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General solution of multichannel partial-wave
dispersion relations
I. Coincident thresholds, pole approximation

by G. Nenciu') and G. Rasche
Institut fiir Theoretische Physik der Universitit Ziirich, Schénberggasse 9, CH-8001 Ziirich, Switzerland

M. Stihi

Laboratory of Fundamental Physics, Institute of Nuclear Physics and Engineering, Bucharest, Romania

and W. S. Woolcock

Department of Theoretical Physics, Research School of Physical Sciences, Australian National University,
Canberra

(21. II1. 1978; rev. 8. VI. 1978)

Abstract. We show how to obtain the general solution for the S-matrix of s-wave amplitudes, in the
case of » coupled two-body channels whose thresholds coincide. The physical S-matrix is assumed to be
the boundary value from above of a function analytic in the whole complex plane with the physical cut and
the positions of a finite number of simple poles removed. The input consists of the positions of these poles
and the residue matrix at each pole. Competing channels are neglected, so that the physical S-matrix is
required to be unitary at each energy. Necessary and sufficient conditions are obtained for a solution to
exist, and three types of soluble problem are distinguished. To obtain these results we have generalized
some parts of the Schur-Pick—-Nevanlinna interpolation theory to analytic matrices. Some special cases
are treated in detail and various results of physical interest pointed out. Particular attention is paid to the
characterization of the diagonal components of a solution of a multichannel problem, considered as
solutions of inelastic one-channel problems.

1. Introduction -

Our aim in this paper (and in others which will follow it) is to solve partial-wave
dispersion relations for n > 1 coupled two-body channels by using function theo-
retical methods which yield the same sort of detailed information about the existence
and non-uniqueness of solutions as was obtained in [1, 2] for the case n = 1. As a
first stage we consider here the case of coincident thresholds (the sum of the masses of
the two particles in each channel is the same for all channels). We confine ourselves
in the text to s-waves. The generalization to higher partial waves is possible, but then
complexities arise which obscure the simplicity of the method. Competing channels
are neglected, so that the physical n x n S-matrix of s-wave amplitudes is taken to be
unitary at each energy.

) Onleave from the Laboratory of Fundamental Physics, Institute of Nuclear Physics and Engineering,
Bucharest, Romania.
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The ‘unphysical’ singularities in this paper are taken to be a finite set of N simple
poles on the real axis. This is what is done in all attempts at practical dynamical
calculations. It turns out that in this case a natural matrix generalization of the
method of [1] is the appropriate mathematical tool to use. The method of this paper
can be extended to deal with cases where the “‘unphysical’ singularities include multiple
poles or pairs of complex conjugate poles; such approximations are appropriate to
the more complicated ‘unphysical’ singularities which occur for example in pion-
nucleon scattering (see [3]). We also want to point out that we treat only ‘unphysical’
singularities (‘driving forces’ in more physical language) whose effect is so small that
there are no bound states. In other words, we confine ourselves strictly to the mathe-
matical problem which we shall define. Consideration of cases in which there are
bound states would require a more careful analysis even of the one channel problem.

The problem of finding solutions of partial-wave dispersion relations has been
extensively studied in the past by the so-called ND~! method. We do not want to
comment on this work because it was recognized very early (see for example page 403
of Amati and Fubini [4]) that it is difficult to establish the analyticity properties of the
solution by this method, because of possible zeros in D (or in det D in multichannel
cases). Moreover, there is a possible arbitrariness in D which it is very difficult to
characterize precisely. Though valuable work has been done by Bjorken [5, 6],
Warnock [7, 8], Atkinson [9-13] and others, these problems have not been solved.
For this reason we looked for other methods which avoid these difficulties.

Forn = 1, with the ‘unphysical’ singularities consisting of a finite set of N simple
poles on the real axis, the problem of finding solutions was solved by us in a general
and complete way [1, 2]. When the effect of competing channels is specified by the
inelasticity parameter (0 < n < 1), Nenciu [1] showed that the Schur-Pick-
Nevanlinna interpolation theory gives a comprehensive description of the non-
uniqueness of solutions and also gives necessary and sufficient conditions for a
solution to exist. To apply this theory, Nenciu used a conformal mapping which
transforms the complex plane with the physical cut [1, c0) removed into the open
unit disc (see (1.2) below). The problem then became one of finding functions analytic
in the open disc, continuous on the closed unit disc, and having prescribed values at the
N transformed pole positions. The modulus of the function on the unit circle is the
specified function #, and a Froissart transformation may be made to a function whose
modulus on the unit circle is always unity (see Section 4). The problem was solved
by making a sequence of invertible transformations of the functions which remove the
prescribed values one at a time. Finally one arrives at a function with the same
properties as the original function, but with no prescribed values, and this function
is easily characterized. Necessary and sufficient conditions on the input data (pole
positions and residues, and the function #) for a solution to exist arise naturally in
making this sequence of transformations, on applying the maximum modulus
principle for analytic functions. The input data may be such that there is no solution,
or a unique solution, or an infinity of solutions. In the last case, the number of zeros
of a solution in the unit disc is at least N, and there is just one solution (called the
isolated solution) with exactly N such zeros.

It is also possible in the one channel case to specify the effect of competing
channels by the ratio R of the total cross-section to the total elastic cross-section for
the partial wave in question (R > 1). We showed in [2] how it was possible to obtain
a very general class of solutions in this case. The conformal transformation was not
used, and it was possible to characterize the solutions as the boundary values on the
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physical cut from above of analytic functions, which could be represented as the
product of a Herglotz function and the quotient of two polynomials. The Herglotz
function could be written in a more explicit form involving the prescribed function R.
However, a set of necessary and sufficient conditions for solutions to exist could be
given only in a very indirect form.

~ For the case to be considered in this paper, withn > 1 coupled two-body channels
whose thresholds coincide, and the left-hand singularities again consisting of N poles
with prescribed residue matrices, the method of obtaining solutions is a natural matrix
generalization of the method used in [1]. Since the thresholds coincide, one can begin
by making the same conformal mapping to the unit disc as in the one channel case.
The problem then becomes one of finding matrix functions analytic in the open unit
disc, continuous on the closed unit disc and having prescribed values at the N
transformed pole positions. The effect of competing channels is neglected and the
matrix functions are required to be unitary everywhere on the unit circle. There are
some further conditions to be satisfied by the matrix functions which are given later
(see (1.3) and (1.6)).

Following the method of [1], in Section 2 we make a sequence of invertible
transformations of the analytic matrix function being sought, each transformation
removing one prescribed value. These transformations are best described as ‘matrix
Blaschke transforms’ and the result (if the sequence proceeds for the full N steps) is
that the problem is reduced to finding analytic matrix functions with the same pro-
perties as the original function, but with no prescribed values. Application of the
maximum principle for analytic matrix functions (given in the Appendix along with
other mathematical results) at each step enables a set of necessary and sufficient
conditions for a solution to exist to be given. The input data may be such that there
is no solution or a unique solution; in either case the sequence of transformations
stops short of the full N steps.

If the sequence proceeds for the full N steps, however, there is an infinity of
solutions, which can be divided into sets characterized by the number of zeros of the
determinant of the matrix function solution in the unit disc. The solutions are obtained
from the matrix analytic functions with no prescribed values by reversing the steps
in the sequence of transformations. We shall give in Section 3 a representation theorem
which shows how to construct all the matrix functions having the properties desired,
but no prescribed values in the open unit disc. The dimension of these matrix functions
may be », the number of coupled channels, in which case we say that the solution is
completely non-unique (CNU). However, the dimension may be reduced from » to
some lower value in the course of the sequence of transformations; in such a case we
say that the solution is partially non-unique (PNU). In either case there is a single
solution whose determinant has the smallest number of zeros in the open unit disc
(this number is nN for a CNU case and is less than #V for a PNU case). This solution
is called the isolated solution; it is given in terms of the input data only (pole positions
and residue matrices), with no arbitrary parameters.

Section 4 will specialize the results of Sections 2 and 3 to the cases of one pole and
of two poles, and will discuss some consequences of physical interest. A particular
problem which we shall consider is the following. Suppose that, from a solution of the
n-channel problem, the inelasticity parameters #; = |S;;| G = 1,.. ., n) are computed
for the n elastic scattering processes j — j. Each S;is then a solution of the one-channel
problem whose input consists of #; and the (jj) components of the residue matrices at
the poles. We call this the equivalent inelastic one-channel problem j (or EIOCP j for
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short). But what kind of solution is it? In particular, are there cases where, for the
isolated solution of the n-channel problem, one at least of the S;;, considered as a
solution of EIOCP j, has CDD zeros ? There is a large body of work on these questions
(see footnote 14 of Warnock [7] and Refs. [11, 14, 15-17]). In the cases of one pole
and of two poles the isolated solution will be constructed explicitly and the second
of the questions just given will be studied.

Consider the S-matrix of s-wave amplitudes and assume that it is the boundary
value from above of a matrix function S(s) which is analytic on €, with the interval
[1, c0) and the positions s; (i = 1,..., N) of the simple poles removed. The Mandel-
stam variable s has been scaled so that the common threshold is at 1, as in [2], and it is
assumed that S(s) is continuous onto [ 1, o0) from above in the precise sense discussed
in [2]. In addition we assume that the following mathematical properties hold:

(@ S(@ +i0)S*c+i0)=1,, o =>1;

(b) S(s) = S7(s);

(c) S(1) =1,;

@) S = SG);

() lim (s — 5,)S(s) = 4], Al #0. , (1.1)

S8

The star in the (unitarity) condition (a) denotes the adjoint. Time reversal invariance
leads to the symmetry of S(¢ + i0) and (b) follows by analytic continuation.
Condition (c) is the threshold condition appropriate to s-waves; for / > 0 further
conditions must be imposed. The reflection property (d) is integral to the Mandelstam
‘representation. We do not assume any particular ordering of the pole positions s;;
the s; are real, distinct and each less than 1. By (b) and (d), the residue matrices 4; are
real and symmetric.

The next step is to make the standard conformal mapping (as in [1])

1= - s
T 1+ (1= )i

(1.2)

which maps € — [1, o) bijectively to A(0; 1) (the open unit disc). The semi-infinite
interval (—oo, 1) is mapped into (—1, 1), the upper half-plane (Im s > 0) into
A(O; 1) n {Imz > 0} and the lower half-plane into A(0; 1) n {Imz < 0}. The
upper side of the cut (1, co) is mapped into C(0; 1) n {Im z > 0} and the lower side
into C(0; 1) n {Im z < 0}, C(0; 1) being the unit circle. Finally, | maps into 1 and the
point at infinity into — 1. The pole positions s; map into x; (i = 1, ..., N); the x;
are real and distinct, and |x;| < 1. We did not specify the behaviour of S(s) at infinity.
However, we now require that the new function S(z) (S is used again for convenience)

be defined at z = —1, unitary everywhere on C(0; 1), and continuous on A(0; 1)
—{x;}. Using (1.1) we now write the full set of conditions on S(z).

(a) S(z) is continuous on A(0; 1) — {x;};
(b) S(2) is analytic in A(0; 1) — {x;};
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©) S(*)S*(e®) =1,, 0<0 <
d) S(2) = §7(2);

() S(1) =1,;

(f) S(z) = S(2);

(2) lim (z — x)S(z) = A, A/ #0, A = A} = A" (1.3)
It is neater ‘;o work with the function W(z) defined by
W(z) = (ﬁ b(x;; Z)) S(2), (1.4)
i=1
where
b(x;;2) = (z — x)/(1 — x;2). (1.5)

The transformation (1.5) maps A(0; 1) bijectively to A(0; 1) and C(0; 1) bijectively to
C(0; 1). The conditions (1.3) on S(z) become the following conditions on W(z):

(a) W(z) is continuous on A(0; 1);

(b) W(z) is analytic in A(0; 1);

) W(EHW*E®) =1,, 0<60< m;
d) W(z) = W(2);

€ w() =1,;
() W(z) = W@);
(-g) W(xi) = A;, A; #0, : (1-6)

with x; real and distinct, |x;| < 1, 4; = 4; = AT, i = 1,..., N. Our problem is to
find all the matrix functions which satisfy the conditions (1.6).

2. Reduction of the problem

We solve the problem posed at the end of Section 1 in two steps. In this section
we show how condition (g) of (1.6) may be removed, and the problem reduced to
finding functions U(z) satisfying conditions (a)—(f) of (1.6). In Section 3 we give a
general representation theorem for such functions U(z). In the course of removing
condition (g) we shall collect a sequence of necessary conditions for a solution to
exist. These conditions together will be sufficient for a solution to exist. We shall also
be able to distinguish three classes of problems (that is, of prescribed x;, 4;) for which
a solution exists.

We begin by applying the maximum principle given in the Appendix to prove

Lemma 2.1. A4 necessary condition for the existence of a solution W (z) is that
either :

4l <1, i=1,...,N (casel)
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or
A4l =1, i=1,..., N (case II).

Proof. From (c) and (g) of (1.6) and the maximum principle it follows that
l4;l <1,i=1,..., N, is a necessary condition for a solution W(z) to exist. More-

over, if one of the 4; has norm 1, then | #(z)| = 1 for z € A(0; 1) and thus all the
other 4, must also have norm 1. [ '

We next analyse case II in more detail and obtain a further necessary condition
in this case.

Lemma 2.2. If the condition of case II of Lemma 2.1 holds and if a solution W (z)
exists, then there is a real orthogonal matrix Q and an integer m satisfying 0 < m <
n — 1, such that

1 0
QT . — Th=m L] . .= § i 2.1
4,0 (0 Bi) 1Bl <1,i=1.. N @1)
Moreover

1 0
QTW Q= o 3
@ (0 V(z))

where V(z) is an m x m matrix function satisfying the same conditions as W (z), but
with n — m and with condition (g) of (1.6) replaced by

V(x,-)=Bi, i= 1,...,N.

Proof. Let ) be a real orthogonal matrix which diagonalizes Ay in such a way
that

J 0
QTAyQ = | » Q=1
N (0 BN) "
where J is a diagonal (n — m) x (n — m) matrix with diagonal elements J; = +1
and By is a diagonal m x m matrix with || By| < 1. Since ||Ay|| = 1, there is at least

one eigenvalue with absolute value 1 and som < n — 1.

Now the matrix function QT W(z)Q satisfies the same conditions as W(z), except
for the obvious change in (1.6) (g). Application of the maximum principle to its first
(n — m) diagonal elements gives '

(QTW(Z)Q)J‘J = JJ]’ j = 1,. ... — M, ZEA(O; I).
It follows from (1.6) (c) that, for all 0,
QW(E )Y, =0, j#k, 1<j<n—-m or 1<k<n-—m

Thus, by the maximum principle again,
(QTW(Z)Q)jk =0, zeA(;1), j#k,

l<j<n—m or 1 <k<n-—m,
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and so
' J 0
Q"W(:Q = | :
@ (0 V(z))
From (1.6) (¢) we have J = 1,_,,, V(1) = 1,,. Further, from (1.6) (g),

1 0
QA= =™ s i=1,...,.N—1,
: ( 0 Bi) P=he o N
Vix) =8B, i=1,...,N.
From Lemma 2.1, |B;| < 1,i=1,...,N — 1,since |By| < 1. [

Thus in case IT a further necessary condition on the A, is that each A; should have
the same number (n — m) of eigenvalues equal to +1 and the same number m of
eigenvalues with absolute value less than 1. Moreover each 4; must be reducible to the
form on the right side of (2.1) by the same orthogonal matrix €. In the proof we used
an Q for which By was diagonal, but it is clear that this was not necessary.

Two subcases of case II may now be distinguished. First, it is possible that
m = 0, in whichcase 4, = 1,,i = 1,..., N and the problem has the unique solution

Wz =1,, zeA(0;]1).
On the other hand, if | < m < n — 1, we have for V(z) exactly the same problem as
we had originally for W(z), but with a lower dimensionality. Moreover, since || B;|| < 1,
i=1,..., N, weare back to a case I situation for V(z).

We now show how the prescribed values in condition (g) of (1.6) may be succes-
sively removed. We start with a set {4,} and write

A, = A9, W(z) = WO (z), n = n?,
If it is necessary to make the transformation of Lemma 2.2 we write further
B; = B9, V(z) = VO(z2), m = m9,

To include case I as well and so give a general discussion we make the obvious
convention that in this case

B, = A;, V(z) = W(2), m = n.

The next lemma shows how to remove one prescribed value.

Lemma 2.3. Define the function W(“(z) by
Wi(z) = [b(xn; 2)]7'(M,, — By)™2(V(2) — By)
x (I, — ByV(@) ', — BN (2.2)

Then WY (2) satisfies the same conditions as V (z), except that its values are prescribed
only at the points x,,..., XN_1.-

Proof. The necessary background for the matrix operations in (2.2) is given in
the Appendix. The only parts of the proof which are not trivial are given in Lemmas
A.1 and A.2. It is clear that W!)(xy) is not prescribed. []
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It follows from (2.2) that
Wh(x)=4", i=1,..., N-1
where
AN = [b(xy; x)]17'@,, — B3)~V*(B; — By)(1,, — ByB)~'(1,, — BZ)V>.
(2.3)

The procedure described in Lemmas 2.1-2.3 may now be implemented again to
define successively matrix functions WY(z), j = 0,1,..., N, and VU(z), j = 0, 1,
.., N — 1, of dimension n'? and m"? respectively, where

L ]

n=n%>m®=n®>mM=... >, =p">1
The function WY)(z) has the prescribed values

Wix)=49, j=0,1,...,.N—1 and i=1,...,N—j,
while the function ¥'Y(z) has the prescribed values

Vi(x)=BY, j=0,1,...,N—1 and i=1,...,N— ]

The function W®™)(z) has no prescribed values.
Generalizing (2.2) and (2.3) and the results in Lemma 2.2, the required recursions
are

WUt D(z2) = [b(xy-j; )] My — BY) 2(V92) — BY)))
X (L — B, V9(2) M, — B )Y, j=0,1,...,N—1 (2.4)

Vo(z) = WO(z) if m® = n9, (2.5)
|- 0 QUT INOQD  if mW ) 2.6)
0 o) = wY(z) i mY <n’, 2.

AYD = [bCxy— g 301 Wy — BYY)"2(BY — BY.)
X (llm(j) - B](VJ)_JBI(J))—I(HM(J) - BI(\'!_)_ZJ)I/Z,
j=01,.,N—2 and i=1,...,N—j—1, (2.7

Bi(j) — Af-j) if m©Y = n(j), (2_8)
Il,,(j)—mu) 0 O ADWOW 6)) §)]
0 po) = QYAPQO if mP < n. (2.9

It has been assumed in the preceding two paragraphs that the recursion continues
for the full N steps. It is possible that, for some Jsuch that0 < J < N — 1,

AV =1, i=1,...,N—- I (2.10)
The recursion will then terminate at this stage, with the unique function
W(J)(Z) = nn(J)a ZE€ A(O; 1)’

giving a unique solution W (z) = W(z) of the original problem on reversing the
steps.
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We now distinguish the three classes of problems for which a solution exists.
(1) Suppose that the prescribed x;, 4, are such that the recursion (2.7), starting
with 4(® = A,, yields matrices 4% which satisfy

149 <1, j=0,1,...,.N—1 and i=1,...,N —j

Then mY = n¥, BD = 4V, vO(z) = WU(z),j=0,1,...,N— 1 (as in (2.5) and
(2.8)). The problem has been reduced to that of finding all » x »n matrix functions
U(z) satisfying conditions (a)—~(f) of (1.6). From this set of functions {U(z)} the full
set { W (z)} of solutions of the original problem is obtained by setting U(z) = W™(z)
and reversing the steps (2.4) and (2.5) of the procedure. We shall say that in this case
the problem has a completely non-unigue solution (or, for short, that it is a CNU
problem).

(2) Suppose that the recursion continues for the full N steps but that n'™ < »®,
This means that at one or more steps we have 4P| = 1,i=1,..., N — j, so that
the ‘sideways’ step of Lemma 2.2 (given in (2.6) and (2.9)) is required. In this case the
problem has been reduced to that of finding all matrix functions U(z) satisfying
conditions (a)—(f) of (1.6), but with the dimension of U(z) now less than »#. Again the
set { W(z)} of solutions of the original problem is obtained from this set of functions
{U(2)} by setting U(z) = W®(z) and reversing the steps of the procedure. In this
case we say that the problem has a partially non-unique solution (or that it is a PNU
problem).

(3) The prescribed x;, A; may be such that the solution is unigue (a U problem for
short). The condition for a U problem is given in (2.10).

We have now given, in cases (1)—(3) above, necessary and sufficient conditions
on the prescribed x;, A4, for a matrix function W (z) to exist which satisfies conditions
(a)—(g) of (1.6). If none of the conditions for cases (1), (2) or (3) is satisfied, no such
function exists. In the one-channel case, as was pointed out in [1], the conditions on
x;, A; for a solution to exist can be put in a compact form. Although we shall not
write it here explicitly, a similar compact form can be written down for the n-channel
case, using the powerful theory of unitary dilatations of contractions [18].

One naturally asks what happens if a different procedure is used for successively
removing the prescribed values of W(z). For a U problem it is clear that any pro-
cedure will terminate short of N steps with a set of unit matrices. However, for a CNU
or PNU problem the succession of transformations (2.4) and (2.7) could be carried
out in N! different ways, simply by taking the pole positions in any order. Further, if
transformations of the type (2.6) are required, there is an arbitrariness in the choice of
the QY. Denote by 2 any such procedure which removes the prescribed values of
W(z) at x,,..., xy. Since it is quickly verified that each step of a procedure is in-
vertible and thus one-to-one, it follows that, for a CNU or PNU problem, a// solutions
W (z) of the problem with N prescribed values are obtained by taking all distinct
solutions U(z) of the problem without any prescribed values and reversing the steps
of any fixed procedure 2. Moreover, if W,(z) and W,(z) are two solutions of the
problem with N prescribed values and U, (z) and U, (z) are the corresponding solutions
of the problem with no prescribed values (a fixed procedure being assumed), then

Wi(z) # W,(z) ifand onlyif U,(2) # U,(2). (2.11)

Consider next what happens to the number of zeros in A(0; 1) of det W(z) as
j increases from 0 to N. From (2.6) it is clear that det V'Y(z) and det WY(z) have the
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same (finite by Lemma A.5) number of zeros in A(0; 1). From Lemma A.7 and (2.4)
it follows that

p(W(J'+ 1)) - p(W(J')) — put 1)’

where p(WY) is the number of zeros of det WUY(z) in A(0; 1). Hence
N

P@PW)) = p(W) — ) n?. (2.12)

i=1

Thus p(W) — p(@(W)) is independent of W; denote this quantity by p(#). Then
Pp(2) is independent of 2. For, if #  is the set of all solutions of the problem with N
prescribed values, then

p(#) = min p(W) — min p(P(W)).

Wew Wew

But in the set % of all solutions of the problem with no prescribed values is the function
which is identically 1, on A(0; 1); its determinant has no zeros in A(0; 1). Thus

p(?) = min p(W),

Wew

which is clearly independent of 2 ; call it p.

Note further that the function which is identically 1, on A(0; 1) is the only
function in % whose determinant has no zeros in A(0; 1). For if U(z) is such a function,
it follows that det U(z) is identically 1 on A(0; 1), since U(1) = 1. Since U(x,) is
real and symmetric for each x, in (—1, 1), the result follows from Lemma A 4. It now
follows from (2.11) that there is just one function Wy(z) in #~ for which

p(Wy) = p.

This function is called, in the standard terminology, the isolated solution. If
Uyz) = 1,m, zeA;1),

then
Wo(2) = 271 (Uy(2)),

and the same W,(z) is obtained, whatever the procedure 2. Note also that from the
preceding discussion it follows that W may be written as

¥ =0 e,

k=0

where % ® is the set of all solutions whose determinant has (p + k) zeros in A(0; 1).
The set #"© consists of the single function W,(z). Moreover,

WO = Pl ®), (2.13)

where %™ is the set of all solutions of the problem with no prescribed values whose
determinant has k zeros in A(0; 1).
A further question may be raised. From (2.12) we see that

N :
S n = p, (2.14)

i=1
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so that the sum on the left side is independent of the procedure 2. For a CNU problem,
of course, the sum is nN. For a PNU problem, however, one may ask whether
different procedures can give rise to different sequences {n?}. We have not been able
to show that this is not possible. It is clear that n!!? is the same for all procedures, and
it may also be shown (though we do not give the proof here) that the same is true for
n®. Moreover, we shall show at the end of Section 3 that n'™) is independent of 2 ;
from this it follows that the sets #®, k = 0, 1, 2, ..., are also independent of 2.
Further than this, together with (2.14), we have not been able to go.

We conclude this section with a result needed in Section 4; its proof requires a
preliminary lemma.

Lemma 2.4. Suppose that there exists a function T(z) which satisfies conditions
(@), (b), (d), () and (g) of (1.6) and the further condition
sup [|7(2)|| = sup [|T(e”)| < 1.

Iz]<1 ]
Then the prescribed x;, A; define a CNU problem.

Proof. It follows immediately that |4, < 1,i = 1,..., N. Define

TW(z) = [b(xy; 2)] (W, — AR) " YH(T(2) — Ay)

x (1, — AyT(2))"'@, — A%)'2.

From the manipulations of Lemma A.l we know that

1, — TOE)*TE®) = (1, — A7)~ V2 (@, — T(e®)*4y)™"

x (1, — T(E*T(e*)M, — ANT(?)™ (@, — 4R)'7,

since |b(xy; €)] = 1. Now, using the equivalence of 1, — T*T > 0 and |T|| < 1,
and the fact that, if H is Hermitian and det M # 0, then

M*HM > (0 ifand onlyif H > 0,
we see that

sup | T(e“)]| < 1.
1}

Thus, from the maximum principle,
sup [T < 1,

|zl <1
and, in particular, since A" = TW(x,),
1AV <1, i=1,...,N—1.

Continuing this process through a further N — 2 steps, we obtain the required
result. [J

The converse of Lemma 2.4 is also true, but we do not need it in what follows.
We now use Lemma 2.4 to prove

Lemma 2.5. If the problem with prescribed x;, A;, i = 1,..., N, has a solution,
then the problem with prescribed x;, AA;,i = 1,..., N, has a completely non-unique
Solution for 0 < A < 1.
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Proof. Let W(z) be a solution of the problem with prescribed x;, 4,. 1f0 < 1 < 1
and T(4; z) = AW(z), then T(4; z) satisfies the conditions on 7(z) in Lemma 2.4, but
with 4, — AA;. It follows from that lemma that the problem with prescribed x;, A4,
has a CNU solution. The case A = 0 also has a CNU solution, since it follows from
(2.4) and (2.5) that, if U(z) is any function in the set %, the corresponding function
in #"is

W(z) = (]__[ b(x;; Z)) Uz). O

3. Representation theorem

We turn now to the problem of finding functions U(z) of dimension
m (1 < m < n) satisfying conditions (a)—(f) of (1.6). We use m instead of n™; for a
CNU problem m = n, while for a PNU problem m < n. We shall show how to
construct each of the sets ™ of (2.13). To motivate the construction, we start with
a function U(z) from %, so that det U(z) has k zeros in A(0; 1). If k = 0 we know
that U(z) is identically 1,,, by Lemma A.4. If, however, k > 0, then, for each x, in
(=1, 1), U(x,) has at least one eigenvalue with absolute value less than 1; for other-
wise det U(x,) = 1, which by Lemma A .4 contradicts the assumption that £k > 0.
Take x, = 0 for convenience and let U(0) = B. Then either |B| < 1 or |B| = 1.
In the latter case an orthogonal matrix Q exists such that |

1, 0
B = SR o T=1
Q ( 0 B) , QQ >
where 0 < /i < m and B is a matrix of dimension / for which ||B|| < 1. Moreover,
in this case we know from Lemma 2.2 that U(z) may be written in the form
1,_: O
U= "™ ~ _|Q7,
@ (0 U(z))

with U (0) = B. If | B| <1 this step is not necessary; in this case we make the
convention that U(z) = U(z), B = B, m = m.

Now define a new function

UNz) = z7'(1; — BY)™Y*(0(2) — B)

x (1, — BU@) '@, — BHY. (3.1

From the arguments in Section 2, UY)(z) satisfies conditions (a)«f) of (1.6), with
n— m, and det U*)(z) has k — # zeros in A(0; 1). If & — /m > 0 we may repeat the
procedure until we arrive at a function whose determinant has no zeros in A(0; 1);
this function is then identically 1. By reversing this procedure we see that each U(z)
can be constructed in a finite number of steps from a function which is identically 1,

and possibly of lower dimensionality. To express this more precisely, note that the
inverse relation to (3.1) is

0() = @n — BY2UDGE) + B)Wy + 2BUDE) U — B2
This enables us to formulate the

Representation theorem. The set % of matrix functions U(z) of dimension m
satisfying conditions (a)—(f) of (1.6) is the union of disjoint sets #®:
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% 4

k=0

where the determinant of each function in #® has k zeros in A(0; 1). The following
construction gives all the functions U(z) in #®. Let {m;}, j=0,1,...,4, be
a sequence of integers satisfying

g—1
l<my<m <--- <m,=m, Zomj=k.
J=

Let B;,j=0,1,...,q — 1, be real symmetric matrices of dimension m; satisfying
IB;| < 1. Further, whenever m;_; < m;,j = 1,..., ¢, let Q¥ be a real orthogonal
matrix of dimension m;. Then define U(z) by the recursion

VU = (1, — B YAEUYE) + B)
X (]lmj + ZBjU(j)(Z))“l(]lmj - sz)llza .] = Oa- e qd = 15
U9Nz) = V() ifm; =m;_,,
L (1 0
() — Q(J) mi—mj-1 )
0o = o (e L
U®z) =1,, zeA@;1), U9 = U(2).

While we know that all functions U(z) in %™ can be constructed in this way it is
not true that all the U(z) so constructed will be distinct. We look now at the way in
which the distinct functions in ‘Y may be indexed. For k = 1, we must have g = 1
and

)QU)T ifm,>my_y,j=1,...,9—1

m0=1, mlzm(ZI).

The case m = 1 is trivial; we look at m > 1 and construct U9(z) = 1, V'V(z) =
(z + b)(1 + b2)~", b real, |p| < 1,

1 1, , 0
U(z) = UN(2) = Q( 0 ' V(l)(z)) Q,

where Q is a real orthogonal matrix of dimension m. Writing

Q =(Mm—1 x)’
y n

QQT = 1, is equivalent to

M, M  +xxT=1,_,, M, y'+nx=0, wpwl+n*=1.
Thus
T
U@ =1, — (1 - voey(™. ™),
nx n

so that the functions U(z) depend on the choice of b and of the unit vector e in R™
given by a

()



Vol. 51, 1978 General solution of multichannel partial-wave dispersion relations 621

It is not difficult to see that U(z) = U’(z) ifand only if » = b and e = +e’. Thus the
distinct functions of %" may be indexed by the Cartesian product of the open interval
(—1, 1) and the set of pairs {e, — e} of unit vectors in R™.

This result may be used to prove the statement in the paragraph preceding
Theorem 2.4, that for a PNU problem n™ is independent of the procedure 2. From
(2.11) and (2.13), it must be possible, for a fixed k, to index the distinct sets %® for the
various possible procedures by equivalent index sets. However, the index sets for
UV for different n™ are clearly inequivalent.

4. Consequences of physical interest

We begin by returning to Lemma 2.5. Consider an n-channel case with N poles
for which the prescribed x;, 4; define a CNU problem. Then the problem with
x;, AA; prescribed is a CNU problem for 0 < 4 < 1. Denote by W(4;2),0 < 4 < 1,

z € A(0; 1), the isolated solution of this problem. Recall from (2.4)-(2.9) (but using
the inverse of (2.4)) that W(4; z) is given by

WA 2) = @, — AP ;(HD) ™2 Bxy_;; DWITV(A; 2) + AP (D)
x (1, + b(xn_;; 2)AQ_ AWV 2) 7@, — A9 ()72,
j=N-—-1,...,0,
with
W™ z) = 1,, zeAQ0;1), WO 2) = W(;2),
where
ATTOA) = [bxy—;; x)] 1@, — AQ_ ()2 (4P() — AQ_;(A))
x (1, — AP (DAPR) 1@, — 4§ ;D)D)
j=0,...,N—=2, i=1,...,N—j—1,
with
AP =244;, i=1,...,N.

In particular,

W,z = (ﬁ b(x; ; z)) 1,. 4.1

It is clear from the recursions of the previous paragraph that W(4; z) is continuous
in A on [0, 1], uniformly with respect to z in A(0; 1). Note that it is the hypothesis that
x;, A; define a CNU problem which secures this continuity on the closed interval
[0, 1]. Applying Lemma A.6 to f;(z) = W;(4; 2),j = 1,.. ., n, we see that, provided

inf |W;(4; €| > 0,

O0<ix<1
0<0<2n

the function W;;(1; z) has the same number of zeros in A(0; 1) for all 4 in [0, 1].
From (4.1), W;;(0; z) has N zeros in A(0; 1); so then does W;;(1; z), the isolated
solution of the CNU problem with x;, A4; prescribed.
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We now take up the question introduced in Section 1. This may be formulated
precisely as follows:

(a) take a solution W(z) of an n-channel problem with prescribed x;, 4; ;

(b) compute, for each jin {1,.. ., n}, the inelasticity parameter ,(6) for the one-
channel elastic scattering process j — j, namely
nj(e) | J(e

(¢) consider the one-channel problem with prescribed x;, (4;);; and n;(0) (which
we shall call the equivalent inelastic one-channel problem j, or EIOCP j for
short) and seek to characterize the solution W ;(z) of this problem.

In particular, when W(z) is the isolated solution of an n-channel CNU or PNU
problem, we are interested in finding conditions for which W ;,(z) is the isolated solu-
tion of the EIOCP ;.

Let us digress for a moment to note that by a Froissart transformation [19] an
inelastic one-channel problem can be transformed into an elastic one-channel
problem. Define the function L(z) on A(0; 1) by

1 (2 et+2z 1
L(z) = exp [EE L dt o In '7(‘)} ze A(0; 1),

and a new function W(z) by
W(2) = L)W (2).

Then |W(e)| = 1if [W(e*)| = n(6). Since L(z) does not vanish in A(0; 1), W(z) and
W (z) have the same number of zeros in A(0; 1). Thus, if we say that an inelastic one-
channel problem is a CNU problem whenever the transformed elastic one-channel
problem is a CNU problem, then the isolated solution of such a problem has N zeros
in A(0; 1), and the other solutions have more than N zeros in A(0; 1). There are
clearly no PNU problems in the one-channel case. However, there are problems with
* a unique solution, and in such cases the solution has less than N zeros in A(0; 1).
Note too that for an n-channel case with » > 1, the determinant of the isolated
solution of a CNU problem has nN zeros in A(0; 1), while the determinant of the
1solated solution of a PNU problem or of the solution of a unique problem has less
than nN zeros.

We may now state the result in the paragraph following (4.1) in the form of a
lemma.

Lemma 4.1. Letx;, A;,i = 1,..., N, definea CNU problem with n(> 1) channels.

Denote by W(4;2),0 < A < 1,z€e A(0; 1), the isolated solution of the CNU problem
with prescribed x;, AA;. Let

niA; 0) = [W;(A;€%), 0<i<l1, 0<0<?2m
If
inf n,(4;6) > 0, (4.2)

0<ix<l1
0<6<2n

then W;;(1; 2) is the isolated solution of EIOCP j (with prescribed x;, (A;);; and
n;(1;0)).
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This is a convenient point at which to give the natural generalization of Levin-
son’s theorem for the multichannel case we have considered. In view of the remarks
immediately preceding Lemma 4.1 (which apply to det W (z), W(z) being the isolated
solution of a CNU or PNU problem, or the solution of a unique problem), and the
relation (1.4) between W (z) and S(z), it follows that, if Dy is the difference between
the number of zeros and the number of poles of det S(z) in A(0; 1), then Dg = 0 for
the isolated solution of a CNU problem, while Dg < 0 for the isolated solution for a

PNU problem or for the solution of a unique problem. In particular, if det S(e')=
exp (iA(9)), then

AQ2n) — A(0) =0
for the isolated solution for a CNU problem.
We now apply Lemma 4.1 to a special case.

Lemma 4.2. Take a one-pole CNU problem with n( > 1) channels; let W(x,) = A,
with || A|| < 1. Then if W(z) is the isolated solution of the n-channel problem, W ;,(z)
is the isolated solution of EIOCP j.

Proof. If A = QDQT, with Q a real orthogonal matrix, then
W(A; z) = Qb(x,; 2)1, + AD)(A, + Ab(x,; z2)D)~'QT,

WA, z) = Z Q?k(b(% ;2) + Ad)( + Ab(xy;z) dy) ™
k=1

The matrix D is diagonal, and its diagonal elements d, are real and satisfy |d;| < 1,
= Liw:we s

It is easy to verify that
on 21— A2d?) (1 — x3)sin 6
Im W,.(1; ) = i e L .
Wk e} k;1 [1 + Ab(x,; €0)d > |1 — x, €

Further,

Thus (4.2) is satisfied and the result follows from Lemma 4.1. [
We turn now to the next most simple case, that of two poles at x;, x, withn x »
matrices A, A, prescribed. We shall consider only CNU cases, so that
4l <1, i=1,2.
It is more convenient to use the matrices P; defined by
Pi= (1 + A4)@ — 4)7",
which satisfy, '
P,>0, i=1,2, 4.3)

Using the recursion at the beginning of this section, the isolated solution is given by

W) =1,, zeA(;1),

Wi(z) = (b(xy; D1, + AP, + blx,; AP,
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W(z) = WO(2)
= (1, — A3) 7P (b(xy; 2WN(2) + 45)
x (I, + b(x;; )4, W(2)~ (W, — 43)'2,

with
AP = [b(x,; x )17 '@, — 45)713(4, — A)A, — 4,4,)7' (@, — A)'?
= [b(x; x)17 ' (P — L)(P + 1,)7, 4.4)
P = p;Y2p poi2 (4.5)

From now on we write b instead of b(x,; x;). For a CNU problem we also
require | 4| < 1; by (4.4) this is equivalent to

(1 — B/ + | < p; < (1 + [B)/Q = |, (4.6)

where p,, i = 1,.. ., n, are the eigenvalues of the positive matrix P defined in (4.5). A
tedious computation, which uses the identity

b(x; ; x1)b(xy ; 2)b(x; 5 2) = b(X55%;) + bxy52) — b(x,; 2),
shows that the isolated solution may be put in the form

W(z) = (@@ — q(2)1,)(Q(2) + q(2)1,)"",
where

Q@) =z — x)(1 — x,2)(0 = x}P; — (z — x)(1 — x;2)(1 — x3)P,,

q(2) = (x; — x)(1 = x;x,)(1 — 2%).
The conditions (4.3) and (4.6) ensure that det (Q(z) + ¢(2)1,) has all its 2n zeros
outside C(0; 1) and that det (Q(z) — g(z)1,) has all its zeros inside C(0; 1). That
each of these statements implies the other can be seen from the relations

Q") =z720(), qz)=-z"%@), z#0. 4.7

To obtain results of physical interest we confine ourselves from now on to the
case of two channels. Then

W1a(2) = 2[det (Q(2) + q(2)1 ;)] 'q(2)Q12(2),

where
01:(2) = (2% + D[—x,(1 = x3)(Py)1, + x,(1 — x3)(P)12]
+ 2[(1 + XA — xPH(P)12 — (A + xH(A — xD(P)12).

The product of the two zeros of Q,,(2) is 1. There are thus cases where Q,,(z) has
complex conjugate zeros on C(0; 1). Physically, this means that there is an energy
above threshold at which the two channels decouple. The simplest such case occurs
when (P,),, = (P,),,, since

2 —x,(1 — x3) + x,(1 — x| > |1+ xD)(A — x}) — (1 + )1 — x3)|.

Condition (4.6) can also be satisfied at the same time, since it holds for P; and P,
in a neighbourhood of P, = P,. We have shown that there are two pole, two channel
cases for which the ‘dynamical input’ x;, 4,(i = 1, 2) gives an isolated solution for
which the two channels decouple at an energy above threshold.



Vol. 51, 1978 General solution of multichannel partial-wave dispersion relations 625

We consider now the characterization, for the isolated solution of a CNU two
pole, two channel case, of the solutions W;,(z) of the two EIOCPs. Suppose that
W 1(z) has m, zeros inside C(0; 1), m,_ zeros on C(0; 1) and m,, zeros outside C(0; 1).
Denote the corresponding quantities for W,,(z) by »;, n,, n, respectively. Since

Wii(z) = [det (Q(2) + g(2)1,)]"
x [det Q(2) — ¢*(2) — (—Yq(2)(Q11(2) — Q2:(2)], j= 1,2,
it follows from (4.7) that
m; =ny, m
Also,

m; + m, + my, = 4.

c=nc, mo =I’l,-.

Since W;;(1) = W;(—1) = 1,j = 1, 2, it follows that only the following cases can
occur:

m =4, m =0, myg=0; (4.8a)
m =2 m=2 m,=0; (4.8b)
m.=2 m=0 m,=2; (4.8¢)
m, =0, miy=4, m, =0; (4.8d)
m. =0, m=2 m,=2; (4.8e)
m, =0, m=0 my,=4. : (4.8f)

In case (4.8a) both EIOCPs are unique. In case (4.8b), W, is the isolated solution of a
CNU EIOCP, while W,, is the solution of a unique EIOCP. These characterizations
of W, and W,, are reversed in case (4.8c). In case (4.8¢) both W, and W,, are the
isolated solutions of CNU EIOCPs. In case (4.8d), W,, is a solution of ‘CDD’ type
[20] (with two extra zeros in A(0; 1)) of a CNU EIOCP, while W,, is the solution of a
unique EIOCP. The characterizations of W, and W,, are reversed in case (4.8f). We
now give explicit examples of all six cases.

We shall first look for an example of case (4.8a). Note that if W,,(e*") = 0,
then, by unitarity, W,,(e**) = 0 and so

det Q(e) — ¢*(€’) = 0 and Q,,(”) = Q,,(c").
If m, = 4 there must be two pairs of zeros of W,, on C(0; 1), e* and e**2 This

means that [Q,,(z) — @,,(2)], which is a second degree polynomial, has four zeros
and thus is identically zero. This can occur if and only if

(Pj)ll = (Pj)ZZa Jj=12.
But then both P, and P, can be diagonalized by the orthogonal matrix

7l 3)

In such a case we need to look at the zeros of det Q(z) — ¢*(2). The products of the
four zeros is 1. Since Wy, and W,, must have an even number of zeros on the real
axis between — 1 and 1, the only possible subcases are (4.8a) and (4.8¢). We now give
an example to show that both cases occur.
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Take
1T Xi =Y )
(411 = (422 = 5 _(I — xiy) ( T+ xy) » i=1,2,
1/ x+y X, —y _
o — . = — ¢ § — 1
(Al)lz (Al)21 2 _(1 + xiy) (1 _ xy) l ’ 29

where 0 < y < 1. Itis not difficult to check that the isolated solution is given by

1[ —
Wii1(2) = Wyy(2) = 3 (lz_ ;z) (2—:—;2)

1 [~ —
Wia(2) = Wal2) =5 (1Z: ;z) - (IZ— ;Z)

It is a bit more difficult, but still routine, to check that (4.6) holds. It is easy to verify
that the four zeros of W;;(z) are at

Q) M+l — y*) + {47 — (1 — yHA].

Thus, if 0 < y < (/2 — 1), the four zeros are all on the imaginary axis, with two
inside C(0; 1) and two outside. However, if (/2 — 1) < y < 1, all four zeros are on
C(0; 1).

The next lemma gives another example of case (4.8¢).

~»

Lemma 4.3. Consider a two channel, two pole CNU case with prescribed x;, A;,
i =1, 2, and assume that

A1A2 - A2A1 = 0,

so that the A; can be diagonalized by a real orthogonal matrix

cos sin
Q= ( , @ w). If cos 2w # 0, the isolated solution of the two channel
—sinw cos w

problem has diagonal elements W, ,(z), W,,(2) which are the isolated solutions of the
two EIOCPs.

Proof. Let w;(z), i = 1, 2, be the isolated solutions of the two one-channel
problems in the diagonal representation. Each of them has two zeros in A(0; 1) and

W(e®)) =1 forall 6.
The isolated solution of the two channel, two pole problem is

wy(z 0

W(z) = Q( 10( ) Wz(z)) QT
so that

W,1(2) = cos? ww,(z) + sin® ww,(z),

W,,(2) = sin? oW,(z) + cos? ww,(z).
If cos 2w # 0, then cos? w # sin? w. If cos? w > sin? w, it follows that

|cos? ww, (e')] > [sin? ww,(e”)|
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and so, by Rouché’s theorem, W, ,(z) has the same number of zeros in A(0; 1) as
W, (z) has, namely 2. The same conclusion follows if sin? ® > cos? w, and the same
argument shows that W,,(z) also has 2 zeros in A(0; 1). [

We now give examples of the other cases in (4.8). Take S
(P11 = (P2)11 = 1> (P1)22 = (P2)22 = P2, P1 # D2>
(P1)12 =8d, (P2)12 =O, & = il,d> 0.
To have P, > 0 we must take p, > 0, p, > 0, p, p, > d?. The matrix P of (4.5) is
P ( 1 sd/(plpz)”z),
sd/(p1p2)1/2 1
so that (4.6) is satisfied if and only if
di(p,p)'? < 2|b|/(1 + |b|) (<1 since |b| < 1.

This more restrictive condition replaces p, p, > d 2, 1t is more convenient to use
d' = d(1 — b*)'?/2b|,

in terms of which the condition becomes
d’?lp,p, < (1 — [B)/(1 + |B). (4.9)
If we write further

d* =1+,
then

011(2)022(2) — 0% (2) — ¢*(2) + 9(2)(Q11(2) — Q22(2))
= [(z* + DA + x,x;) — 2z(x; + x;)]
x [(22 + D{pip,(1 — XD + x,x;) — (1 — 3x,x, + 3x5 — x;x3)}

— 2z{p,p,(1 — x3)(x; + x3) — (3x; — x; — 3x,%35 + x3)}

+ (1 = xx)(1 — x3)(py — p)(1 — 2%)]

—45(1 — xDH[(E* + Dx, — z(1 + x2)]% (4.10)
If 6 = 0, the quartic in (4.10) has two zeros on C(0; 1), namely {,, o, with
ot xp) 4 i1 = XDV = DV

I + xx,

Lo
The other two zeros are those of the other quadratic in the term in (4.10) which does
not involve 4. We denote this quadratic by

p(2) = az® + 2Bz + y.

When é = 0, we must choose

pipa > (1 + B/ — Jb)), @.11)
by (4.9). Further,

e(De(=1) = (@ + y)* — 482

= 4(1 — x3)*( — x;%,)°[(p1p; — 1)* — (p1p; + 16’1 > O,
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by (4.11), which, together with the reality of «, 8, y implies that the two zeros of ¢(z)
are both inside, both outside, or both on C(0; 1). The product of the two zeros is
/o, which has the form

[a + c(py = p)1la — c(py — P2)177,
where a is real and ¢ is real and positive. Further, from (4.11),
a=(pipy + DA — )1 + x;x3) — 2(1 — x;3x,)(1 + x3)
. 2(1 — x2)|x; — x|
(1 = x;x)(1 — [B]?)

Thus, if p; < p,, [y/#| < 1 and ¢(z) has two zeros inside C(0; 1), while if p; > p,,
ly/a| > 1 and @(z) has two zeros outside C(0; 1) (one of these zeros may be at infinity
for exceptional values of p,, p, for which @ = 0). We have thus given examples of
cases (4.8b) and (4.8c¢). .

It is easy to give examples of cases (4.8d) and (4.8f) by making ¢ in (4.10) different
from zero. Consider what happens to the zeros {,, {, of the quartic (4.10) as § moves
slightly from zero. Suppose that {, moves to {,(1 + #). Then

0~ (on(lo — Zo)(o(‘:o) — 406(1 — -x%)[(xz - () — szo)]z-
But
(x3 = L)1 — x580) = (1 + xyx,)71(1 + 3xyx, + 3x3 + x1%3)(,

and
(1 + 3x;x, + 3x2 + x;x3) # 0 since (x, — ()1 — x,{,) # 0.

Thus
2inlo(Im Lo)e(lo) = 4(1 — xP)(1 + 3xyx, + 3x3 + x1x3)°
x (1 4+ x;x,)72¢3 6.
Since {, = (5! and {o0((5) = aly! + 2B + y{,, it follows that
200 = x4 3x,x, + 3xF + x,x3)%(y — @)
N (I + x1x2) [o(Lo)?

[1 + x;x, + sgn (x} — x3)|x; + x,[]1 > 0.

Ren

J,

so that

sgn (Re ) = sgn (p; — p,) sgn é.

Thus, if p; < p,, W,,(2) has two zeros which remain inside C(0; 1), and as é increases
through zero the other two zeros move through C(0; 1) from the outside to the
inside. For § slightly greater than zero, then, W,,(z) has four zeros inside C(0; 1)
(case (4.8d)). On the other hand, if p, > p,, W,,(z) has four zeros outside C(0; 1)
when § is slightly greater than zero (case (4.8f)).
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Appendix

We use freely in the paper some elementary results about » x » matrices,
considered as linear operators on the finite dimensional Hilbert space C”, with the
usual scalar product, namely

n

(x, )= ) Xy, x,yeC"

i=1
These results include the norm continuity of the product, the existence of a unique
non-negative Hermitian square root of a non-negative Hermitian matrix, and the fact
that 1, — 4*4 > 0 is equivalent to || 4| < 1.

Two lemmas follow, involving a kind of matrix Blaschke transform. Let 4, X
be n x n matrices satisfying

4] < 1, A=A=A", X < 1.
Define [21]

Y=>00,— A>) 12X — AH@, — AX)" ({1, — A%, (A.1)
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Lemma A.1 [21]. The transformation (A.1) is invertible and thus is one-to-one.
Moreover,

X*X =1, ifandonly if Y*Y =1,,.

Proof. 1t follows directly from the definition (A.1) that

1, — Y*Y = (1, — 4)'*@, — X*4)~!
x [@, — X*4A)@, — 4*)7'@, — 4X) — (X* — 4)
x (1, — AH7HX - )@, — 4X)7'(@, — 47

An explicit calculation of the expression within the square brackets shows that it is
just (1, — X*X), which completes the proof. The calculation uses the result

1, - AX =1, — A*) — A(X — A). O

Lemma A2. If X" = X, then YT = Y.

Proof. From (A.1),

YT = (1, — A)VA(1, — XA)TNX — AT, — 42712,
Thus YT = Y is equivalent to

X — A1, — AX)7 (1, — 42) = (1, — 421, — XA) (X — A).
But

1, — A2 =1, — AX + AX — A)

=1, — XA + (X — A4,

so that YT = Y is equivalent to

(X — A, — AX) 1AX — A) = (X — A)A, — XA)" (X — A).
Since

@, — AX)A = A, — XA),
the result follows. []

There is one result from the theory of analytic functions of a complex variable
which we used constantly in the paper. This is the extension to analytic matrix
functions of the maximum modulus principle for the usual complex-valued analytic
functions. We refer to it as the maximum principle and give it now in the form we
require.

Maximum principle. Let F(z) be a matrix function analytic in A(0; 1) and

continuous on A(0; 1). (This is equivalent to requiring that each element of F(z)
possess these properties.) Then, if M = sup | F(e')||, we have

IF(z)| < M, zeA(:1).
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Further, if | F(z,)|| = M for some z, € A(0; 1), then | F(z)|| = M for all zin A(0; 1).
For a proof of the maximum principle we refer to Hille and Phillips [22]. We
now apply it to prove two more lemmas.

Lemma A.3. Let F(z) be a matrix function analytic in A(0; 1) and continuous on
A(0; 1). Further? let F(z) be unitary in C(0; 1) and let F(z,) be unitary for some z, in
A(0; 1). Then F(z) is a constant (unitary) matrix for z € A(0; 1).

Proof. Since F(z,) is unitary it may be diagonalized by a unitary matrix U:
Fz,) = U*DU, U*U = '

where D is diagonal and |D;| = 1,i = 1,...,n. If
G(z) = UF(2)U*,

then G(z) has the same properties as F(z) and |G;;(z,)| = 1. Thus by the maximum
principle for ordinary analytic functions, G;(z) is a constant, of modulus 1, on
A(0; 1). Since G(2) is unitary in C(0; 1), G;;(z) = 0 in C(0; 1) for i # j. By the
maximum principle again, G;;(z) = 0 on A(0; 1). Thus G(z) = D, F(z) = U*DU, a
constant unitary matrix, for ze A(0; 1). [

Lemma A.4. Let F(z) be a matrix function analytic in A(0; 1) and continuous on
A(0; 1). Further, suppose that F(z) is unitary in C(0; 1) and that, for some z, in A0; 1),
F(z,) is normal and |det F(z,)| = 1. Then F(z) is a constant unitary matrix for
ze A0 1).

Proof. Since F(z,) is normal, it may be diagonalized by a unitary matrix U:

F(zy) = U*DU, uv*w=1,,
where D is diagonal and |det F(z,)| = []/~|Di| = 1. On the other hand, by the
maximum principle,

IF(zo)ll = max D

al <
Thus |D,-,-| = 1,i=1,...,nand F(z,) is unitary so that Lemma A.3 applies. []

The next Lemmas (A.5-A.7) concern results about the number of zeros of
functions analytic in A(0; 1).

Lemma A.5. If f(z) (not identically zero) is analytic in A(0; 1) and continuous

on A(O 1) and if f (2) does not vanish in C(0; 1), then f (z) has a finite number of zeros
in A(0; 1).

Proof. If f(z) has an infinite number of zeros in A(0; 1), these zeros have an
accumulation point. This point cannot be in A(0; 1), for then f(z) would be identically
zero. On the other hand, this point cannot be in C(0; 1), for this would contradict the

continuity of f(z) on A(0; 1). [
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Note that if, further, | f(z)) = 1in C (0 1), then f(z) is a Blaschke product with a
finite number of zeros:
L BFray

fl2) = kH

: (A.2)

where we may choose the g, so that 0 < |a;| < -+ < |g,| < 1.

Rouché’s theorem. If f(z), g(z) are analytic in A(0; 1) and continuous on A(0; 1)
and if |g(e'®) — f(e")| < | f(¢"®)| for all §, then f(z) and g(z) have the same number of
zeros in A(0; 1).

For the proof, see Rudin [23], Theorem 10.36 and Ex. 10, page 266.

Lemma A.6. Let f,(z) be analytic in A(0; 1), continuous on A(0; 1) for each A in
[0, 1], and continuous in A on [0, 1], uniformly with respect to z in C(0; 1). If further

inf | /;(e®)| > 0 for each A in [0, 1],
o

then f,(z) has the same number of zeros in A(0; 1) for all A in [0, 1].

Proof. Let p(1) be the number of zeros of f,(z) in A(0; 1) and let 4, € [0, 1].
Then we can find 4 > 0 such that, for all 0,

| £i(€®) — f.,(€)] < ir;f|f,10(e“’)|, Ae[0,1]n {JA — 4| < 5}.‘

By Rouché’s theorem, p(1) = p(4,) for this set of values of 4, and so p(4) is constant
on[0,1]. O

Corollary. Let f(z) be a Blaschke product of the form (A.2) and let g(z) be the
Sfunction

9(2) = (f(2) — (1 — af2)7", o < 1.
Then g(z) also has p zeros in A(0; 1).

Proof. Define
f1@) = (@) = da)(1 — daf (@), |of <1,0<A <1,
and use Lemma A.6. [

There is a natural extension of this result to the ‘matrix Blaschke transform’ of
(A.1).

Lemma A.7. Let F(z) be a matrix function analytic in A(0; 1), continuous on

A(0; 1) and unitary in C(0; 1). Let A be a real symmetric matrix with || A|| < 1 and
define the matrix function G(z) by

G(2) = (1, — A*)"'*(F(2) — A1, — AF(2)" (1, — 4})'2.
Then det F(z) and det G(z) have the same number of zeros in A(0; 1).

-
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Proof. Define
Fy(2) = @, — 224*)7'2(F(2) — AA)(Q, — 14F(2))"' (1, — A24%)'2,
| 0<ic<l.
Then F,(z) for each A in [0, 1] has the same properties as F(z) and
Fo(z) = F(z), Fi(2) = G(2).

Moreover, it is clear that F,(z) is continuous in A on [0, 1], uniformly with respect
to z in C(0; 1). This implies the continuity in A of each of the elements of F,(z)
and thus of det F,(z) «(in the absolute value norm). Now apply Lemma A.6 to
fi(z) = det Fi(z). O
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