define

Vo ;i AT R H > H - Tixel @ fiZix; Ur(e;).

It is easy to see that ¢, , and p, , are unitary maps and ¢, , and v, , are
antiunitary maps. Since we constructed these maps starting from two bases they need
not be canonical maps. If we want however # to be the tensor product, we have to
provethat ¢, o, W, r, lhe s, Ve s are independent of the chosen bases {e;},.,and { f;},. -

Lemma 7. ¢, ;and u,  are canonical unitary maps and y, ; and v, ; are canonical
antiunitary maps.

Proof. We will prove the lemma only for one of the four maps. The three other
proofs are completely analogous.

Take another orthonormal base {p,},.; of #, and another orthonormal base
{@1}1c, of #,. We have to prove that u, ; = p, .

Take xe #T ® #,, so

X = Zi,jxijefk ®fj = Zu bk ® q,.
So

Xij = 25K P €i><fj, q0Vu

Hpa(X) = Zi 1V U pr)
= 2y 1 Vu U§1(2i<eia Drre;)
= i 1 VuZil P ei>Uq;(ei)
= 2y 1,V Pks €i>Véi(‘h)
= Xy iV Prs ei>Véi(Zj<fja q1 >f,-)
= 2,15, Jykl<pka e )><Ji» >V (f;)
= Zy 1,0, ;Y P> €< f;, Qt>Uf,(€ )
Zl un Uf (6’ )
- Jue f(x)

In the following theorem we will prove 2.5.

Theorem. Consider P(H ), P(H ,), P(H) where # ,, # , and # are complex
Hilbert spaces with dim #{ > 2 and dim #, > 2. If hy, h, fulfill the following
conditions:

(1) hy, h, are unitary c-morphisms
hy: P(A ) — P(H)
hy: P(H ) — P(H)
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(1) VG, € P(H (), VG, € P(H ,) we have h(G,) < h,(G,)
(i) Vpy atom in P(H ), Yp, atom in P(H ,):
hi(py) A hy(p,) is an atom of P(H)
then P(H) is canonically isomorphic to P(H | Q@ H ;) or to P(H | @ H%).

Proof. From lemma 2 and lemma 4 we know that 4, and 4, are non mixed m-
morphisms. From lemma 7 we conclude that:

(1) When £, and A, are linear, a canonical isomorphism from 2(#; ® #,) to
P(H') is generated by ¢, ; as follows:

O P(H,Q H,)— P(H) G {¢, ;(x): xeG}.

(11) When 4, and 4, are antilinear, a canonical isomorphism from 2(#; ® # ,)
to #(A’) is generated by ¥, ;.

(111)) When A, is linear and /4, antilinear, a canonical isomorphism from
P(H L ® Jf*) to 2(H) is generated by e, s-

(iv) When A, is antilinear and h, is linear, a canonical isomorphism from
P(H | ® H'3) to P(HK) is generated by v, ;.
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