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Physical justification for using the tensor product to
describe two quantum systems as one joint system

by Dirk Aerts1) and Ingrid Daubechies1)

Theoretische Natuurkunde, Vrije Universiteit Brüssel, Pleinlaan 2, B 1050 Brüssel

(17.VII.1978)

Abstract. We require the following three conditions to hold on two systems being described as a joint
system : (1°) the structure of the two systems is preserved ; (2°) a measurement on one ofthe systems does not
disturb the other one; (3°) maximal information obtained on both systems separately gives maximal
information on the joint system. With these conditions we show, within the framework ofthe propositional
system formalism, that if the systems are classical the joint system is described by the cartesian product ofthe
corresponding phase spaces, and if the systems are quantal the joint system is described by the tensor product
of the corresponding Hilbert spaces.

Introduction

As we know the states of a physical system are described by the points in a phase
space in classical mechanics and by the unit vectors of a complex Hilbert space in
quantum mechanics. Ifwe consider two classical systems 5t and S2 with corresponding
phase spaces Qx and Q2, then the joint system Sis naturally described by means ofthe
phase space Q which is the cartesian product Qx x Q2. For two quantum systems Sx

and S2 with corresponding Hilbert spaces Pf x and #f2 it is one of the axioms of
quantum mechanics that the states of the joint system S are described by the unit
vectors ofthe tensor product 3tf x ® Pf2. This not obvious procedure to construct the
states of the joint system in quantum mechanics originated in the wave-mechanics
formalism. Indeed ifwe describe both S, and 52 by means ofthe Hilbert space L2(1R3)
of all square integrable complex functions of three variables, and a state of St resp. S2
is represented by a function (/^(x) resp. i/'2(y) such that | ^(x)!2 dx 1 and
1 l'A2(y)l2 dy 1, then it is natural to represent a state of the joint system 5 by a square
integrable complex function of six variables ip(x, y) such that | |tKx, y)l2 dxdy F
This amounts to saying that we take the Hilbert space L2(IR3 x IR3) to describe the
joint system S.

Since not every complex function of six variables can be written as a product of
two functions of three variables, L2(JR3 x R3) contains functions that are not in the
cartesian product L2(R3) x L2(1R3) and in fact one can prove that L2(R3 x R3) is

Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in het
kader van navorsingsprogramma 21 EN).
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isomorphic to L2(R3) ® L2(IR3) ([1], p. 51). This is the reason why in general, when we
consider St and S2 to be described by abstract Hilbert spaces 3fx and Pf2, we take
X! ® jtf2 to describe the joint system S.

Our aim in this article is to try to understand the physics behind these coupling
procedures for two systems. We shall see that some very general and physically
intuitive requirements on two systems Sx and S2 lead us in a natural way to describe the
joint system by means ofthe tensor product ofthe corresponding Hilbert spaces if St
and S2 are quantum systems. The same requirements for classical systems force us to
describe the joint system by the cartesian product ofthe corresponding phase spaces.

To carry out this program, we used the propositional system formalism of Piron
[3] because we think it gives a clearer insight into the physical notions behind quantum
mechanics which are often not so easy to grasp in the ordinary Hilbert space
formalism. Moreover it is a formalism capable of describing both quantum systems
and classical systems by means of the same mathematical artillery.

The origins ofthe propositional system formalism go back to [2]. The physical
interpretation exposed here is given in [3]. It was realized long ago [4], [5] that the
observables of a system are more fundamental physical notions than the states of the
system, which is the opposite ofwhat is done in the Hilbert space formalism, where one
defines first the states and afterwards the observables. This idea gave birth to the C*-
algebra approach of quantum mechanics. But still, an observable being represented by
an operator is not a physically very clear idea. One can remark however that it is always
possible to split an experiment into different yes-no experiments (observations which
permit only the two alternatives yes or no as an answer).2) Indeed, in general the values
of an observable cover a subset of the real line. A determination of the observable is
obtained by dividing the real line into small intervals and then deciding for each one of
these intervals whether it contains the measured value. The collection of all the yes-no
experiments obtained in this way determines completely the observable. In phase space
formalism of classical mechanics this collection is the set of all subsets of phase space of
the form f~l(A), where A is a subset of the measuring range of the observable
represented by the real function/, and/is completely determined by the knowledge of
this collection (see [3] theorem 1.21). In the Hilbert space formalism of quantum
mechanics this collection is the set of all projection operators of the spectral
decomposition ofthe corresponding selfadjoint operator. So the idea grew to make a
quantum formalism by considering the collection of all the possible yes-no experiments
on a physical system and to study its structure.

Taking into account some very basic physical facts Piron shows in his excellent
book [3] that one is led in a very natural way to define operations on this set, which
turn it into a complete, orthocomplemented, weakly modular lattice, a well-known
mathematical object. The structure of this object is now a direct consequence of
physical arguments, which is not the case for, e.g. linearity in the C*-algebra approach.
Work on such lattice formalisms has been done by Mackey [6], Jauch [7], Piron [3],
and many others. In [3] it is proven that with some additional suppositions (for
instance the possibility to define states for the system), this approach yields a structure
which is isomorphic to the structure of ordinary quantum mechanics in the Hilbert

2) A yes-no experiment is represented in the phase space formalism of classical mechanics by a function/
from the phase space to the set {yes, no} (or, which is the same, by the subset/"1 (yes) ofthe phase
space). In the Hilbert space formalism of quantum mechanics it is represented by a projection operator
P (or, which is the same, by the closed subspace PW of the Hilbert space ,?f
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space formalism. Assuming a different additional property, named distributivity, the
formalism leads to a structure isomorphic to the one used in classical mechanics. We
will give a short review of the basic notions and definitions involved in the
propositional system formalism in the following section.

1. The propositional formalism

If S is a physical system we will denote by SP the collection of all the yes-no
experiments on S. Let us remark that in fact SS is just the collection of all the properties
of 5* because with every property corresponds a yes-no experiment and vice-versa. This
to point out the great generality of this formalism which starts by studying the
structure of the set of properties of a physical system. If S is a classical system,
described in phase space formalism, SS is the collection of all the subsets of the phase
space Q. We'll denote this collection 3P(Ç£). If 5 is a quantum system, described in the
Hilbert space formalism, SP is the collection of all the closed subspaces of the Hilbert
space Pf. We'll denote this set likewise 9>(Pf).

We will say that a yes-no experiment is frue' whenever we are certain that the
answer yes will be obtained. For a classical system described by 3P(FL) this will be the
case when the point of Q representing the state lies in the corresponding subset A ofQ,
otherwise we get with certainty the answer no. For a quantum system described by
0>(JP) this will be the case when the state vector x belongs to the corresponding closed
subspace G ofPf. Remark that only when x e GL we get with certainty the answer no.
In both classical and quantum cases we'll say 'A is true' and 'G is true'.

1.1. Structure of SS

The above defined notion of truth for a yes-no experiment gives rise to the basic
structure of SS : we'll say that b 'implies' c (notation b < c) iffc is true whenever b is true.
It is easy to see that this defines a partial order relation, i.e. a reflexive, antisymmetric
and transitive relation on SP. This partial order relation is the inclusion on ^(Q) and on

(7°) SS, < is a complete lattice. Phis means that for everyfamily (bi)ie, ofelements
in SP there exists a greatest lower bound A ieI and a least upper bound V ie, bt.

In ^(Q), the greatest lower bound of a family (Ai)iel is nielAi, the least upper
bound is \jieIAi.

For a family of closed subspaces (F)i£/ in 3P(Pf we have a greatest lower bound

r)ieIFi, and a least upper bound spanj£/(F;).
Physically speaking, A ieI bt will be true iff all the bt's are true. The physical

interpretation of the least upper bound is less obvious : it may happen that V ie, bt is

true while none ofthe bt's is true. For a classical system, this last possibility is excluded.

(2°) SS, < is an orthocomplemented lattice, with orthocomplementation '. Phis
means that ' is a bijection mapping SS to SS such that for b, ce SP

(py b
b < c^c' < b'
b v V I, b a b' 0 where I V bEä, b, 0 A bsS£ b.
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For A e 0>(Fi) we have A' Q\A and for G e &>(&) we have G' G1.
The physical interpretation is easy : if b is true, then we'll get for certain the answer

no for b'. This interpretation holds in Hilbert space formalism as well as in phase space
formalism.

(3°) A lattice SS, < is said to be distributive if:
W>, c, d: b v (c a d) (b v c) a (b v d)

It is easy to see that 0>(Q.) is distributive, whereas 0>(Jf is not if dim JP > 1. This
distributivity gives us the fundamental difference between quantum mechanics and
classical mechanics. Although we see that not any SP is distributive, there exists a
weaker condition which is always fulfilled :

(4°) SS is weakly modular. Phis means that whenever b < c, the sublattice generated
by {b, b', c, c'} is distributive. This condition is verified in fP(#f

Pairs which generate distributive sublattices are interesting in themselves because
they show classical features. This motivates the following definition :

(5°) Definition : b,ce SS are said to be compatible iff the sublattice generated by
{b, b', c, c'} is distributive.

We shall denote this by b <-* c.
In a 3P(Pf) the relation F<-> G holds iff the corresponding projection operators

commute. In 3P(Q) any two elements are compatible.
Other pairs of elements can also be interesting :

(6°) Definition : b, e e SS are said to be a modular pair iff
Vx < c (b v x) a c (b a c) v x

We shall denote this by (b, c)M.
One easily sees that b <-> c implies (b, c)M.
In the following we shall always assume that the lattice SS ofyes-no experiments of

a system satisfies axioms (1°), (2°), (4°). For a more complete physical justification of
this assumption the reader is referred to [3].

1.2. Fhe states of a physical system

Let us consider a system S, described by the complete, ortho-complemented,
weakly modular lattice SS of its yes-no experiments. The next step in the study of the
system is to investigate which yes-no experiments are true at a certain moment. These
are indeed the properties which are elements of reality for the system at that moment :

they represent the state of the system. This collection of 'true' yes-no experiments is

completely characterized by its greatest lower bound which is again a yes-no
experiment (see 1.1 (1°)). One usually represents the state by this yes-no experiment.

Moreover we want the system to be totally described by this collection. This
compels its greatest lower bound to be a minimal element of SS : no additional yes-no
experiment can give us more information. In mathematical language, this means the
following for the proposition p corresponding to a certain state :xeSS,x<p=>x 0

or x p.
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An element p which has this property is called an atom of SS. Since on the other
hand for every property of S there has to be a state in which the system possesses this
property, we have the following axiom :

(1°) SS is an atomic lattice. Phis means thatfor every element b ofSP there exists an
atom p such that p <b.

In 3P(Fl) the atoms are the points of Fi and in 0>(Pf they are the one-dimensional
subspaces of Jf. There is one more axiom to be fulfilled by SS. For its physical
understanding which requires a deep analysis of the measuring process we refer the
reader to [3] ch. 4.

(2°) SS satisfies the covering law. Phis means that ifp is an atom ofSP and a, xe SS

such that a a p 0 and a < x < a v p then x aorx avp.
A collection SS of yes-no experiments on a physical system which satisfies 1.1 (1°),

(2°), (4°) and 1.2 (1°), (2°) will be called a propositional system.
As we said before a classical system is described by a distributive propositional

system which implies that any two propositions are compatible. When the opposite is
true, i.e. no element of SS except 0 and I is compatible with all the others (SS is
irreducible), we say that the system is a pure quantum system. In general a system is
intermediate between those two extremes. It is in fact a quantum system with
superselection rules and can be considered as a combination of pure quantum systems
(see [3] chapter 2). 0>(Pf) is a pure quantum system.

The following two representation theorems show us that although we took ^(Q)
and SP(Pf as examples for a classical system and a pure quantum system, they are
already the most general realizations.

(3°) If SS is the propositional system of a classical system, and so a complete
orthocomplemented distributive atomic lattice, then SS is isomorphic to fP(Q) where Q
is the set of all the atoms of SP (for proof see [3] p. 9).

(4°) If SS is the propositional system of a pure quantum system, and so a complete
orthocomplemented, irreducible, weakly modular, atomic lattice satisfying the
covering law, then SS is isomorphic to the set fP(V) of all biorthogonal subspaces of a

vectorspace V over some field K. The orthocomplementation defines on K an
involutive anti-automorphism and on V a nondegenerate sesquilinear form ; the weak
modularity ensures that the whole space is linearly generated by any element and the
corresponding orthogonal subspace (for proof see [8] and [3]). If we take the field in
this representation theorem of Piron to be C and the involutive anti-automorphism of
C to be the conjugation then the vectorspace V becomes a Hilbertspace over C and so
SS is isomorphic to our example fP(Pf In the following we shall always restrict
ourselves to the case where K C.

2. The description of two systems as a joint system

Let us consider two physical systems 5, and S2 with their corresponding
propositional systems SPx and SS2. We want to describe the two systems as being one
joint system S with corresponding propositional system SS. Which will be the physical
requirements to ask on SS,, SS2 and SSI
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2.1. — First of all we do not want Sy and S2 to lose their identity by coupling them. So

every property of Sx and every property of S2 has to be a property of 5. The
mathematical translation of this requirement is the existence of a map hx from
SS 1 to SS and a map h2 from SS2 to SS.

— We also require the physical structure of Sx and jS2 to be conserved when they
are considered as parts of S. So h1 and h2 have to conserve the structure of SS x

and SS2. It is sufficient to ask the following:
(i) for a1, bx e SS\ and ax^bx we have hl(ai)*-^hl(bl)
(ii) for (ai)iElai e SS\ we have h,( V.-^a,) V^A^a,).

From these two requirements follows immediately that
(iii) moo o

(iv) Ma'i) Mat)' A A^/J
(v) hi(/\,ai)= hi^hxia,).

So (i) and (ii) make hx to conserve the structure of SS x- We ask the same
properties for A2.3)

— hxiP) is a yes-no experiment on S which is true whenever Sx exists, so it is
always true. From this we conclude that A,(/i) I and in an analogous way
h2(I2) I.
A c-morphism such that the identity is mapped to the identity is said to be

unitary.

2.2 We also want to couple St and S2 in such a way that it remains always possible to
consider only one of them without disturbing the other. No measurement on Sx

may disturb S2 and vice versa. The mathematical translation of this requirement is
the following:

If a, e SS\, a2eSS2 then h1(a1)<-*h2(a2).

2.3. We do not lose information in coupling Sx with S2. So we will ask that when we
perform a measurement on Sx which gives us maximal information together with
a measurement on S2 which gives us maximal information this will give us a
maximal information measurement on S.
The mathematical translation of this requirement is the following (see 1.2) :

Ifpiisanatomofifi andp2anatomofJ*?2,then: hx(px) a A2(p2)isanatom
of SS.

These three rather weak requirements will be sufficient to prove the following two
theorems.

2.4. If Sx and S2 are two classical systems described by ^(Qx) and 3P(Fi2) then the joint
system S is described by 3?(Fìx x ^2)-

2.5. If Sx and S2 are two pure quantum systems by 0>(Pf x) and SP(Pf2) then the joint
system 5 is described by 0>(Pf x ® X2) or 3P(Pf x ® Xf) where tf\ is the dual of
,Pfx-
In the next sections we will prove those two theorems.

3) A map from a propositional system S£ to a propositional system ä" with these properties is called a

c-morphism. An isomorphism of two propositional systems is a c-morphism such that the inverse map
is also a c-morphism (i.e. a bijective c-morphism).
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3. The classical case

Let us consider two classical systems Sx and S2 described by ^(Qx) and ^(Q2) and
the joint system S described by ^(Q.). First of all we remark that requirement 2.2 is
always fulfilled since we want S to be a classical system. So we will prove 2.4 by using
only 2.1 and 2.3.

Theorem. If there exist two unitary c-morphisms

hx : 0>(&x) -* ^(ü)
A2:^(Q2)^^(Q)

suchthathx(px) a h2(p2) is an atom of/P(Q) wheneverpx is an atom of^(Fix) andp2 is an
atom of 0>(Fi2), then 0>(Fi) is isomorphic to SPiffix x ^2)-

Proof. Consider the following map:

I: Fix xfi2^^
ÌPi,P2)-+f>iÌPi) a h2(p2).

(i) I is injective
Indeed suppose

hxipx) a A2(p2) hx(qx) a A2(ç2)
=> hx(px) a h2(p2) [hx(px) a h2(p2)] a ihx(qx) a h2(q2)]

hx(px a qx) a h2(p2 a q2)

d Px P «t =>Pi a qx <p => hx(Px A qt) (p => ht(px) a h2(p2) <p.

(ii) I is surjective
Indeed

Q hx(Clx) a h2(Q2) hx(Wpieiìlpx) a A2(VP2eCl2p2)
{Vpl€niAi(/»i)} a {Vp2en2A2(p2)}
vpieni VP2eß2(A1(p1) a A2(p2))
{Ai(Pi) a A2(p2) I (j?!, p2) eîl,x Q2}.

If we consider now the map i: 0>(Ci)—> ^(Qi, 02) such that
/(,4) {(pi,p2) I 7[(Pi,p2)] e^} then it is easy to check that i is an isomorphism.

4. The quantum case

To prove 2.5 we will make an intensive use of a study of structure preserving maps
of propositional systems made in [9]. We already defined a c-morphism to be a map
preserving the physical structure represented by the axioms 1.1 (1°), (2°), (4°). In 1.1

(6°) we defined modular pairs. It is easy to see that not every c-morphism will map a
modular pair into a modular pair. If it does we will call it an w-morphism [9] [10].

In [9] it is proven that every unitary m-morphism from 0>(#f to 3P(#C) can be

generated by a family ofunitary and antiunitary maps from Pf to PC. If all these maps
are unitary the m-morphism is said to be linear and if they are antiunitary the m-
morphism is said to be antilinear. Otherwise it will be called mixed.

We will also need the following results of [9].
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4.1. Proposition (see [9] proposition 2.5)4)

Let X and X' be two complex Hilbertspaces andf a c-morphism from fP(#f) to
é?(3fé"). Fhen f is an m-morphism iffVx,y non zero vectors in JP:f(x — y) <=/(x)
+f(y).

4.2. Theorem (see [9], theorem 3.1)

Let Pf and X" be two complex Hilbert spaces, with dimension greater than or equal
to 3. Letfbe an m-morphism mapping 3P(Pf) into fP(PC). Fhen for every couple (x, y) of
non zero vectors ofPf, there exists a bijective bounded linear map Fyx mapping f(x) into
f(y), such that the set of maps {Fxy; x, y e Jf} has the following properties:

(1)

(2)

(3)

(4)

(5)

(6)

For every non zero x in JP, there exists moreover two orthogonalprojections P\ and

P\, elements of ^(f(x)), such that

P\P\ 0 (7)

P\ + P\ I/«) (8)

P* FyxP*Fxy /=1,2 (9)

and

FXXyX XP\ + XP2. (10)

Iffor one non zero x in X theprojection PX2(P\) is zero, then all the P2( P{) are zero
andf is a linear (anti-linear) m-morphism. (11)

We will also use the following result of [9].

4.3. Theorem (see [9], corollary 4.2)
Let X, 3P" be complex Hilbert spaces with dimension greater than two. Letf be a

unitary c-morphism mapping 0>(Pf) into fP(X") such that there exists one atom ofp of
3P(Pf) which is mapped to an atom off(p) of 3?(Pf '). Fhen f is an isomorphism.

Fxx — A/**)

*xy \*yx)

rzyr yx *¦ zx

" y + z,x * y,x ' *¦ 2,x

Fxx,xy Fx,y Xe€, A#0
Fyx is an isomorphism if ||x|| Il ^

4) If x is a vector of a Hilbert space 37f, we will write xlo denote the one dimensional subspace generated
by x.
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4.4. We will also need a few results from lattice theory which we will use
frequently in the calculations.

(1°) In a weakly modular, complete orthocomplemented lattice SS if b e SS and
a, e SS "ii e SS and b <-+ a,- V/ e /, then :

Vie/(ÒAflj) èA(Vie/ai) (12)

(see [3], theorem 2.21)

(2°) In a weakly modular, orthocomplemented lattice SS we have two criteria
which enable us to see whether two elements are compatible:

Ifb, ceSP:b^c*>(b a c) a (P a c) c (13)
o(b v c') a c b a c (14)

(see [3] Section 2.2)

(3°) In a weakly modular, orthocomplemented lattice SS, the triplet (b, c, d) is
distributive whenever one of the three elements is compatible with each of the two
others.

(see [3], theorem 2.25) (15)

4.5. We will now consider two pure quantum systems Sx and S2 described by
SP(Pfx) and 3P(X2) and the joint system S described by @(Pf) where Pf x and -Pf2 are
complex Hilbert spaces with dimension greater than two and X is a complex Hilbert
space. We will also suppose that 2.1, 2.2 and 2.3 are fulfilled; so

(i) there exist two unitary c-morphisms

hx : »(X2) -> <P(Pf) h2 : 0>(Pf2) -> 9>(Jf). (16)

(ii) such that for every Gx e &(JfJ and G2 e 0>(Pf 2) we have:

hx(Gx)~h2(G2). (17)

(iii) and such that if px is an atom of fP(#f,), p2 an atom of 3P(Pf2), then

hx(Px) a h2(p2) is an atom of »(Pf (18)

With these different assumptions we will first prove some lemmas in preparation
ofthe proof of 2.5.

Lemma 1. If we define the following maps:

Ux2:»(jPx)^^(h2(x2)) Gx^hx(Gx)Ah2(x2) (19)

vxl : 3P(Pf2)^SP(hx(xx)) G2^h2(G2) a hx(xx) (20)

then ui2 and vxl are isomorphisms.

Proof.
(i) Take (G\)i€l so that G\ e 0>(pf t) V,6/

uX2( V je/ G\) hx( V lel G\) a h2(x2) V M hx(G\)) a h2(x2)
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because AX(GJ) *-* A2(x2)V/e / and (12) we have:

Ux2(Vie,G\) Vis,(hx(G\) a h2(x2)) Vielux2(G\).

(ii) Take Gt, Hx e»(Pfx) such that Gx^Hx- Let us first calculate ux2(H\)

uX2(H'x) hx(H'x) a h2(x2) hx(Hx)' a h2(x2) QniHJ v A2(x2)') a A2(x2)
(hx(Hx) a h2(x2))' a h2(x2) uX2(Hx)' a A2(x2).

It is easy to see that if a e ^"(A2(x2)), then ä a A2(x2) is in fact the orthocomple-
ment of a in ^>(A2(x2)). We can see that:

(uX2(Gx) v (uX2(Ht)' a h2(x2))) a uX2(Hx) (uX2(Gx) v uX2(H\)) a ux2(Hx)
ux2((Gx v H'x) a Hx) UX2(Gx a Hx)
uX2(Gx) a uX2(Hx).

This proves (14) that uX2(G,)*-*ux2(H,).

(iii) If px is an atom of 3P(Pf x), then u^pj hi(pi) a h2(x2) is an atom of
&(&) (18), so an atom of &(h2(x2)).

(iv) uX2(Pfx) hx(JPx) a A2(x2) A2(x2)

So we proved that ui2 is a unitary c-morphism which maps atoms onto atoms.
Using theorem 4.3 we conclude that ui2 is an isomorphism. In an analogous way

we prove that vxl is an isomorphism.

Lemma 2. hx and h2 are m-morphisms.

Proof. Take two non zero vectors xl5 yx e Xx and a vector xehx(xx — yx)-
From lemma 1 we know that t'-f_n is an isomorphism of 3P(Pf2) to ^(A^Xj — yt
Hence there exists an atom x2efP(Pf2) such that v^rz—.,(x2) x.

So

x h2(x2) a hx(xx - yx). (21)

Since Xx — yx < xx v yx we have

Ai(xi -y1)<h1ix1) v hx(yx) ^ h2(x2) a hx(xx - yx) < A2(x2) a (A^x,) v hx(yx))

from (15) [A2(x2) a A^xJ] v [A2(x2) a hAyYß

from (18) [A2(x2) a A^i)] + [A2(x2) a hx(y[)].

From (21) we see that x y + z where y e A^Xj) and z e hx(yx)-
Since x was chosen at random, we have :

hiixi -yx) c ht(xx) + hx(yx)¦

Using proposition 4.1 we conclude that At is an m-morphism. In an analogous
way, one proves that A2 is an m-morphism.

Since hx and A2 are m-morphisms we can consider the mappings

Fyi,xl-hx(xx)^h1(y1)

Py2,x2-h2(x2)^h2(y2)
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defined in theorem 4.2, with their corresponding properties proved in [9]. We can
prove then the following:

Lemma 3. Ifxeh1(x1) a A2(x2) and yx eJPt, y2 ^X2, then:

Fyx.xxix) e MJi a A2(x2) (22)

Ky2,X2ix) e A^xj) a h2(y2) (23)

and

yi.*l J,2.JC2V-'('/ "¦y2,x2*'yi,xx\X). \Z-^)

Proof Take x e A^xJ a A2(x2) and y2 e Pf2, then:

x Ky2,x2ix) + u where u e h2(x2 - y2), Ky2<X2(x) e h2(y2).

We have to show that ^j,2iX2(x) e A^xJ.
Since A1(x1)<-^-A2(j2) and A1(x1)<->A2(x2 - y2) we have (13)

h2(y2) lh2(y2) a hx(xx)] v [h2(y2) a hx(xx)']

h2(x2 - 72) \h2(x2 - y2) a hx(xx)] v [A2(x2 - y2) a h1(x1)'].

So Ky2X2(x) v + w where veh2(y2) a hx(xt) and weh2(y2) a hx(xx)' and
u z + t where z eh2(x2 — y2) a hx(xt) and teh2(x2 - y2) a A1(x1)'.

So : x — v — z w + t, hence w + te hl(xï) a A^xJ' which implies w + t 0

and since A2(x2 — y2 a h2(y2 0 we have w t 0. So we see that
Ky2,x2(x) vehx(xx) a h2(y2).

In an analogous way we prove that FyitXl(x) ehx(yx) a A2(x2).
To prove (24) we proceed as follows:

x Ky2tX2(x) + u

^n.xiv*) ^yx,xi^-y2,x2\X) + FyitX1(U)

and

Fyi,x1(x)€h1(yx) a A2(x2)

Fyl,xlKy2,x2(x)ehx(yi) a h2(y2)

So:

Fyx,xi(d)ehx(yi) a A2(x2 - y2)

)'2.JC2 yi.Jclt-"-/ *yi,x\'^-y2,x2\X)-

Lemma 4. A, ana" A2 are both non-mixed m-morphisms.

Proof. Suppose At to be mixed. Then F^A^Xj)] # 0 and F^A^Xj)] # 0. Take

zePffAfxT)] and / e Ff [M*T)]-
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Since from lemma 1 the map vx2: fP(Pf2)^> 0>(hl(xx)) is surjective, there exist
elements z2 and t2 e &f2 such that

vxx(z2) z and vxl(t2) t or zeht(xx) a h2(z2) and tehx(xt) a h2(t2).

Take Kt2iZ2(z) t' et
Kt2,z2FXxiiX1(z) Kt2<Z2(Xz) Xf.

On the other hand, because of (24), we must obtain the same result ifwe calculate

Fixi,xxKt2,z2iz) FXxiiX1(t') Xf'.

But Xf # Xf if Im (X) # 0. So hx cannot be mixed. In an analogous way we prove
that A2 cannot be mixed.

Lemma 5. Fake z, e Pf x, z2 e Pf2, andz e hx(zt) a h2(z2) such that zx,z2,z are
non zero vectors. Put

IMIk2H nKX
NI

and define the following maps:

Ux2.3fx -» h2(x2) xx ^j^--FxuzlKX2,Z2(z) (26)
ll-x2ll

VX1 : Jf2 -» hx(xx) x2 »-?- KX2<Z2Fxuzl(z) (27)
ll*i II

then the Ux2 are all unitary maps or antiunitary maps according to whether ht is linear or
antilinear (see (11)) and the vxl are all unitary maps or antiunitary maps according to
whether h2 is linear or antilinear.

UX2 generates uX2 and Vxl generates vxl. (28)

Proof. It follows from (22) and (23) that Ux2 and Vxl are well defined. It follows
from the definition and (10) that UX2 is linear or antilinear according to whether At is
linear or antilinear.

Take now ||/,|| \\Zx\\ and ||/2|| ||z2|| with /t efj and /2ex2

\\UX2(xx)\\=^-Y\Fx^KXi,zl(z)\\

_j_Ycx]\\\xY „ M||
llv II IU II IU II

M '1.^1 «2.E2V'i/il •

11*2 II libili 11*2 II

Using (6) and (25) we see that:

HTJ lUlll l|22ll libili 11*2II
I|£42(*i)ll =TH—F Ilzll libili-

IMI ||x2|| IIZilMlzzll

So Ux2 is an isometry (or anti-isometry).
In an analogous way we prove that VXI is an isometry (or anti-isometry).
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From (22) and (23) we see that:

^2(*i) ^t(*i) a A2(x2) VXi(x2) for Xx e Pf\ and x2 e Pf2.

If we define :

Ux2-.!P(jPx)^^(h2(X2))

G\^{UX2(xx);xxeGx]

vxx-.nX2)-3P(hx(xx))

G2^{K,1(x2);x2eG2}
then it is easy to check that üX2 and vxl are unitary c-morphisms different from the zero
morphism, mapping atoms onto atoms. Take now an orthonormal base {e,}j6/ in Gx ¦

Then {UX2(eA}ieI is an orthonormal base in üx2(Gx), and:

ux2iGx) uX2( ViE,ëx) VieluX2(ëi)

V{eI(hx(ëi) a h2(x2)) Vj6/ Ui2(et) üx2(Gx).

So ûx2 uX2 and analogously vxl vxl. Since ux2 and vxl are surjective, Ux2 and
Vxl will be unitary or antiunitary.

Lemma 6.

If ll*t II 11*2 II for Xx e JP'x and x2 e Jf2, then U^(Xl) Vxl(x2). (29)

!f{ei)iei 'S an orthonormal base ofPfx and {fj}jeJ an orthonormal base ofJP2, then

{Ujj(ei)}ieIjeJ is an orthonormal base of Pf. (30)

Proof. (29) is a direct consequence of the definitions (26), (27)_and of (24).
Let us prove (30). Suppose/ / /, then, since/ ±fr, we have A2(/) J. h2(fr). This

makes Uji[xx) 1 C/yj.(x1)Vx1 e/^
Since Uj: is a unitary or antiunitary operator we have also

UT}(e,) 1 UT}(ev) for / P /'

and

\\UT](et)\\ \ V/,/
So {UjipA} is an orthonormal set in Jf.

Take

V,./.,., Uj.(e-A V ieIJeJ(hx(ëi) a h2(fj)) hx(Xx) a h2(Pf2) Pf

Hence {Ujipi)} is an orthonormal base in Pf.

Let us consider now the dual space ^f\°^X x and the canonical antiisomorphism

*:Pfx^Pf*x Xx^x\ wherexî(71) <Xi,j1>Vj1et?f1.
We know that if {e;}ie/ is an orthonormal base of Pf\ and {fj}jeJ is an

orthonormal base of J»f2, then {ef}ie, is an orthonormal base of Pf\, {et ®/,}je/,j6yis
an orthonormal base of JPx ® X2.
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We will consider now the following maps :

(i) If hx and A2 are linear, we define

<l>e,f ¦ Xx ® Pf2 -> X SyXyg, ®/ H> EyXy E/^fo)

(ii) If hx and A2 are antilinear, we define

ipeJ: Pfx®X2^Pf IyXyßi ®fj^ZtjXtjUT.(et)
(iii) If At is antilinear and A2 is linear, we define

pe,f: Pf\®.Pf2^Pf LyXye? ®/;^EyXyC/7/et.)
(iv) If Ax is linear and A2 antilinear, we define

v,,, : Jff ® JT2 -> Jf EyXye? ®/ h> Eyxy ^.(e;).
It is easy to see that 0e/ and peif are unitary maps and \jte<f and ve>/ are

antiunitary maps. Since we constructed these maps starting from two bases they need
not be canonical maps. If we want however Pf to be the tensor product, we have to
prove that <peJ, <pejf, peJ, veJ are independent of the chosen bases {e;},e/and {fj}jeJ.

Lemma 7. (pej and /te f are canonical unitary maps and \j/e< f and ve_ y are canonical
antiunitary maps.

Proof. We will prove the lemma only for one of the four maps. The three other
proofs are completely analogous.

Take another orthonormal base {pk}ke, of Jf t and another orthonormal base

{<li}iej of X2. We have to prove that pe/ ppq.
FaYt x e Pf\ ® Pf2, so

x zlijXijef ®fj I>k,,ykiPk* ® q,-

So

xu zk,i<pk, eiXf], qi>yki

Hpqix) Zuykl U^,(pk)
^k.tykiU^CLYei^^ei)
'^k,iyu^i<Pk,eYUlll(ei)
Zk,i,iyki<Pk, eYPêtiii)
Zk,i,iykYPk, ei)Ve.(L,(f,, q,}fj)
Zkj.ijykiiPk, eYifj, qYVëi(fj)
^k,i,i,jykYPk, edifj, qYUTj(ei)
^i,jXijU7j(ei)
He,f(x)-

In the following theorem we will prove 2.5.

Theorem. Consider 0>(PfJ, 0-(Pf2), 3P(Pf) where Pf 1( Pf2 and Pf are complex
Hilbert spaces with dimpfx > 2 and d\n\Pf2 > 2. If hx, h2 fulfill the following
conditions:

(i) hx, h2 are unitary c-morphisms
hx:3P(Pfx)^&(X)
A2 : g>(Pf2) -> 0>(Pf)
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(ii) VGi e 3P(Pfx), VG2 e 9>(Pf2) we have hx(Gx) «-» A2(G2)
(iii) Vp! atom /« ^(.^,), Vp2 atom in 3P(Pf2):

hx(px) a h2(p2) is an atom of 3P(Pf)
then 0>(?ff) is canonically isomorphic to 0>(2Px ® X2) or to 3?(Pf\ ® Xf).

Proof. From lemma 2 and lemma 4 we know that hy and A2 are non mixed m-
morphisms. From lemma 7 we conclude that:

(i) When Aj and A2 are linear, a canonical isomorphism from 3P(Pf x ® X2) to
êP(3f) is generated by (pe<s as follows:

<p:3P(Pfx®Pf2)^3P(Pf) G^{<pe,f(x):xeG}.
(ii) When Aj and A2 are antilinear, a canonical isomorphism from fP(Pf t ® .?f2)

to ^(Jf) is generated by i>e>/.
(iii) When Ai is linear and A2 antilinear, a canonical isomorphism from

' 0>(3V x ® Pff) to ^(Jf) is generated by /xe,f.
(iv) When hx is antilinear and A2 is linear, a canonical isomorphism from

3P(Pf x ® Xf) to ^>(Jf) is generated by vCi/.
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