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Helvetica Physica Acta, Vol. 51 (1978), Birkhduser Verlag, Basel

About the structure — preserving maps
of a quantum mechanical
propositional system

by Dirk Aerts') and Ingrid Daubechies’)

Theoretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, B 1050 Brussels

(2. II. 1978; rev. 26. VII. 1978)

Abstract. We study c-morphisms from one Hilbert space lattice (with dimension at least three) to
another one; we show that for a c-morphism conserving modular pairs, there exists a linear structure
underlying such a morphism, which enables us to construct explicitly a family of linear maps generating this
morphism. As a special case we prove that a unitary c-morphism which preserves the atoms (i.e. maps one-
dimensional subspaces into one-dimensional subspaces) is necessarily an isomorphism. Counterexamples
are given when the Hilbert space has dimension 2.

1. Definition of a propositional system and Piron’s representation theorem

According to Piron’s axiomatic description of quantum mechanics [1], the
structure of the set of the propositions corresponding to ‘yes—no’ experiments on a
physical system is that of a complete, orthocomplemented, weakly modular and
atomic lattice which satisfies the covering law. Such a lattice is called a propositional
system. If the physical system has no super-selection rules, the propositional system is
irreducible. We will first give some definitions concerning propositional systems. For
more details we refer the reader to [1].

Let Z be the collection of all the propositions concerning a physical system.

1.1 Definition. . is called a CROC whenever & satisfies the following conditions:

(1) &, <is a partially ordered set with <as partial order relation (1.1)
(ii) & is a complete lattice, which means that for every family {b;};., of
elements in ¥ there exists a greatest lower bound \;.; b; and a

least upper bound \/;_; b (1.2)
(iii) Lisan orthocomplemented lattice, which means that there exists a
blject_ion 't L — L such that: Vb, ce ¥ : (1.3)

) Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in het
kader van navorsingsprogramma 21 EN).
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&Yy =5>b
bab =0andbv b =1
b<c=c <V
where I =\/,., band 0 = N\,., b
(iv) & is weakly modular, which means that if b < c thenc A (¢' v b)=0>b

1.4)

Ina CROC it may be interesting to consider pairs of propositions. In the following
definition we introduce some pair-properties (see [1], [2], [3]).

1.2 Definition. In a CROC two propositions b and ¢ are said to be

— compatible if the sublattice generated by {b, ¥, c, ¢'} is distributive.
notation: b« c

—a modular pair if foranyd>c.(bvc)ad=(bad)ve
notation: (b, ()M ?)

It is easy to see that if b« ¢, (b, ¢)M. The converse is not true. Moreover, we see

now that the condition for weak modularity (1.4) can be reinterpreted as:
b<c=bevc.

1.3 Definition. The ‘center’ of a CROC is the set of propositions compatible with all
other propositions.

The center of a CROC is also a CROC which is distributive.

1.4 Definition. If ¥ is a CROC and b € ¥ we consider the set {x | x < b, x € #}.
If we define on this set a relative orthocomplementation x" = x' A b, then it is easy to
check that this set becomes a CROC, we will call it the segment [0, b].

1.5 Definition. A CROC &£ will be called “irreducible’ if the center of £ contains
only 0 and I.

1.6 Definition. Ifb,c€ ¥, b # cand b < c, one says that c ‘covers’ b, if b < x < ¢
for some x € & implies x = bor x = c. An element of & which covers 0 is called an atom.

Now we have all the notions to define a propositional system. So let . be again
the collection of all the propositions concerning a physical system.

1.7 Definition. ¥ is a propositional system if
(i) & isa CROC
(ii) & isatomic, which means that for everybe ¥, b # 0, there exists

an atom p e ¥ such that 0 < p < b. (1.5)
(iii) & satisfies the covering law, which means that if p is an atom of &
and be ¥ andp A b =0, then p v b covers b. (1.6)

%) In [2] Birkhoff defines two kinds of these pairs: modular pairs and dual modular pairs. In the
following we shall only need one of these two kinds; since no confusion can arise, we shall call them
modular pairs. Moreover, one can prove that when the CROC is an irreducible propositional system
isomorphic to a P(s#°) (see further) every modular pair is a dual modular pair in Birkhoff’s
terminology, and vice versa. For more details concerning these pairs, see [3].
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Example: If we take a complex Hilbert space # and if we define P(#) to be the
collection of all the closed subspaces of J#, then P(#) becomes an irreducible
propositional system if we define the operations as follows:

(1) If G, Fe P(#), then G < Fiff. G < F set-theoretically. (1.7)
(i) If Gie P(#) Viel, then A,.,G; = e, G, (1.8)
(i) and V,., G; is the closure of the linear subspace generated by all

the G;’s. (1.9)
(iv) If G € P(#) then G’ = G* which is the subspace orthogonal to

G. (1.10)
(v) The atoms are the one-dimensional subspaces. (1.11)

P() 1s the propositional system one uses in ordinary quantum mechanics. As
expected two propositions of P(s#) are compatible iff the corresponding projection
operators commute.

Conversely, we can ask ourselves if it is always possible to represent an irreducible
propositional system by a structure which resembles the given example. This question
1s answered by the representation theorem of Piron ([1] and [4]) which says that it is
always possible to realize an irreducible propositional system by the set P(¥) of all
biorthogonal subspaces of a vector space V over some field K. The orthocomplemen-
tation defines on K an involutive anti-automorphism and on ¥V a non-degenerate
sesquilinear form; the weak modularity ensures that the whole space is linearly
generated by any element and the corresponding orthogonal subspace. Hence all
irreducible propositional systems are given by generalization of the P(s) in the
example above. The representation theorem enables us to prove interesting results
about propositional systems. As an example we give the following easy characteri-
zation of modular pairs in an irreducible propositional system.

- 1.8 Lemma. Let P(V) be the realization of an irreducible propositional system ¥ ;
let a,be ¥ and let a,, b, be their realizations in P(V). Then

(a, b)M¢>a1 + b]_ =da; Vv bl'
Proof: see [3].

An immediate consequence of the lemma is the following property:
(a, b)M = (b, a)M. If we take the field in Piron’s representation theorem to be € and
the involutive anti-automorphism of € to be the conjugation, then the vector space V
becomes an Hilbert space over € ([4], [5]). Since the set of all biorthogonal subspaces
of a Hilbert space is exactly P(#), we are now reduced to the case considered in the
example. In the following we will restrict ourselves to the cases where the field is €.

2. m-morphisms

2.1 Definition. A c-morphism froma CROC ¥, toa CROC ¥ ,isamapfof £, to
& , which preserves unions and compatible pairs, i.e.

f(\/ bi)=\/f(bi) bie&, Viel (2.1)

iel iel

beoc=f(b)y—f(c) b,ce ¥, (2.2)



640 Dirk Aerts and Ingrid Daubechies H. P A

A bijective c-morphism from ¥ to ¥, will be called an isomorphism.

The terminology c-morphism is justified because we want (2.1) to be valid for
every non-empty family of b;’s. Weakening condition (2.1) we find the definitions of a
morphism ((2.1) is only required for finite families) and of a 6-morphism ((2.1) is only
required for countable families). For a general CROC however only c-morphisms
preserve the completeness. It is easy to prove [ 1] that when fis a c-morphism from %,
to &#, then:

f0)=0 (2.3)
f@B) =1y A f) be ¥, (2.4)
f(/\ bi) = ANfb)  be#, Viel (2.5)

2.2 Definition. 4 map ffroma CROC ¥ toa CROC ¥, is called an m-morphism
if it is a c-morphism which preserves modular pairs, i.e. (b, c)M = (f(b), f(c))M.

If we want to study c-morphisms between propositional systems, we can in general
restrict ourselves to c-morphisms between irreducible propositional systems. Indeed,
let ¥, and .#, be two propositional systems with centers Z,, Z, respectively. One can
prove that Z, and Z, are also propositional systems [1]. Let (z),c 4, (zﬁ),;E » be the sets
of atoms of Z,, Z,.

If fis a c-morphism from £, to #,, we can define

Jap: [0, 23] [0, 23]
x—>f(x) A 25

These (f,p)ac 4, s ar€ c-morphisms between irreducible propositional systems and the
set of f,; determines completely f-

Vxe L f(x)=V V fulxAz))

acA BeB

If fis an m-morphism, it is easy to check that the f,; are m-morphisms too. We will
henceforth restrict ourselves to the study of c-morphisms (or m-morphisms) from one
irreducible propositional system to another one.

It is interesting to remark that any c-morphism from an irreducible CROC %, to
a CROC %, is either injective or the zero-morphism (see [1], pp. 31, 33).

2.3 Definition. A unitary c-morphism f of a CROC ¥, into a CROC %, is a
c-morphism such that f(I,) = I,. (2.6)

In the study of c-morphisms we can always restrict ourselves to unitary c-
morphisms because if

f: &, — &£, is a c-morphism
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then we can always study f by studying the morphism f defined by
f=%,-1[0,f)] suchthat f(b)=f(b) forbe ¥,

This fis a unitary c-morphism.

Taking together all these remarks, and remembering that we decided to consider
only irreducible propositional systems isomorphic to a P(#), we see now that we can
restrict ourselves to unitary c-morphisms from an irreducible propositional system
P(F) into an irreducible propositional system P(3#").

It is a remarkable fact that when the dimensions of the Hilbert spaces # and #”’
are at least equal to 3, one can prove that any isomorphism from P(5#) into P(#") can
be generated by a unitary or anti-unitary map from 2 into #". This is a consequence
of the following theorem proved by Wigner [6].

2.4 Theorem. Let 3¢ and "’ be two complex Hilbert spaces of dimension at least
3 and f: P(H')— P(H") an isomorphism, then it is always possible to find a map U:
H — A’ which is unitary or anti-unitary and such that:

f(G) = {U(x);xeG} VG € P(H)

This is not only an amazing result but it is also very useful because it is always by
using this theorem that one is able to prove the deepest results about problems in
relation with isomorphisms of propositional systems.

Our aim in this paper is to prove a similar result for a more general structure
preserving map of a propositional system, namely an m-morphism. In fact we shall
prove our main theorem with the help of apparently weaker conditions than the one
given in the definition of an m-morphism. These weaker conditions are specific for
atomic CROC’s, where our definition of an m-morphism is valid for any CROC. The
following proposition states moreover that these weaker conditions are equivalent
with the fact that fis an m-morphism. To distinguish the individual elements of ¥ from
the linear subspaces they generate, and which are elements of P(V'), we will henceforth
write X to denote the linear subspace generated by x.

2.5 Proposition. Let #, #' be two complex Hilbert spaces, let f be a c-morphism
from P(K) to P(H’). Then f is an m-morphism iff one of the following is true:

(1) Vx, y non-zero vectors in #: f(x — y) < f(X) + f () 2.7
(2) Vx, y, z non-zero vectors in #:zZ < x v y=f(2) < f(X) + f() (2.8)
(3) Vx, y non-zero vectors in # : f(X) + f() is a closed subspace of #' (2.9)

The proof of this proposition is given in the Appendix.

If the f (x) are finite-dimensional, condition (2.9) is automatically satisfied, and fis
an m-morphism. In particular, if the f(x) are one-dimensional, f is an m-morphism.
One can even prove (see the beginning of the proof of corollary 4.2) the following: if for
one atom p in P(), f(p) is an atom in P(5#’), then fis an m-morphism.

Our main theorem can now be stated as follows:
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2.6 Theorem. Let # and #' be two complex Hilbert spaces with dimension greater
than or equal to three, and [ a unitary m-morphism from P(3#) to P(#"). There exists a
Sfamily of maps (¢;)jc; from H to K’ such that:

—each ¢; is an isometry or an anti-isometry
— the different ¢ ;(#’) are orthogonal subspaces of A, and their direct sum is #':

H' =D ¢;(H)

JjeJ

—(¢;)jes generates f in the following sense:
VG e P(H): f(G) = ,\/J $;(G) = _(—DJ{d)J-(x);xEG}
JE€ JE

We will prove this theorem and others in Section 3. In Section 4 we restrict
ourselves to the important special case of c-morphisms mapping atoms onto atoms. It
is to be remarked that the theorem we obtain there is still a more general one than
Theorem 2.4: our results are the same, but where Wigner supposed f to be an
isomorphism, we only use that fis a unitary c-morphism mapping one atom onto an
atom: no surjectivity is needed. Our different theorems hold only if dim J# > 3 (the

same applies for Wigner’s theorem); in Section 5 we give some counter-examples for
dim # = 2.

3. Construction of the underlying linear structure

We start by stating our main theorem. The formulation as presented here is rather
compact: we will relate it to the former one at the end of this section.

3.1 Theorem. Let # and #' be two complex Hilbert spaces, with dimension greater
than or equal to 3. Let f be an m-morphism mapping P(H) into P(H").

Then for every couple (x, y) of non-zero elements of #, there exists a bijective
bounded linear map F,, mapping f (X) onto f (), such that the set of maps {F,; x, y € #'}
has the following properties:

Fry =15
Fop = (Fy) ™!
By Py = Fy
Fy+z,x = Fy,x . Fz,x

Fiys=F,. 1eC,A#0

F,, is an isomorphism if | x| = || y|

For every non-zero x in #, there exist moreover two orthogonal projections P¥ and P%,
elements of ¥(f(x)), such that

Pi.P:=0
P{=F,PiF,, i=1,.2
and F,, .= AP+ 1P
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The proof of this theorem is a quite extensive one; this is why it has been split into
different lemmas.

If fis zero, the f(x) are zero for every x and the theorem is trivial. We therefore will
restrict ourselves to the cases where fis different from zero.

3.2 Lemma. Let 3#, #”, [ be as in Theorem 3.1, with f different from the null-
morphism. For every two non-zero elements x, y in # one can define a linear map F,,,
element of L(f(x), f(¥)), such that

(a) F,, is bijective (3.1) °
(b) Fyy = (Fyx)™" 3.2)
(¢) F,,F,,=F,, forevery non-zero z in # (3.3)
(d) Foy =g (3.4)
(e) Fiyx=F,, foreverynon-zero A inC (3.5)

Proof. Since f'is different from zero, it is injective. This implies that for any x in
A , different from zero, the space f(x) is a subspace of # different from the null-space.
Let x, y be two linearly independent elements in .

Wehave x A =0, X Ax—y =0and y A x — y =0, hence
AN =0,fF) Af(x—y)=0 and f(7) Aflx—y)=0 (3.6)

Moreover f(x) < f(¥) + f(x — p).
If now X’ is an element of f(X), the previous remarks imply that there exist unique

V', ', elements of f(y) and f(x — y) respectively, such that
X =y +u (3.7)

This correspondence defines a linear map F,, from f(X) to f(y):
F.(x)=y

This map is bijective; moreover:
Foy =Ty ™

We will now prove that these F,, are bounded linear maps. From the already proven
results we see that F, , is an everywhere defined linear map from one F-space to another
(both f(x) and f(y) are closed subspaces). We will prove that F, is closed. Indeed, let
(yw). be a converging sequence in f(y) with limit y’, such that the sequence (x;

= F,,(y,). converges too: x, — x’. Then there exists a sequence u, in f(x — y) such
that

y = ¥y — X,

Since both sequences (x}), and (y}), converge, the sequence (u,), is a Cauchy sequence
with limit #’. Since moreover the spaces f(x), f(¥), f(x — y) are closed, we have
X ef(X), yef(p), w ef(x —y). But y = x' +u/, hence x’ = F,,()’), which implies

that F,, is closed. Using the closed graph theorem ([7], p. 57), we see that F,, is
bounded.
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Up till now, we have proven statements (a) and (b) for x, y linearly independent.
We will proceed further, and prove statement (c) for x, y, z linearly independent, after
which we will re-examine the different cases for linearly dependent vectors.

Take x, y, z linearly independent in 5. We have

y—z<yvz and y—z=Qp-x)+x—-2)<y—xvx-—z

which implies

y—z<(vaya(y—xvx-—2z2)

Because of the linear independency of x, y, z we can conclude that

y—z=QvaOIA(y—xvVvx—2) (3.8)
which implies

J—2)=(/D VvS@) A (fx=y) Vv [flx—2)) (3.9)
Take now x’ in f(X), and define y’, z’ by

y=F.(x), 7z=F,X) (3.10)

From the construction of F),, F,, we know that there exist «, v with &’ € f(x — y),
v' € f(x — z), such that

x/=yl+uf=zl+vl

This implies that y’ — z’ =v" — w',hence y — z’ € f(x — y) v f(x — z). Since y’ — z’is
obviously an element of f(y) v f(2), we conclude from (3.9) that y' — z' e f(y — z).
This implies y* = F,. ().

Because of the definitions (3.10) of y, z/, this implies

FyzOsz:Fyxs

which proves statement (c) for three linearly independent vectors.
Whenever x and y are linearly dependent, i.e. y € X, we define F,, by

F,,=F,-F, where te#\x. (3.11)

The fact that this definition of F,, does not depend on the choice of ¢ is an almost trivial
application of the just proved chain rule for linearly independent vectors. The
bijectivity of F), follows immediately from its definition (3.11). It is also easy to check
that statements (b) and (c) hold even when the vectors are not linearly independent.
Statement (d) is now a trivial consequence of (b) and (3.11). Statement (e) is a trivial
consequence of the construction of the F,,.

Remark. Itisa crucial point in this proof that dim # > 3. If dim # = 2, one can
still construct the F,, in the same way as was done in the lemma, but it is then
impossible to prove the chain rule. We give a counter-example in the last section.

3.3Lemma. Let ', #', fbe as in Lemma 3.2. Let {F,,; x,y€ #,x # 0 # y} be
the set of maps constructed in the proof of Lemma 3.2, and let x, y, z be three non-zero
vectors in H with y + z # 0. Then the following holds:
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Jor every x" in f(X): F,(X') + F,.(xX)ef(y + z)
and F, + F,,=F, ., (3.12)

Proof. Suppose first that x, y, z are linearly independent. We rewrite (3.8) in two
different forms:

y+z=Qvi)IAXvx—y—z) (3.13)
and
XxX—y—z=xX—-yvIalx—z vy (3.14)
Take x” in f(X), and define y/, z’ by
= F(x), 7 =F(x) (3.15)

Since x' — y' € f(x — y) and x" — z' € f(x — z), we have

X =y —2e(fx—n) VIO Afx—2) VI @) =fx—y—2)
(because of (3.14))

Hence

Vt+Z=x--y-2ef@Vvfix—y—-2)
which implies

Y+Ze(fDVIE) A @ v f(x—y—2)=f(y+z) (because of (3.13))
We have now

X=y+zZ4+x -y -7z
with

yV4+zZef(y+z), X -y —Zef(x—y —z)
hence

Fy-i—z,x(x’) = y, + Z,'
Because of (3.15) this implies
F,i,.=F,,+F,. forx, y, z linearly independent

Suppose now that z and y are linearly dependent, i.e. y € Zwith y + z # 0, and suppose

x ¢ y. There exists a ¢ such that {x,¢,y + z} and {x, ¢+ y,z} are both linearly
independent.

We have

Ft+y+zx—Ft+yx+sz=F!x+Fyx+sz
—F +F+z,x

which implies

Fy+z,x= Fyx+sz'

We have only one more case to check: suppose xejvzandy+z#0(yandz
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may be linearly dependent). We can choose a ¢ such that 1 ¢ y v Z. We have

Fyiz0=Fyizilix= FpFyx + F, F
= F,. +F,, '
3.4 Lemma. Let #, #', f, {F,,} be as in Lemma 3.3. Let x, y be two non-zero
vectors in K with || x| = ||y|. Then F,, is an isomorphism.
Proof. Consider first the case where x L y. Since |x| = ||y, this implies

x —yl x+ yand thus f(x — y) L f(x + y). Take x', x" in f(X) and define y’, y" in f(y)
by

Yy =Fx) Yy =F,X) (3.16)
Because of Lemma 3.3 we know that
X +yef(x+y) X" —y'ef(x—y) (3.17)

From (3.16), (3.17) and the fact that f(x) L (), we infer that
0 T (xl + yI’ x” e y”) s (f, xll) g (yl, y”)

But this leads to
(Fyx(X), Fyr(x7)) = (¥, x”)

which implies that F,, is an isomorphism.
If x and y are not orthogonal, we can choose a vector z such that

lzll = lxll = |yl and zLlx,zly

Because of the previous result, we know that F,, and F,, are isomorphisms. From the
chain rule (3.3) it follows now immediately that F,, = F,, o F,, is an isomorphism too.

We have now proven the first part of Theorem 3.1. To prove the second part,
which gives in fact a spectral decomposition of the operators F,, ., we need the
following two remarks.

3.5 Remarks.

1. Let 5 be a Hilbert space, and let G, H be two commuting bounded self-adjoint
operators on H with G > H. Let 6(G) be the spectrum of the operator G and
o(H) be the spectrum of the operator H. Then inf a(G) = inf a(H) and sup ¢(G)
> sup o(H).

2. Let # be a Hilbert space, A a bounded normal operator such that A* = —1.
Then o(A) < {—1i,i}.

(These remarks are easy to prove if one uses the Gel’fand isomorphism for
commutative C*-algebras: see [8].)

3.6 Lemma. Let #, #',f, {Fy,g} be asin Lemma 3.3. For every xin #, x # 0, there
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exist two orthogonal projectors P%, P% in £ (f(X)), such that the following holds:
(a) Pi-P3=
(b) PT+ P3 =14
(¢) Vx, y non-zero vectors in #: P! = F, P{F,, i=1,2 (3.18)
(d) YAeC, A #0: F,, ., = AP + AP§ (3.19)

Proof. To alleviate somewhat our notations, we will write A(4; x) for F,, .. From
(3.5) we see that

A(L; ux) = A(4; x) (3.20)
On the other hand, (3.3) impliés
A(ia y) = F}.y,y = FAy,AxFAx,xey = FyxA(jdn x)ny (321)

These two relations (3.20) and (3.21) imply that the same structure will be found for all
A(4; x), since they are all equal up to a unitary transformation:

AR 3) = FEyyiyaiin )~ AR DF 105115 (3.22)
From (3.12) we see that

A+ p; X) = Fatpye,x = Fax,x + Fux,x = A(4; x) + A(p; %) (3.23)
while (3.3) and (3.5) imply

AQ; X) = Frunz = Fie, usFuns = Fas,sFos, s = A3 X)A(; %) (3.24)

From (3.23) and (3.24) we infer that the map
A( 5 x): €— ZL(f(x)
A— A(4; x)

is in fact a representation of the (commutative) field € in Z(f(x)). But we can prove
more.

Let x, y be two non-zero vectors in #, with |[x| = |yl and xLy. Choose
A€ C\{0}. We have ix + y L x — Ay, hence '
S(x +y) Lf(x — 4y) (3.25)

Let x’, x” be elements of f(X), and y = F, (x), " = F,,(x"). Then:
Frany %)= Q23 X)x" + 3/ _
Fro2y X)) = X" — Fgp, ,Fux = X" — A(A; y)y”
From (3.25) and f(X) L f() we see that
0= (A(Z; X)x' + ), x" — AX; »))")
= (A(4; X)x', x") = (v, A(X; »)y")
= (A(4; X)X, X") — (Fye(x") A(A; )F,(x"))
Using (3.21) and the fact that F,, is an isomorphism (see Lemma 3.5), this leads to:

(A(4; x)x', x') = (X', A(4; X)x"),
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hence
(A(; x)* = A(4; x) (3.26)

We will now use the three relations (3.23), (3.24) and (3.26) to prove the lemma.
First of all, it follows from (3.23) and (3.24) that for any rational number g one has

Alg; x) =gl (geQ) (3.27)
If ry, r, are real numbers with r, > r,, then we have

A(ry; x) — A(ry; x) = A(ry — 125 %) = A*(/ry —r2; %)
= A*(\/ri — ry; X)A(JSr; —ry;x) =0 (3.28)

which implies that the restriction to R of the map A(- ; x) preserves the order. Let r be a
real number, and ¢q,, g, two rational numbers such that

q1 =T =4q;. (3.29)
From (3.27) and (3.28) we see that

g1l pp < A(r; X) < gl 45
Since A(r; x) is self-adjoint, we can apply the first remark in 3.5 to obtain

inf a(A(r; x)) = q4, sup o(A(r; x)) < g,
This holds for any two rational numbers satisfying (3.29), which implies

A(r; x) = rl g5 (3.30)
Since r was arbitrarily chosen, it is obvious that (3.30) holds for any real number. On
the other hand we have that (A(i; x))* = A(—i; x), and (A(i; x))*> = A(—1;x) =

—1 (5, which implies that A(i; x) is a normal operator satisfying the conditions in the
second remark in 3.6. Applying remark 3.5 leads to

o(A(i; x)) = {i, —i}

This implies the existence of two orthogonal projections P, P in #(f (X)) such that

Pi.Pi=0 (3.31)
1+ P3=1;4 (3:32)
A(i; x) = iP¥ — iP5 (3.33)

Using (3.28), (3.30) and (3.33), we conclude that
A(L; x) = AP¥ + P3

From (3.22) we see that
A(L; y) = APY + AP}

where the P{ = F, 1 1x11=PiF)yl/12] % are still orthogonal projections satisfying,
mutatis mutandum, the relations (3.31) and (3.33) (we use the fact that F,, /x| x 1S an
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isomorphism). We have moreover that
Pt = F iyim=i=FiF iy ixlixy

i A(nxn )PxA(nyn )F
i’ =
= F,.PiF,,

which was the last relation we had to prove. |

Theorem 3.1 is now completely proven: if we gather the results of Lemmas 3.2,
3.3,3.4and 3.6, we get exactly Theorem 3.1. We introduce now the following definition
which is motivated by the results of our theorem.

3.7 Definition. Let #, #' be two Hilbert spaces, with dim # > 3. Let f be an m-
morphism different from the null-morphism, mapping P(#) into P(").

—f is called a linear m-morphism if the F,, constructed in Lemma 3.2 have the
property:
le,x == ’]']lf(x')
—f is called an anti-linear m-morphism if they have the property
Fiex= ’ﬁf(f)

—f is called a mixed m-morphism if it is neither linear, nor anti-linear.

In the following theorem we show that any mixed m-morphism can be written as a
combination of a linear one and an anti-linear one. This decomposition turns out to be
unique if f'is unitary. We formulate the theorem only for the mixed case: the same
techniques as used in the proof yield trivial results if the m-morphism is linear or anti-
linear, which implies that the theorem works also in these cases. One should however

drop then the condition that the J#; are non-trivial since either #°; or 5, would be
Zero.

3.8 Theorem. Let #, #’ be two Hilbert spaces, withdim # > 3. Let f be a unitary
mixed m-morphism mapping P(#) into P(#’). Then there exist two non-trivial
orthogonal subspaces 3 |, # , of ', aunitary linear m-morphism f; mapping P(#) into
P(H# 1), and a unitary anti-linear m-morphism f, mapping P(#’) into P(# ,) such that

H =D H, (3.34)
Vae P(A): f(a) = f1(a) v f(a) (3.35)

This decomposition is unique.

Proof. We first remark that f'is dlfTerent from zero (it is unitary), hence injective.
For any x in 5#, put

fil®) = PHf(x) i=1,2 | (3.36)
We see immediately that f(x) = f,(x) v f5(x). We define #,, #, by
Hi=V f,(%). (3.37)

xeH
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Let x, y be arbitrary non-zero elements in 5. We shall prove that f1(x) L f5(y). If y € X,
then £,(y) = f>(x) and so f1(¥) L £5(). If y¢ X, then there exists a z L x such that y
= 1/|x|%(x, y)x + z. Take x'€f,(x), y" €f>()). We have

(X y”) = ( “ ”2 F(x y)x, y(y”) i Fzy(y”))

1 X ./ "
= “x”Z ( Tx s F(x,y)x,y(y ))
i

||X|i2 ’ 1F(x, y)x, y(y”)

Applying (3.18), and using the fact that P%()”) = 0, we see that the right-hand side
is reduced to zero, which proves f;(x) L f5(»). Because of the definition (3.37) of the
A ;, this implies:

H, LA, (3.38)
On the other hand we have

=f(#)=V f(X) = \/# (f1(X) v f2(X))

xeH
= ( \éffl(f)) v ( \éffz(ﬂ) =H1 Vv H, (3.39)
Combining (3.39) with (3.38), we have
%, — %1 @ %2
For any arbitrary element a of P(#), we define
fila) = f(a) A H, (3.40)

Since f'is injective, the restriction of this definition to the set of atoms coincides with
(3.36). On the other hand (3.40) defines an m-morphism f; mapping P(#) to P(¢;).
We have indeed

fi(a) = (\/ f(f)) nH

x<a

- [(v fl(aa) v ( v fz(f))} A H

= V fi(%)

x<a

ﬁ(kAK ak) :f(k/\K ak) A in'= (k/e\Kf(ak)) e 4

= N\ (fl@) A #;) = /\f(ak)

filay ={z e #; 27 Lfi(@)} =fla) n #,
=fla) A H; = f(a)
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We have moreover

fi@) v fi(a) = (V f1(f)) v (\/ fz(f))
=V (i@ v L@D) = V B =£)

Suppose now that #, is the zero-subspace of #”. Then f1(¥) = P;f(x) = 0 for
every x in 2, which implies P3 = 1 ;4 for every x. This is however equivalent to saying
that fis antilinear, while it was supposed to be mixed. This proves that ; cannot be
the null-space in #”. In the same manner one proves that 5, is different from the null-
space, which implies that both #; and #, are non-trivial.

On the other hand we have ‘

JH)Y=f(H)YNHy=H"NKH = H,,

which proves that the f; are unitary.
As an immediate consequence of (3.18) and of the construction of the f; we have

iFyszyxlfi(f) (3.41)

where {F,,} is the set of {F,,} corresponding to f;. From (3.41) we see that
Fayx = Fiypalpi0
= Fyx|f1(f)o(;{'P)1C + AP";)
= AFyxlry0 = A7 Fys,

which implies that f; is a unitary linear m-morphism. The fact that f, is anti-linear is
proven in the same way.
The proof of the existence of the decomposition is now complete.

Unicity can be proven as following. Suppose that #,, /#,, f1, f» satisfy all the
conditions. Combining (3.34) and (3.35) we get

f®) =fi(X) @f2(%) with f(%) LF(%) for every x in #
It is now easy to check that
F,.='F, +?2F, for any two non-zero vectors x, y in #
which implies
A(d; x) = Fyp o ="Fi +2F,,
= Mj, 5+ Ay ©A42)
From (3.42) we conclude P?f(x) = f,(X), which implies
fi® =fi(¥) VYxeH, x#0
Since both f;, f; are c-morphisms, we see that f; = f;, and
fA)=fi(H) = i=1,2

This implies that #; = f;(#) is contained in ;. Since the ##; are orthogonal
subspaces, and ¥ = #; @ 5 ,, this leads to

%izfi l=1,2
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This proves the unicity of the decomposition. |

We have now achieved our goal: Theorem 3.1 gives us a complete characterization
of the linear structure underlying a unitary m-morphism, and permits us to define two
special types of m-morphisms, i.e. the linear and the anti-linear ones. In Theorem 3.8
we proved that any unitary m-morphism can be written as a ‘direct union’ of at most
two of these special m-morphisms. Applying the remarks made in Section 2, one can
extend these results to general (i.e. non-unitary) m-morphisms. Before passing on to
the next section, we want to show the connection between Theorem 3.1 and the
statement made at the end of Section 2: we will construct explicitly a family of maps
satisfying all the copditions in Theorem 2.6.

Let 5#, 5’ be two Hilbert spaces, f a unitary m-morphism mapping P(5) into
P(s#"). Let x be a normalized vector in #: || x| = 1. )

Since f(X) can bk written as the direct sum of the orthogonal subspaces P f(x) and

% f(x), we can choose an orthonormal basis (x});esinf(X), and a partition {J,, J 2} of
J such that

jeJiex;e Pf(x) i=1,2
We define now a family of maps {¢;}:
Vied: ¢j:— K
0—0
— F,(x;) ify#0

It follows from (3.12) and (3.19) that for J € J, the ¢; are linear maps, while for j € J,
the ¢; are anti-linear. Applying Lemma 3.4 we get the following result:

Iyl =1=1l¢;WMI =1 VjelJ,

which implies that the ¢; are isometric. Moreover, one can prove that the ¢;(#’) are
orthogonal subspaces. Indeed, let y, z be two non-zerd vectors in #. There exists a
vector u (which may be zero) such that:

1
Z:W(y,z)y+u with u 1 y

We have

qu(z) = sz(x;)
=F,,F,.(xj) = F,,(y})

zyt yx
1 ! !
= “y“2 F(y,Z)y,y(yj) A Aly(yj)

1
= IZ @i (¥, 2)(¥;) + Fu, (¥))

where ¢;is a map from € to € which is the identity if j € J; , and the usual conjugation if
jeJ,. We have now

(6.0, $,(2)) = ﬁ 21, D )

= @;((y, 2))(x4, X})
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where we have used that 1/ y|| F,, is an isomorphism. From this result we infer that for
different k and j vectors ¢, (y) and ¢;(z) are orthogonal. This implies that the different
¢;(#) are orthogonal. On the other hand, the unitarity of f implies that the
(¢;(x);jeJ, x e #) form a total set, hence

H' =D ¢;(H)

jed
We define now a map of P(#) to P(#’) by
f: P(#)— P(H)

a— V ¢ i(a)
jed
It is easily seen that for each non-zero vector y in J#, we have:

TO =V 0=V 6, =V ¥ =f(3)

JjeJ
Since each ¢; is unitary or anti-unitary, each ¢; generates a c-morphism, and the
following holds:

f@=V éi@=VV ¢;(®=VV ¢®

jedJ jedJ ¥<a x<a jeJ

= V fi&) = fla)

x<a

which proves that f and f are identical.

We can now sum up all these remarks, and state the results: we have constructed a
family of maps (¢;);., mapping # into 5#”. Each of these maps is an isometry or an
anti-isometry; their images are orthogonal subspaces ¢;(#) of # such that

H =D ¢;(H)

jed

This family generates the unitary m-morphism f in the following sense:

Vae P(F): f(a) = \/J ¢;(a)
je
This proves Theorem 2.6.
It is to be remarked however that this family (¢;);., is not unique.

4. A special case: f maps atoms into atoms

In this section we shall consider the special case where the f(x) are one-
dimensional subspaces of #”, i.e. where f maps the atoms of P(5#’) into the atoms of
P(#"). The physical meaning of this condition is that states are transformed into
states. In this case we can prove that the c-morphism fis automatically generated by an
isometric or anti-isometric map. More specifically:
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4.1 Theorem. Let #, #’ be complex Hilbert spaces with dim # > 3, let f be a c-
morphism mapping P(#) into P(#") such that for any atom p in P(#), f (p) is an atom in
P(H"). Then fis an m-morphism, and the following holds: For any non-zero x in #, and
any non-zero x' in f(x) there exists a unique closed bounded linear or anti-linear map ¢
from ¥ into #’ such that

P(x) = x'

¢ generates the c-morphism f.

This ¢ is equal to an isometric or an anti-isometric operator multiplied by a constant.
Proof. We define ¢: # — # by:

¢(0) =0
¢(y) = F,,(x) fory#0.
We have trivially

P(x) = Fou(X) = X",

Since all the f(y) are one-dimensional, fiis either a linear or an anti-linear m-morphism.
Suppose that f'is linear. Then ¢ is linear:

d)(j'y + [lZ) = F;ty+,uz,x(x,)
= IF, . (X) + pF, (x')

= Ap(y) + ue(z)

If ||yl = [x]||, then F,, is an isomorphism; hence

leWI = [1Fp (x| = x| = l¢(x)l

This proves that | x|/ x'||¢ is an isometry.

Since || x||/||x"|| ¢ is an isometry, we know that ¢ generates a c-morphism mapping
P(#)into P(#");since ¢p(y) = f(») for any yin 5, this c-morphism is /. Suppose now
that ¢ is a linear or anti-linear map satisfying the conditions in the theorem. Take
yveH,y¢x. Puty” = ¢(y). We have

y'=Foy()") + Fy—,,(0") (4.1)
On the other hand
V' =¢(y) = ¢(x) + d(y — x) (4.2)

‘Since ¢ generates f, we know that ¢(x) is contained in /(¥), and $(y — x) in f(y — x).
The decomposition (4.1) is however unique (see the proof of Lemma 3.2) which implies
$(x) = F, ()
hence
G(¥) =" = Fu((x)) = F,o(x) = ¢(»)
If y € x, then we can choose ¢ ¢ x and apply the same reasoning. This yields
$() = Fu(@(1) = FuFoe(x) = Fu(x') = $().

This proves the unicity. |
This theorem has the following interesting consequence.
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4.2 Corollary. Let f be a unitary c-morphism mapping P(#) into P(#") such that
Jor one atom p in P(#), f(p) is an atom in P(H#"'). Then f is an isomorphism, and every
isometry (or anti-isometry) generating f is a unitary (or anti-unitary) operator.

Proof. The injectivity of fis a consequence of the fact that fis different from zero.
Let x be a non-zero vector such that X = p. For any non-zero y in 5# we have that
S(») +f(x) is closed (f(y) is closed and f(x) is one-dimensional), hence f()

< f(x) v f(x — y) = f(¥) + f(x — p). Using the same arguments as in the proof of
Lemma 3.2 we see that f(X) and f(y) are isomorphic, hence that all the f(y) are one-
dimensional, which implies that we can apply Theorem 4.1.

Suppose f to be linear, and let ¢ be an isometry generating f. Let (e;);., be an
orthonormal basis in #. Since # = \/;., &; we have:

Vole) =V [f@)=[t)=H"

iel iel
which implies that (¢(e;));., is an orthonormal basis in #”.

Since ¢ is an isometry, this implies that ¢(#) = #, hence that ¢ is unitary. For
each atom g in P(##") there exists a y in #” such that y € ¢. For this y there exists an x

= ¢~ !(y) in # such that ¢(x) = y, hence f(¥) = ¢(x) = y = q. Since any element of
P(5#’) can be written as a union of atoms, this proves the surjectivity of f. |

All the results we have obtained were only proven for dim # > 3. The proof of
Lemma 3.2 for instance relies rather heavily on this condition. One would thus expect
counter-examples to occur for dim # = 2 (the case where dim J# = 1 is trivial). They
do indeed exist: some of them are given in the next section.

5. Counter-examples in the case where # has dimension 2

We first construct a counter-example against Theorem 3.1, more specifically
against Lemma 3.2: we define a unitary c-morphism of P(C?) into P(C*) for which the
corresponding F,, do not satisfy the chain rule.

5.1 Counter-example. Take # = €2, and let {e,, e,} be the standard basis in C?.
Then we can write P(C?) as:

P(C?) = {0,1} | ) {Py,,; Py, = C-(cos O e; + €?sin Oe,) with

fe [o, g] o € [0, 2x[}.

It is easy to check that the orthocomplementation on P(C?) is given by

T

0+ & = and ¢ —¢|=n fO0#0#0¢

Pyy L Pyys

SERS]

0+ 6 = f6=0o0rf =0
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Define
‘ V4 4 i1
:10,— |— - =—(1— !
o [ A 2] [0, 2} by a(6) 2 (1 — cos 20) (5.1)
This function has the property that a(n/2 — 0) = =/2 — «(6), hence
0+ 0 = 5 =a(f) + () = = (5.2)

Take now " = C* with standard basis {1, f3, f3, f4}, and define
Jo.p =cos Of, + € sin 0f,

9o, = cosa(B) f3 + €' sin a(0)f, for Oe [0, g—], @ e|0,2n[

QB,(p = Lln (j;i,¢s gﬂqo)
It is easy to check that for (¢, ¢’) # (0, @) we have

Qo,qo AQy =0
For 6 + ¢ = n/2 and |@ — ¢’| = = we have moreover that
Qo = 0y, (thisis a consequence of (5.2)).
It follows immediately that the map f from P(C?) to P(C*) defined by

f)=
J@) =1

f(Po.) = Q, forbe [o, g] o€ [0, 2a[

is a unitary m-morphism. .
One can now construct the Fy., g, = Fey,,., e, Where €g, = cos e, + €'?sin e,.
A rather lengthy but straightforward calculation yields

Fi9 o+ n,00° Fiw 0p{G0s)
_cos ((20) — o:(B/Z)) cos a(6/2)
= cos ((8) + a(6/2)) cos (x(0) — x(8/2)) T °**
cos a(6)
cos (2(20) — a(0)) 72 o+~

Since « is a strictly convex function on ]0, z/4[, we have for 0 <6 < n/8:

FZB o+mn, B¢ © Fﬂqo.ow(goqp) = )LFZB o+ n,uqi(goqo) WIth A = 1 (53)

We see immediately from (5.3) that the chain rule (3.3) does not hold in this case.

In Section 4 we proved some theorems about ¢-morphisms mapping atoms into
atoms. The first one stated that any such c-morphism was generated by an isometry or
an anti-isometry. This theorem uses explicitly Theorem 3.1, which can only be proven
when # has dimension greater than two (see Counter-example 5.1). It nright however
happen that pathologies such as the one in this counter-example drop out if the f(X) are
one-dimensional. The following counter-example shows that this is a false hope.

FZG p+m, Olp(go(p) =
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5.2 Counter-example. Take # = #’ = €2, and define the map f from P(C?) to
P(C?) by

S0)=0

S =1

f(PG,(p) = Pa(ﬂ),qp

where we use the same notation P, , as in Counter-example 5.1, and where « is the
function from [0, 7/2] to [0, x/2] defined by (5.1). Suppose now this f to be generated
by a linear map ¢. Since this linear map conserves the orthogonality, it conserves the
angles. For ¢ different from 0, /4 or n/2 we have however

B(e9,0) € €yp), 0
Since ¢(e,) € e_l, this implies

(€1, 36,0)

|
lple)] 1 d(es, o)l lesll lleq, ol

This is a contradiction, which implies that no linear map generating f exists. In a
completely analogous manner we can prove that f can not be generated by an anti-
linear map.

(p(ey), dleqo)) = cos a(f) # cos 6 =

In Corollary 5.2 we proved that a unitary c-morphism mapping P(3#) into P(#")
with the additional condition that it maps atoms into atoms has to be an isomorphism
if dim 5 > 3. In the proof of this corollary we used the fact that such a c-morphism is
generated by an isometry or an anti-isometry, but it might be that the surjectivity-
statement follows already from much weaker conditions: the c-morphism in Counter-
example 5.2 is not generated by an (anti)isometry, and yet it is onto. In the following
counter-example however we construct a non-surjective c-morphism from P(C?) to
P(C?) satisfying all the conditions, which implies that even the first statement in
Corollary 4.2 does not hold for dimension 2.

5.3 Counter-example. Take # = #’ = €2, and define the map f from P(C?) to
P(C?) by

J0)=20

f@)=1

f(PB,(p) = Py, o2 if ¢ € [0, n[

Py (p+my2 I @ e[m, 20
For ¢ < n we have

f(Pb(D) zf(Pr:/2—0,(p+rr)
= Pn/2—8,n/2+((p+1t)/2 = Pn/2~8,¢/2+n

= Pé,wz =f(PG,¢7),

The same property can be proven for ¢ > =.
i From the definition and the properties of fit is now easy to see that fis a unitary
c-morphism mapping atoms into atoms, although it is obviously not surjective.

It is amusing to remark that cases like this one, i.e. non-surjective injective
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c-morphisms from P(C?) into P(C?) can be exluded if fis required to be continuous
with respect to the topology induced on P(C?) by the usual norm-topology on #(C?).

6. Conclusions

We have proven that any map ffrom a quantum-mechanical propositional system
P(#) to a quantum-mechanical propositional system P(#’), which preserves the
complete orthocomplemented lattice structure of P(3#°), and which maps modular
pairs to modular pairs, is generated (in the sense of Theorem 2.6) by a family of
1sometries or anti-isometries from J# to #'. As a consequence of this main theorem we
can prove that any map f from P(#’) to P(#") which preserves not only the complete
orthocomplemented lattice structure of P(#), but also the property of a proposition to
be a state of the quantum system, is automatically an isomorphism of P(3#°) onto the
segment [0, f(#)] of P(#’). This implies that we are able to consider Wigner’s
theorem as a special case of our theorem ; moreover it turns out that Wigner’s theorem
holds even under weaker conditions than originally.

Our main theorem, as well as Wigner’s theorem, is only valid if dim # > 3. That
this is a vital restriction is illustrated by several counter-examples showing that both
the main theorem and its weaker corollaries can be violated if # has dimension 2.

Appendix

We prove Proposition 2.5.

Proposition. Let #, # be two complex Hilbert spaces with dim # > 3, let f be a
c-morphism from P(H#') to P(#"). Then the following are equivalent:

(1) fis an m-morphism

(2) Vx, y non-zero vectors in #: f(x — y) = f(X) + f(D)

(3) Vx, y non-zero vectors in #:z < X v y=f(2) = f(X) + f(})

(4) Vx, y non-zero vectors in #: f(x) + f(») is a closed subspace of #".

Proof. We prove (1) = (4) = (3) = (2) = (1). The implication (1) = (4) follows
immediately from the fact that ¥ v y = X+ j, which implies (X, 7))M. Hence
(f(x), f(P)IM or f(X)+f(¥) =f(X) v f() is a closed subspace. The implication
(4) = (3) is trivial if one remarks that (4) implies f(x) + f(¥) = f(xX) v f(»). The
implication (3) = (2) is immediate.

To prove the implication (2) = (1) we use the results of Theorem 2.6. Since
Theorem 2.6 is a consequence of Theorem 3.1, and since we used only condition (2) to
construct the F,, and to prove their properties, we are allowed to do so.

Let (¢;)je, be a family isometric maps generating f. Let a, b be a modular pair in
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P(5#). Because of Lemma 1.8 we have a v b = a + b. Hence
f@ v fb)=flavb)
=@ ¢;(a v b)

jeJ

=@ ¢;(a+d)

jeJ
=@ ¢;((a A (a A b))+ b)
jeJ
(we have split @ + b into two disjoint parts which form again a modular pair: see [3]).
Take

x=)Y x;€® ¢;((a A (arby)+b)

jed jeJ
Then for any j € J, there exist unique y;, z;in ¢;(a A (@ A b)), ¢;(b) such that x; = y;
+ z;. One can prove®) that Z;_, | x;[|> < co implies

Y lyil? <o and Y |z]? <
jed jeJ

Hence
x=Yyi+y zje@1¢j(a A (a A b)) + .@J‘bf(b)
jed jeJ je L5

This holds for any x in ®;.; ¢;(a + b), which implies
fl@) v f(b) =D ¢;(a+b)

jeJ
=@ ¢j(a n (a A b))+ D ¢;(b)
jed jed
< @J ¢i(@) + @qu,-(b) =f(a) +f(b)
Jje je
Applying again Lemma 1.8, we see that this implies (f(a), f(b))M, which completes the
proof of (2) = (1). |
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