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Electromagnetic corrections in hadron scattering,
with application to aN — nN

by B. Tromborg
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen @, Denmark

and S. Waldenstrem and 1. Overbe
Institute of Physics, University of Trondheim, NLHT, N-7000 Trondheim, Norway

(28.11. 1978; rev. 18. V. 1978)

Abstract. A general dispersion relation method for calculating electromagnetic corrections to hadron
scattering is presented. An application is made to n/V scattering, for which the electromagnetic corrections
to the S- and P-wave phase shifts and inelasticities in 7~ p elastic and charge exchange scattering are cal-
culated. For the P,, resonance the corrections obtained correspond to a width difference I'y,. — I'y. =
—5MeV/c? and a mass difference M,.. — M,. ~ 1 MeV/c?. The inelasticity corrections are derived
directly from the unitarity relation, and are for =~ p scattering mainly due to the ny-channel. The contri-
butions from bremsstrahlung are negligible, as has recently been demonstrated also for n*p scattering.

1. Introduction

It is well known that the nuclear amplitude Fy, obtained from a hadron scattering
experiment after subtraction of Coulombscatteringand Coulomb-nuclear interference
terms, still contains a trace of electromagnetic (e.m.) interactions. That is, Fy differs
from what one would like to think of as the purely hadronic amplitude Fy;. The
general goal of the present paper is to determine the e.m. correction

6F = Fy — Fy (1.1)

applying quantum electrodynamics, but trying to use as few assumptions as possible
about the strong interaction.

In previous work on e.m. corrections [ 1-4] we defined F}; to be the amplitude Fy
in the limit of no e.m. interactions. However, without a combined theory for the
strong and e.m. interactions we have no prescription for taking this limit. This
definition therefore is almost empty; it merely serves to illustrate what we are after.

It seems reasonable to assume that F;; obeys SU(2) and unitarity in the space of
pure hadronic states (i.e., states with no photons). We also assume that it obeys
crossing and is analytic with only the hadronic unitarity cuts. The problem is that we
have to specify the masses and coupling constants that appear in Fy. These should
ideally be the physical masses and coupling constants in the limit of no e.m. inter-
actions, but again this limit cannot be taken. Instead we simply choose a particle mass
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for each iso-multiplet to represent the pure hadronic mass, and similarly for the
coupling constants. This means that the amplitude F; derived from (1.1) will not
strictly speaking be a pure hadronic amplitude but rather a standard amplitude with
simple analyticity and unitarity properties.

There is no experimental way of verifying the actual choice of masses and
coupling constants. Thus it is not possible to measure the individual corrections, but
only combinations of them in which the dependence on Fj; cancels to first order. To
find which combinations of corrections are measurable one has to form all the
combinations of measurable quantities that would be zero if SU(2) were exact. In TN
scattering we have, e.g.

Fyn*p— n*p) — Fy(n™p— np) — /2 Fy(n™p— n°n), (1.2)

[(A° — n7p)/T(A° — n°n) — &, o (3)
and '

07 (Py;) — 07 (Py3), (1.4)

where 5" and 6~ are the P,, nuclear phase shifts derived from n*p and =~ p scattering
respectively. With our assumption of SU(2) for F these expressions are all given in
terms of combinations of corrections.

What we have said means that the ambiguity in the masses and coupling constants
to be used in Fy is no obstacle to an experimental check of charge independence of
strong interactions.

From the analyticity and unitarity properties of F and Fy; one can derive a
dispersion relation for 6 F as was first shown by Dashen and Frautschi [5]. The form
of the dispersion relation is not unique and in fact many different forms have been
used [1-6]. In the present paper we shall use the method of Ref. [4], suitably
extended to include the multichannel case. The extension of the method is described
in Section 2. |

In Section 3 the method is applied to calculate the corrections to /N scattering.
The phase shift corrections are given by a kind of partial wave dispersion relation.
It is convenient to divide the contributions to the corrections into five categories,
namely, (i) Coulomb corrections due to Coulomb scattering of the external particles,
(ii) corrections due to the mass differences M, — M_.and M , — M, (i) corrections
due to differences between the n~pn, n°pp, and n°nn coupling constants, (iv) contri-
butions from the ny-channel in =~ p scattering, and (v) short range contributions.

The terms (i)—(iv) contain dispersion integrals over the physical cut and the long
range part of the left-hand cut. They are essentially given in terms of measurable
quantities and can be calculated directly. Our results for (i) are roughly in agreement
with Bugg’s results [7, 8] obtained from a relativistic potential model. The problem
of determining the mass difference effects from potential theory has been discussed
in detail by Oades and Rasche, Rasche and Woolcock, and by Zimmermann [9, 10].
Numerical results for the corrections were obtained by Zimmermann from a phase
shift analysis, where the corrections were determined so as to give charge independent
phase shifts. The corrections obtained by this method are sort of effective corrections
and it is not clear (to us) how they should be compared to our results.

The differences between the various NN coupling constants are unknown, and
hence also the contributions (iii). In Figures 2—-4 we show what the contributions
would be for coupling constant differences of the order 1%,. The ny contribution (iv)
can be calculated directly from the known photoproduction amplitudes.
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There remains, however, the term (v) coming from the short range part of the
left-hand cut integral. We are not able to determine or even estimate this term, which
is of course a serious drawback of our method. However, the short range contribution
to the dispersion integral is supposed to vary slowly in the low and medium energy
region, i.e., up to energies well above the P, resonance. This means that the energy
dependence of the short range contribution is more or less known.

In Section 3.3 we derive the expression for (1.3) and give its value in the absence
of short range effects. In Section 3.4 we discuss the differences in mass and width of
the A** and A° resonances.

_ The inelasticity corrections can be derived directly from the unitarity equation.
They are therefore not subject to uncertainty due to short range e.m. effects or to
mass and coupling constant ambiguities. The inelasticity correction to n ¥ p scattering
is due to bremsstrahlung and was calculated in Ref. [4], where we found very small
values. In n~p scattering the main contribution comes from the ny-channel and is
calculated from the known photoproduction amplitudes. We also estimate the
bremsstrahlung contribution and find it negligible in the considered energy range
(cf. Section 3.1).

Our e.m. corrections might be particularly useful in the type of data analysis
where analyticity and unitarity are imposed as constraints on the scattering amplitude.
In such an analysis the data should be corrected not only for Coulomb scattering and
Coulomb-nuclear interference but also for the e.m. corrections (1.1). (A detailed dis-
cussion of how to do this is given in Ref. [11].) This will ensure that the corrected data
are consistent with the simple analyticity and unitarity properties assumed for the
pure hadronic amplitude.

Since our corrections do not include all short range e.m. effects one cannot expect
the output of the analysis to be a charge independent amplitude. One must therefore
in the analysis distinguish between the isospin 3/2 amplitudes in #*p and = p
scattering.

With this method it is obviously not possible to verify charge independence.
However, it should be noticed that the difference between the two amplitudes must
have a specific energy dependence in order to be consistent with charge independence,
namely that corresponding to smooth (short range) contributions to the dispersion
integrals.

2. General method

We consider the two-body reactions
VAM+BM_)AV+Bva (ﬂ,vzl,...,N), (21)

where A4, B are hadrons, and assume that no other purely hadronic channels are
important. (There may in addition be radiative channels such as hadron(s) +
photon(s).) In the outline of the method we assume for simplicity 4, B to be spinless.
The S-matrix describing (2.1) is denoted by Sy, , where C and H indicate Coulomb
and hadronic, and A is the photon mass. _

If there are charged particles in the channels y or v, the matrix element (Sgy;),, 18
zero in the limit A — 0. This is because an accelerated charged particle always emits
zero mass photons. Therefore there is no purely hadronic scattering in the zero mass
limit. The A-dependence of Sy, is for small 4 given by the simple form
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(Scus)wy = O(1) exp (—L,, In ), (2.2)

where L, is a known function of the Mandelstam variables s, ¢, u (see Appendix A).
This enables us to form a finite A-independent S-matrix S by the construction

(SCH nv = lim D,uv(SCHA (1A (23)
i-0
where D,, is a suitably chosen function containing the factor exp (L,, In A). The
precise definition of D, is given in Appendix A.

We define a Coulomb S-matrix S, by

Sc; = 4nd(w) + 2ig'"* f,q", 2.9
where ., is the Coulomb amplitude, defined as the sum of all Feynman graphs where
only photons are' exchanged. Also, ¢ = diag(q;,...,qy), where g, is the c.m.

momentum in the y-channel. Analogous to (2.3) we define a finite Coulomb S-matrix
Sc by

(SC)M = lim D, (S,),,- (2.5)
A—=0
The definition of D g1ven in Appendix A looks rather complicated but as
argued in Refs. [4] and f2] it is nevertheless almost canonical. With this definition
the amplitude

P |
J=54""Ceu — SIa~ " 26)

has a number of useful properties [4]. It obeys crossing, and it has the same analytic
structure as assumed for the pure hadronic amplitude except for the unitarity cuts
coming from intermediate states of the type hadron(s) + photon(s). (We shall call
these states radiative states and their unitarity cuts radiative cuts.) The graphs with
intermediate states of photons only have explicitly been removed by the construction
of f. Due to mass splittings within SU(2) multiplets the hadronic cuts in fare usually
shifted a little compared to the corresponding cuts in the pure hadronic amplitude.
At the thresholds in the s-, t-, and u-channels there may be essential singularities due
to the accumulation of Coulomb bound or antibound state poles. However, f is

finite at the thresholds on the physical sheet and it obeys simple fixed sand 1 dispersion
relations. Another consequence of our choice of D,,, is that the melast1c1ty corrections
due to bremsstrahlung become small in the low and medium energy region. Further-
more the introduction of e.m. form factors in D, implies that the phase shift correc-
tions approach zero more rapidly with i 1ncreas1ng energy. The reason for this is that
form factors tend to reduce the short range e.m. effects.

2.1. Coulomb phase shifts

We assume for simplicity that S, is diagonal, which is anyway the usual case.
The definition (above the corresponding threshold) of the u-channel Coulomb phase
shift Z, , is based on the partial wave projection of (5.),,;")

') For the partial wave projection of a quantity f we use the symbol (f),, / being the orbital angular
momentum. In many cases where the meaning should be clear the label / is omitted.
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(5. ), = |D,,(s, t = 0)| exp 2iZ, ). | (2.7)
It follows from equations (2.4) and (2.7) that to order «,
(félfl ).u.u,l = (%w,u,u + Zl,u)/qp > (2'8)

where f2 is the one-photon exchange amplitude and (—y,,) is the phase of D, (cf.
Appendix A). For point charges, X, is in the non- _relativistic limit equal to al Oy,
where :

o, =argT(1 + 1/ + iy), | 2.9
and y is the Coulomb parameter ,
y = Z,Z, afv, (2.10)

Z, and Z, being the charges of 4,,, B,, and v being the lab relative velocity.

2.2. The nuclear S-matrix

From the finite S-matrices S;; and S we define a nuclear S-matrix Sy by

Scu)r = G (S (82, 2.11)

This definition is consistent with the usual definition of a nuclear S-matrix (cf. equa-
tion (1.21) of Ref. [12]). It ensures that Sy is symmetric.
From the S-matrices we form the reduced partial wave amplitudes

1

Fy = 2 Q-UZ((SNL - I)Q_I/Zs | (2.12)
B = qul(f)lq (Sc JUZFN(SC 1/29 (2.13)
| _
Fy = 3 Ox 1/2((51{)1 - I)QH T, . (2.14)
where S; is the pure hadronic S-matrix and Q, Q,; are diagonal matrices with
Qu=a"" (@), =@l (2.15)

4, (qu), being the c.m. momenta in the y-channel.
For g, we have the kinematic relation

4sq,(s) = (s — (my + mp)’)(s — (m, — my)?), (2.16)

where m ,, my are the masses of 4 ~ Bﬂ The same relation gives y- Ideally, m ,, my
should then be the masses of 4 B, in the limit of no e.m. interactions. As discussed
in the introduction, however, tT’lese masses are unknown. For each isospin multiplet
we shall therefore choose a mass to represent the pure hadronic mass. Our e.m.
corrections will then be determined relative to these standard masses.

2.3. Dispersion relation for the e.m. correction

As stated in the introduction, our problem is to determine the e.m. correction
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OF = F — Fy;. We shall see that an equation for F can be obtained by the use of
unitarity and analyticity.

Since fwith a few exceptions has the same analytic structure as assumed for the
pure hadronic amplitude, it follows that the reduced partial wave amplitude F has the
same analytic structure as Fy;. In the s-plane, F;; has the so-called physical (or right-
hand) cut singularity s, < s < oo, where s, is the lowest threshold of all the channels.
There is also a left-hand cut due to particle exchange in the t- and u-channels and this
cut can have a quite complicated structure [13].

On the physical cut the unitarity equation for Fy has the simple form

Im Fy! = —Q,P, (2.17)

where P is the projection onto the set of open channels. In the next section we shall
see that unitarity also gives an explicit expression for Im F~! on the physical cut.

To first order,

ImF™ ' —ImF;! = —Im [F; (F — Fy)F; '] (2.18)
Using the N/D representation |

Fy=#49"1 (2.19)
we can write (2.18) as

Im# = —AT(Im F~' — Im Fg )N, s, <5< o0, (2.20)
where

H = 9UF — Fy)9D. (2.21)

In deriving (2.20) we have used the facts that Fy is symmetric and 4" is real on the
physical cut [5].

The function # has the same analytic structure as F. Therefore it obeys a disper-
sion relation of the form

H(s) = 5— ds' + —

, , (2.22)
20 Jihe. S =S n

>

1 AF(s") 1 [(*® Im#(s" +) s’
w 5=
where the first integral is over the left-hand cut (l.h.c.) and the second is over the
physical cut. From (2.20) we see that unitarity gives Im 5 on the physical cut. This
determines the physical cut integral in (2.22). In many cases one can also determine
the long range part of the Lh.c. integral. This means that the unknown part of 5 (s)
is only the short (and medium) range part of the Lh.c. integral. This part may be
assumed to be small or at least to have very little structure in the physical region.
By (2.12)—(2.14), (1.1), and (2.21) we have to first order

H =9TN + ¥ T€D + 9T 6F9, (2.23)
where
€ = (SC),”2 -1 (2.24)

The matrix € is known to order « from the one-photon exchange lamplitude and the
factors D, . Therefore, knowing 5, one can finally solve (2.23) for 6F.
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24. The A-independent unitarity relation

We shall now see how unitarity gives Im F~! on the physical cut.
In analogy with (2.4) we define an amplitude f corresponding to the S-matrix
Scuz - The unitarity relation for f'can symbolically be written as

Imf=ftqPf + S'PS + S'P,S, (2.25)

S being the suitably normalized S-matrix. Again P is the projection onto the open
hadronic channels, and P, is the projection onto the open bremsstrahlung channels

A, + B_ + photons,

where the photons in the overall c.m. system have a total energy less than E. This
energy is chosen such that the soft photon approximation can be used for these
photons. The projection P, is onto the open states of hard photon bremsstrahlung
and any other possible radiative states. (An example of the latter is the ny-channel in
7~ p scattering.) The hard photon term S'P,S is infrared convergent to order a.

Using the soft photon approximation one can write (2.25) more explicitly as
(cf. Ref. [2], Section 7 for details)

1 AE\ Ak + Aiev = Ay '
Imf,(6) =X Ej‘fxt(gn)qxf;cv(g’)(T) do' + h.p., (2.26)

where h.p. is shorthand for the hard photon term. As usual o’ = (0’, ¢") and @ =
(6, 0) give the c.m. directions of the intermediate and final state particles and 6” is the
angle between these directions. Also,

A, = —ReL,_(0, Ay, = —RelL, (0"), and A4, = —RelL, (0),
' (2.27)

where L, is given in Appendix A.

By (2 4) and (2.6) we have

f,uv = (fCﬂ.),uv + fuv/D,uv' (228)
The phase ¥, , defined by

Duv = |Dpv| €Xp (_ il/],uv)a ' (229)
depends only on s, and (cf. Appendix A)

l//,uv = é—(w,uu + 'lev)' . (2'30)

The phase l//u‘l is zero below the threshold of the u-channel.
We now 1nsert (2.8), (2.28), and (2.29) into (2.26) and find to order « the following
unitarity relation for the reduced partial waves:

Im (ﬁuvei%v) = (%l/] + zl u)(FH),uv “u + (FH) (Z.Il’vv + zl v)va
+ (F1QPF),, e/~ =¥u) 4 hp 2.31)

where F . 18 the partial wave projection of

@,9,) "D | RE/A) A, (2.32)
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Using (2.30) we find that the infrared divergent phases s cancel to first order, and
(2.31) finally gives a A-independent unitarity relation for F;

Im F = F'Qp~ ! PF + X,PF, + FlPL, + o. (2.33)

Here the matrices ¢ and X, are diagonal with diagonal elements |D, (¢ = 0)| and
%, , respectively. o/ is the absorptlon matrix

o = 8'QPFy + FiOQP&E —Im & + ¢ '(STP,S),q7 ", (2.34)
where & is the partial wave projection of the matrix with entries
1/2 1/2 Ay
. Puy P “
lim (g,q9,) " " (fy) { BE T VY ( ) — I:I, o (2.35)
A—0 f-l " |Dﬂv( t)|

Ju being the pure hadronic scattering amplitude. In (2.35), the infrared dlvergence
due to soft photon emission is cancelled by the factor |D | The é" terms in (2.34)
describe the remaining absorptlve effect of soft photon emission.

From (2.33) we derive in the usual way an explicit expression for Im F~'. To-
gether with (2.17) and (2.20) this gives

Im# = #T(Qp~! — QPN + DIEPN
+ NTT,PD + DA D, (2.36)

from which one evaluates the physical cut integral in (2.22).
From (2.13) and (2.33) it follows that the open channel part of Sy, is given by the
simple relation

SLSy + 4012 Q"2 = 1. (2.37)
This is the analogue of equation (3.29) in Ref. [4]. '

2.5. The effective range equation

From the expression for Im £~ one can form the K-matrix

K1=p! JwImF 1(S+)ds, (2.38)
m 5 SG =9

which has no right-hand cut to order «. Near the thresholds higher order terms are
important. One can improve the threshold behaviour of K by replacing F by ¢F®,
where

. f] (1 . if_’)_l. : (2.39)

The matrix } is diagonal, §, ” being the Coulomb parameter of the u-channel. For this
one may use the non-relativistic form (2.10), the relativistic form (A.4), oriL, where L
is the function in equation (A.3) of Appendix A.

If the Coulomb interactions are attractive one must add the term

27miQ% coth () f[ (1 + (%)2) (2.40)

n=1
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on the right of (2.38) in order to compensate the poles coming from the Coulomb
bound state zeros in F (see Refs. [1], [4] and [14] for details).

3. Application to 7N scattering

We shall now apply the general methods of Section 2 to " p scattering and =™ p
elastic and charge exchange scattering.

For n*p scattering there is only one zN channel and we write the N part of
Sy as

n e*’, (3.1
where ¢ and # are the nuclear phase shift and inelasticity. The e.m. corrections to é
and n are by definition

A =06 — by, (3.2a)

n="Mg— 1" : (3.2b)

where Jd;; and #, are the pure hadronic phase shift and inelasticity.
For n™p scattering there are two N channels, #7p and n°n. The charge basis
{In"p), |r°n)} is transformed into the isospin basis {|I = 3}, |I = 3>} by the matrix

?}5(_1\/ 2 \/12) (3.3)

In the isospin basis the 7N part of Sy is written as

"1 p2id! je pilo! +8%) -
je g0 +6%) 113 2218 ? : :
with
e = %\/2 (n13 + iA13), (3.5)

where &', ' (i = 1, 3) are the (real) isospin i/2 nuclear phase shift and inelasticity, and
1,5 and A, are (real) mixing parameters.

The nN part of the pure hadronic S-matrix Sy is assumed to be diagonal in the
isospin basis and is written as

1 ,2i85
Hy €M 0

( 0 62”‘3) | @9
where the / = 2 component is the same as for n*p scattering, as required by our

assumption of SU(2). :
We define the phase shift corrections A, A; by

o' = 8 — %A, (3.7a)

8 = & — 3A,, (3.7b)
and the inelasticity corrections 7, , #7; by

o=y~ (= 1,3). 38)

The mixing parameters 1,5, A, are also to be considered as e.m. corrections.
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In Ref. [11] we give the detailed expressions for the differential and total cross
sections and the polarization in terms of the parameters in (3.1) and (3.4).

3.1. Inelasticity corrections

In the energy region where the #N channels are the only open hadronic channels
it follows from (2.37) and (3.4) that to first order in «

L= (') ~3v2113 e"“”"’")
i = 4Q'? A4 Q' 3.9)
(w%\/z mae T 1= ) eraL :

from which 7, 775, and 5, ; can be determined. For n*p scattering the same equation
holds with only 1 — #? on the left.

For n™p scattering the main term in the absorption matrix &/ comes from the
ny-chann«lel. A derivation based on (2.34) and (3.9) gives for total angular momentum
J=1t35;

(s + nign; = 332 q,q{l( + DIMEMZ| + (I + D + 1 + D|ERE?|}
(GJj=13), (3.10)

where 7, and 7, are given by 77, = $./2 n,,, and g, ¢ are the c.m. momenta of the ny
and nN systems. The electric multipole amplitudes are

1
Exlzt{z = %(
and similarly for the magnetic ones [15]. Equation (3.10) holds approximately also
for ;1;'1 < 1, i.e., above the inelastic threshold. Table 1 gives the ny inelasticity correc-
tions calculated from the multipole amplitudes of Moorhouse et al. [16].

In addition there is the absorption due to bremsstrahlung. The present experi-
mental results [17] on nN bremsstrahlung (obtained at pion lab kinetic energies
T, = 260, 294, and 298 MeV) agree very well with the soft photon approximation for
photon energies up to about 2 of the maximum photon c.m. energy E___ . We therefore

Efy) — 3EQ), E}? = \/ FEY, G.1D)

Table 1
The ny-channel contribution to the =~ p inelasticity corrections

S1/2 P1/2 P3/2

q/p 1, 3 M3 "y N3 N13 My LE! Ni3

08 17Y 6 11 02 04 03 0.7 4 2
1.2 26 9 16 1 2 1 3 49 10
1.4 = 28 10 18 1 2 2 4 89 16
1.6 30 10 19 2 2 2 5 113 20
1.8 31 11 20 2 3 3 6 91 20
20 32 12 21 3 3 3 7 61 18
25 31 14 22 4 3 3 9 20 13

') All numbers are to be multiplied by 10~%.
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estimate the bremsstrahlung contribution to 7, , #;,, and #, ; by just using the &-terms
in the absorption matrix with the cut off energy E = ZE___, ignoring the contributions

from photons of higher energy. The results of such a calculation for the S- and P-
waves are shown in Table 2. The corrections are seen to be negligible in all cases.

Table 2
Bremsstrahlung contribution to the n ™ p inelasticity corrections
S1/2 Pl,‘Z P3/2

q/un 1 3 N3 M M3 N3 m 3 N13
0.8 -0.2Y) -0.2 0.1 -01" 0 —0.1 -0.1 -0.1 0
1.2 -07 —-07 -02 —0.1 -0.1 —0.1 —0.5 ~16 0.1
1.4 -14 11 -0.8 0 0 0 —-13 =36 0.2
1.6 -14 -09 -08 0.1 0 0.1 -20 -32 0.1
1.8 -05 -03 -0.2 0.3 0.1 0.2 -16 —0.1 -0.1
2.0 0.6 0.1 —-0.1 0.5 0.1 0.1 -1.0 22 —-05
25 3.7 25 —-08 8.9 0 —2.5 1.1 47 24

1) All numbers are to be multiplied by 104,

For n*p scattering the absorption is due only to bremsstrahlung, and here a
similar calculation leads to the same conclusion (cf. Table 1 in Ref. [4]).

3.2. Phase shift corrections

To derive 8F from (2.23) one needs a fairly complete N/D model for the full
hadronic partial wave amplitude F; (including the inelastic channels) even if one is
interested only in the nN scattering part of 6F. There exists, however, a slightly
different method which involves only the known n/N amplitude [4]. Instead of using
(2.21) we may define a function s by

Hy = AVAFR — FR)A12, (3.12)

where FR, Ff are now only the reduced part (i.e., the nN part) of F, F;.
For n™ p scattering, A is in the isospin basis given by

A, 0
A=(1 ’ 3.13
‘with
Xy ™ o
A = =) M gl :
; = €Xp [n LG S —3) ds} (i=1,23), (3.14)

where s, = (M + p)?, M and u being the proton and charged pion masses. On the
physical cut,

A; = |A;|exp Qi dl), G =1,3). (3.15)
For n™ p scattering we use A = A;.
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The two functions 5 and #; would coincide if there were no inelastic hadronic
channels. Also, #°; has the same analytic structure as Fy. In analogy with (2.23) we
have to order «

S _SH

A PAHANE = (€ — 1071 6Q)F,; + Fy(% — 1071 60) + %FT' (3.16)

The quantities on the right are here the reduced part of the corresponding quantities
in Section 2. _

In order to specify 6Q = Q — Q4 we now choose to use the proton and charged
pion masses M and p for the pure hadronic masses. Thus §Q = 0 for n* p scattering,
while for n7p

5Q (q21+1 21+1)P0, (317)

where P, is the projection on the =°n state, and ¢_, g, are the momenta of the ™ p
and n°n systems Clearly 9u = q-

It follows from equations (3. 15), (3.4), and (3.6) that on the physical cut the
expression (1/2i))A~"2(Sy — Sy)A ™12 is identical to

—3ngA, + (@2, \/2 Ay — iy,

[A] 3 AN
V2A —inyy —indAs + /), (3.18a)
3 |AA,M A,

for n~p scattering. For n*p it is simply

(A + (/2)7)
[As]

Combining this with (3.16) one sees that the corrections A are connected with Re 5, ,
while Im 5#; is independent of A. Thus the corrections may be found by the use of a
dispersion relation for (cf. Appendix B for detailed expressions).

This method was used in Ref. [4] to determine the phase shift corrections to the
n p S- and P-waves and we have also used it to determine the S-wave corrections and

1,2) for ™ p scattering. Our results for the latter are given in Table 3.

Tlhe method leads to the most reliable results in the cases where di; goes to a
negative value at high energies. This follows from the asymptotic behawour of
|A;| which is [18]

|A]| — const. x |s| 2 (3.19)

(3.18b)

as |s| — co. In the dispersion relation for #; the behaviour (3.19) gives rise to an
enhancement (suppression) of the high energy contributions when 8;;(o0) is positive
(negative). This is most serious for the left-hand cut, where we are able to calculate
only the long range part of the dispersion integral. Ignoring the short range contribu-
tions may be dangerous in cases where these are enhanced by the A function.

The problem with the asymptotic behaviour (3.19) arises only if we insist on
using a single channel method. If a phase shift is large and positive at higher energies,
this is generally due to strongly attractive forces in one or more of the related inelastic
channels. This is most easily taken into account by using the multichannel N/D
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Table 3
Phase shift corrections (in degrees) to n ™ p scattering
S}./l Pl,’l P3/2
q/u A, A, Ays A, A, A, Ays
0.5 —0.31 0.52 0.06 0.11 0.02 -0.74 0.11
0.8 —0.21 0.35 0.06 0.21 005 —1.48 0.15
1.0 —0.15 030 0.07 0.28 0.08 —-213 0.15

1.2 -0.10 0.27 0.08 0.34 011 —287 0.12
13 —-0.07 0.26 0.09 0.37 0.13 -3.09 0.09
1.4 -0.05 025 0.10 0.39 0.14 -2.82 0.05

1.5 -0.02 024 011 0.41 0.16 —-193 -0.02
1.6 0 0.24 0.12 0.43 017 —-073 -0.08
1.8 003 022 0.15 0.47 0.20 0.87 —0.16

20 005 021 0.17 0.52 0.23 .23 —0.18
2.5 0.14 0.18 0.24 0.63 0.36 0.83 —0.16

method outlined in Section 2. This method should be safer to use than the one dis-
- cussed above, e.g. for the P,, and P,, waves both of which have large and positive
phase shifts at high energies. |

For P,, we have at present no N/D model that gives a satisfactory fit to the
observed phase shift and inelasticity. Therefore the N/D method cannot be used to get
reliable estimates for A, (P, ,) and A (P, ,). However, a calculation using the single
channel equation (B.5) gives very small values for these corrections, at least in the
region of the P,, resonance, so we believe they can simply be ignored (see also the
results in Ref. [8]).

For the P,, partial wave Ball et al. [19] have constructed a two-channel N/D
model that reproduces both the phase shift and inelasticity with good accuracy. In
this model the first channel is the 7N state and the second is a P-wave state of masses
M and 4u. The latter should be considered as an effective channel, simulating the
combined effects of the A, pN, KX, and maybe other channels. It is therefore not
clear what charges one should use for the second channel. We take the simplest
possibility and assume the particles to be neutral.

Using this two-channel N/D model in (2.22) and (2.23) we have recalculated the
correction to the P,, phase shift in n*p scattering. The result is given in Table 4
together with the =™ p corrections obtained from the single channel method (cf. Ref.
[4]). The two methods are seen to give very similar results for the P, correction. At
low energies (¢ < 1) the dominant terms are identical in the two cases. At higher
energies, however, corresponding terms come out very different with the two methods,
but they add up to give total corrections that are surprisingly close. This result seems
to indicate that the total correction is to some extent insensitive to what N/D model is
used, as long as it reproduces the measured N partial wave.

For the P, , partial wave in 7~ p scattering we use a ‘mixture’ of the two methods.
Our Z-matrix is here of the form

(5 o)
0 D,
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Table 4
The correction to the *p P,, phase shift, obtained from equations (2.22) and (2.23) using the two-channel
N/D model of Ball et al. (column 6). For comparison and completeness we have included (in columns 3-5)
the =™ p corrections obtained [4] from equations (B.5) and (B.8) in Appendix B.

N/D
g/p T [MeV] A(Suz) A(PI/Z) A(P3/2) A(P3/2)
0.5 22.1Y) 0.10 0.01 —0.07 —-0.07
0.8 53.7 0.09 0.02 —0.23 —-0.23
1.0 80.7 0.10 0.04 —0.47 —-047
1.2 1118 0.10 0.05 —0.90 —0.90
1.3 128.7 0.11 0.06 —1.18 —1.19
1.4 1464 0.11 0.07 —1.39 —1.42
1.5 1649 0.12 0.08 —1.36 —1.42
1.6 184.3 0.12 0.09 —1.10 —1.13
1.8 225.2 0.13 0.10 —0.31 —0.36
2.0 269.1 0.13 0.12 0.13 0.07
2.5 3911 0.14 0.15 0.44 0.32

1y T, is the pion lab kinetic energy

where D, is the two-channel 2-matrix of Ball et al. [19]. Our results for the correc-
tions are given in Table 3.
We shall now discuss the various contributions to the corrections.

Nucleon exchange. The only left-hand cut term we include in the dispersion
relation for # (or #;) is the one that arises from nucleon exchange in the u-channel
of the =N system. The integral is over the cut singularity (M — p)*> < s < M? + 24°
of #(s) in the s-plane and the discontinuity of #(s) across the cut is derived from the
u-channel absorptive parts of the graphs (a)—(d) in Figure 1. The absorptive part of
(d) is obtained from the photoproduction amplitudes, and for these we use the Born
approximation [4, 20].

To obtain the absorptive parts of the graphs (a)—(c) we have to know the tNN
coupling constants G,,_,,, G, and G,o,,. These coupling constants are finite and
JA-independent and are defined by

G = lim Dy .G, (3.20)

A-0
where G is the value of the relevant NN vertex function when all three external
particles are on the mass shell. Clearly G o,, = G o,,- The definition (3.20) is analogous
to our definition of the finite S-matrix Sq; (cf. equation (2.3)).

We take the nucleon exchange graph that contributes to Fy to be the same as that
for n*p scattering (Fig. 1a) except that G-, is replaced by G,-,,- This means that
for np scattermg where nucleon exchange appears in the reactions n~p — n°x and
7°n — n°n (cf. Fig. 1b, 1¢) there will be contributions to A,, A,, and A, ; proportional
to respectively

3G, + Gl — 4G r0py G- s (3.21a)
3G2. — 1G2,, — Grop,Gre > (3.21b)
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1198 n

(c) (d)

Figure 1
The nucleon exchange graphs which contribute to the dispersion integral for 5 or #; .

and

nOnn

2Gr0,,Gr- pn — 2G2 (3.21c)

from the short nucleon exchange cut (M — p?/M)* < s < M? + 2u*. Unfortu-
nately very little [21] is known about the differences between G,-,,, G ropp» and
G 0,,- We are therefore not able to calculate these contributions. However, to get an
idea about the possible size we have calculated the contributions for the P 3, waves
takmg arbitrarily the factors (3.21) to be 0.02G?2, with G2/41r ~ 14 (For G, =

G rop, the factors (3. 21) are all approximately equal to G2 - G2%,,.) The results
are the dotted curves ‘g’ in Flgures 2-4. (These numbers are, of course, not included
in our total corrections, given in Table 3.) We note that with the present N/D model
the left-hand cut contribution to A, is strongly suppressed compared to the corre-

sponding contribution in the single channel method (cf. Fig. 12 in Ref. [2]).

Corrections due to mass differences. In ™~ p scattering there is also a contribution
due to the mass differences of the external particles and of the intermediate nucleons
in the various nucleon exchange graphs (cf. Fig. 1a—1c). It was stated in Ref. [3] that
the pion mass difference has no influence on this contribution. This is correct at very
high energies but in the resonance region the main effect is due to the pion mass
difference.

The most important mass difference effect comes, however, from the physical
cut terms involving 6Q in (2.23) or (3.16).

Our result for the sum of these two effects is shown for the P, , case as curve
‘m.d.” in Figures 2-4. Notice that the mass difference contribution dominates the
structure of the total P,, correction.

The ny contribution. The ny-channel in n~p scattering gives rise to a radiative
M? < s < o in #(s) and H#(s). The corresponding absorptive part of #’; comes
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—

10°—

I | I I |
05 10 15 20 25 30

q/u
Figure 2
The contributions to A,(P;,) in n~p scattering. They are (c) the Coulomb correction, (m.d.) the mass

difference contribution, and (ny) the contribution from the ny-channel. The circles show the results by
Bugg [8]. The dotted curve (g) illustrates the effect of coupling constant differences.

(-]

05—

05 10 15 20 25
| a/p
Figure 3

The contributions to A,; (P;,). Same notation as in Figure 2. The ny contribution is negligible and is not
shown.
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.9
-010}+ e
I l I |
05 10 15 20 25
q/u
Figure 4

The contributions to A, (P, ,). Same notation as in Figure 2.

from the #;; term in equation (B.8). On the physical cut we use the values of #;; given
in Table 1. In the unphysical region we derive Im s#; from the extrapolated photo-
production amplitudes. The Born terms in the photoproduction amplitudes give rise
to an endpoint singularity in #, at s = M?*. We refer to Refs. [2] and [20] for a
discussion of how to deal with this singularity in a dispersion relation.

The discontinuity of #(s) due to the ny-channel is derived from the absorption
matrix term in (2.36). In the matrix o/ we have ignored the terms involving the
amplitude for the effective channel going to ny. This is not consistent with analyticity
and unitarity, but probably is a good approximation below the threshold of the
effective channel.

The contribution from the ny-channel to the P, , corrections are shown as curve
‘ny’ in Figures 2—4.

The Coulomb correction. The contribution from the terms containing the matrix
% mn (2.23) and (3.16) is called the Coulomb correction. In this we also include the
left-hand cut contribution from graph (d) of Figure 1 and the term coming from the
difference between G and G. The corrections to n* p are therefore entirely Coulomb
corrections. Apart from the left-hand cut terms they are equal to the corresponding
corrections A, to ™ p scattering.

The Coulomb corrections mostly arise from the Coulomb scattering of the
external particles. It is therefore not surprising that our results for these agree
qualitatively with the corrections obtained from potential theory (cf. Section IID in
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Ref. [4] for a discussion of the relation between the potential theory and dispersion
relation methods). Thus the circles in Figures 2-4, showing Bugg’s results [8]
obtained from a relativistic potential model, are seen to be close to our Coulomb
corrections (curve ‘c’).

Short range contributions. As already mentioned, we are not able to determine
the short range part of the left-hand cut integrals in the dispersion relations for # or
HA'g. Furthermore, we have not taken into account the short range contribution due
to e.m. effects in the inelastic channels. These effects would contribute to the high
energy part of the physical cut integral.

Although the short range contribution to Re s#; is unknown, it clearly is slowly
varying in the resonance region It therefore follows from equation (B.5) that the
structure of the contribution is determined by the factor q2‘+1|A A,|*?. For Py,
this factor is to a good approximation proportional to sin 265 The short range
contributions to the P55 corrections therefore are of the form

h(s) sin? 83, (3.22)

where h(s) varies slowly in the resonance region. The same conclusion follows from
an argument based on the multi-channel method.

3.3. The branching ratio I'(A° — =~ p)/T(A° — =°n)

If we for a moment ignore the ny-channel we find that exp (2i6°) is an eigenvalue
to the matrix (3.4) with corresponding eigenvector

(/2 A5 /sin (82 — &%), 1). (3.23)

Consider now the P,,, wave. At the resonance position s,, given by 8%(s,) = 37, we
identify the elgenstate (3.23) with the A° particle. Thus in the charge basis,

A% = :/—3 (I —-\2an"p) + % (a + /2)|n°n), (3.24)
where
_ 2 A N
= T&Ti’sl = —0.001. (3.25)

This gives the branching ratio
rA°—n7p) |1-.2af
[(A° — 7n°n) J2+a

If the ny-channel is included, the eigenphase of the enlarged S-matrix becomes
8> + 375 cot 6° and for s = s, the corresponding eigenvector is

(a,1,/6q,9 E?, /29,9 M}?), (3.27)

where the last two components are the electric and magnetic components of the
ny-channel. We notice that the introduction of the ny-channel does not change the
branching ratio (3.26) except through A,,. However, the ny contribution to A, ; is
negligible.

~ 1.1.004. (3.26)
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If we for A, ; use only the first term on the right of equation (B.5), we find

ra—np _1(a.\
~ 1.0.998. 3.28
@& 7n) z(qo) i 28

for s = s5,. This approximation is essentially the penetration model result [22], as
can be seen by noting that

Koo =1 (3.29)
2my

in the non-relativistic limit (cf. equations (B.4), (A.11), and (2.10)).

3.4. Masses and widths of the A™ " and A° resonances

We define the mass M, ., . (M,.) of the A**(A°) resonance to be the value of
W( = ,/$) for which the nuclear P,, phase shift in = *p(n ™ p) scattering passes through
in. The widths I" are determined from the nuclear phase shift by

do 2

Bl s 3.30
awly-m, T (3-30)
The differences in masses and widths are therefore given by
M,.. — M,. ~ —1T(A + 1A)), (3.31)
| PPN FZ—(A + 1A,), (3.32)

where the right-hand sides are evaluated at the resonance, A and —3A, being the
corrections to the P,, phase shifts in #*p and n~p scattering (cf. equatlons (3.2a) and
(3.7b)). (Like the definitions of mass and width themselves these definitions of the
shifts are not very unique.)

From our results for A and A, we find (in MeV/c?) ?)

M,.. — M. ~10, (3.33)
Taeo — Ty = —52. (3.34)

As discussed in Section 3.2 we have not included the short range contributions,
which will give an additional term of the form (3.22) in the expression for A + 1A,.
The corresponding contributions to the shifts in width and mass will have a ratio
roughly equal to

I dh
RAW |y

Since 4 is supposed to be slowly varying it follows that the short range contribution
should mainly influence the mass shift.

(3.35)

%) In the same way as for the branching ratio we reproduce essentially the penetration model result by
using only the first term on the right of eq. (B.5). This gives no mass difference and

FA++_FA o F[R+1—(q /q )3"2]'\'_25
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The shifts (3.31) and (3.32) are also influenced by the differences between the
various 7NN coupling constants. The arbitrary choice of 0.02 G2 for the combination
(3.21b) (cf. curve ‘g’ in Figure 2) glves shifts of only —0.08 and 0.15 MeV/c? in the
mass and width. This shows that in the present N/D model calculation the coupling
constant differences have to be large in order to cause serious errors.

A comparison between (3.33)-(3.34) and experiments must wait until a new
phase shift analysis has been carried out. The nuclear phase shifts obtained in the
analysis of Carter et al. were reported to give [8] (see also Ref. [23])

MA++ - MAa = _1.4 i 0.4, (3-36)
[yer — Tpo= —103 + 1.3, (3.37)

However, this result cannot be compared directly with (3.33)—(3.34) because the
analysis was not carried out in a way consistent with our corrections. A scheme for a
practical data analysis consistent with our corrections is presented in Ref. [11].

Although the results of such an analysis may turn out to differ from the values
of Carter et al., it may be of interest to study how short range e.m. effects could produce
results like (3.36) and (3.37). By (3.35), this would require

I' dh
hdw ~

i.e., || would have to increase in the resonance region. Also, the contributions would
have to be of the same size as those already encountered. We expect the left-hand
contribution to A(W) due to e.m. modification of the driving forces in aN — ©N to
- be numerically decreasing with energy, unless cancellation effects are active. If
results like (3.36) and (3.37) persist in future analyses, it therefore seems that one will
have to look for further e.m. effects in the inelastic channels.
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Appendix A

The function D,, that we use in equation (2.3) to give an infrared convergent
S-matrix is defined [24] as the product

D,uv = I—[ (D,uv)ij (A'l)
i<j
over all pairs of the four external particles 4,, B,, 4,, B,. The same definition also
applies to the function D used in (3.20); in this case i , j run over all pairs of the three
particles of the vertex.
Let g;; and s;; be the c.m. momentum and energy squared in the channel where
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the particles i and j are both incoming or both outgoing. We shall refer to this as the
ij-channel.

To define (D,,,),; we need the two functions (Y,,);; and (L,,);; which we write as
Y and L for short. 'i“hese functions depend only on i ;; and are real analytic in the

s;plane cut along (s,);; < s5; < o0, where (s);; = (m; + m; )2 m; and m; being the
masses of i and j.
On the cut
1 - F(x)F; (x)
Im Y(s..4+) = -, 2 R A2
m (SU+) 2};1] J\_‘tquz x _ AZ 5 ( )
and
Im L(s;;+) = —v;, (A.3)
where y;; is the Coulomb parameter
S, — m? — m? o
= Z.7Z. o : d = ZZ.—s A4
o At zqij(sij)llz "oy, (A9

Z,, Z; being the charges in the ij-channel and v;; being the relativistic lab relative
velocity. The F,, F, are the charge form factors.

Equation (A i) shows that Im Y is equal to the S-wave phase shift derived from
the singular part of the one-photon exchange amplitude in the ij-channel

1B = ff%’u F(t;;)F,(t;) + non-singular terms, (A.5)
L
1;; being the momentum transfer in the ij-channel.
For point charges (F, = F, = 1)
ImY = —y,In (261,-,~//1), (So)ij < ;5 < 0, (A-6)

which is the usual infrared Coulomb phase. For realistic form factors the integral
°  F(X)F, (x)
—44q;;2 % = A’

is convergent in the limit g;; — oo, so in that case Im Y and Im L are proportional
for large s;;.
The real part of Y is given by the dispersion relation

— (m; — mj)2 J’“’ Im Y(s" +) ds’
(s0)ij ’

m ~ (=, Y 87 = &

Y(s;) = :

; (A.7)

and a similar relation gives L(s;;). It follows that for realistic form factors ¥ and L
become proportional for large |s |
The function L can be calcufated explicitly and one finds [2, 4]

S (T = 19

26 '
= —-ZZ —{1 — ; ;
4, i {l tan 29} (AE)
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where
_ __ 2
sin? @ = z = ~u (m; — m;)”
dm;m;
As in Ref. [4] we define
exp(LC — Y)

D, ). = A.

Py = ~F1 =15 (A9)
where C is Euler’s constant (C = 0.5772). Since

exp (LC) (nL)® 3

-0 1 B + O(L°) (A.10)

this factor is only important near the threshold s;; =~ (s,),;, where L is large. Near
and above this threshold we have [4] '
P ik Al
D .. _— .

(Du)f o —5 (A1)
which is related to the Coulomb penetration factor. It is the behaviour (A.11) that
ensures that the-amplitude f (cf. equation (2.6)) is finite on the physical sheet in a
neighbourhood of (s,),;. (If Z; Z; < 0 there are weak Coulomb bound state poles for
Yy =imn+10),n=12...))

By equations (A.1), (A.9), and (A.10) we have to order «

D, =exp(—7Y,), , (A.12)
where
Y, = Z (Ym)ij. (A.13)
i<j .
It also follows that as A — 0
D,, = 0Q)exp (L, In 2), (A.14)
where
Lo = 2 Eylye (A.15)
i<j

For point charges the function Y, has a simple origin. As discussed in Refs. [2]
and [4] it arises from the sum of all Feynman graphs where a photon is exchanged
between two external legs of the hadronic amplitude (fy),,. If (f),, is taken to be
constant in the integration region of the Feynman integrals, the sum is simply

Y.uv(f H)..uv ’

It is clear from the definition of D, that it obeys crossing and is real analytic in
the cut s-, #-, and u-planes.

Appendix B

From (2.7) we see that the term
€ = (S)i* — 1, ' . (B.1)
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which appears in (3.16), is given by

% = 4R + i%, (B.2)
for n* p scattering, and by

% =—GR + iZ)P_ (B.3)
for n~p scattering, where P_ = 1 — P, is the projection on the n” p state, and R is
given by

e = |Dps et = 0)]. (B.4)

The explicit expressions for the corrections A to n~ p scattering are obtained by
combining (3.18) with (3.16);

1 q_ 21+1
A= —E{R + Cij [1 - (Eg) Aij

—25,B,; + ¢+ |A A2 Re Hy, (B.5)
where ij = 11,13, and 33 give A, A5, and A, respectively.?) Here
Ay = sin Oy + 0%) + 21 — i) sin (O — ),

B;; = sin &} sin & + $(nky + ny — 2) cos (8} — ), (B.6)
€11 = %s Ci3 = —1, C33 = 2,
and H;; is defined by
1/—-2H 2H
= _( TERY) 13)_ (B.7)
3\J2H,; -—H,;

The real part of H;; is given by the dispersion relation (2.22), where the physical cut
integral is determined from

2041
g AN Im H; = —{R e cij[l - (%1) ]}Bii
0

+ T Ay — eyl ny, (B.8)
where 7,; are the inelasticity corrections given in (3.10).

Equations (B.5) and (B.8) also hold for n*p scattering if we put i = j= 3,
Hp = Hs,,and c;; = 0 (cf. equations (3.51) and (3.52) in Ref. [4]).
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