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The conservation laws of nonrelativistic classical and
quantum mechanics for a system of interacting particles

by Peter Havas
Department of Physics, Temple University, Philadelphia, Pa., U.S.A.

(1. 11. 1978)

Abstract. The various classical or quantum mechanical equations describing a system of N particles
with central two-body interactions are invariant under the 10 transformations of the Galilei group, and
for interaction potentials inversely proportional to the squares of the particle separations also under two
further transformations. From the invariance of the corresponding classical and quantum mechanical
variational principles under this 12-parameter conformal extension of the Galilei group, the ‘Jacobi-
Schrodinger group’, the 12 well-known conservation laws of Newtonian dynamics as well as 12 local
conservation laws implied by the Schrédinger equation are obtained via Noether’s theorem. Under ap-
propriate conditions on the wave functions, these local laws yield 12 global conservation laws which are
analogous to the Newtonian ones. The Hamilton—Jacobi equation implies a classical equation differing
from the Schrédinger equation only by a potential-like term involving the Van Vleck determinant, from
which 12 local balance equations and the corresponding global equations are obtained, which under
certain conditions reduce to true conservation laws. The various sets of conservation laws are compared
with each other as well as with the conservation laws implied by the conformal invariance of Fierz’s classical
equations for fields of zero rest mass and arbitrary spin.

I. Introduction

For a system of N particles with central two-body interactions described by the
Hamiltonian
Noop2
H= ) ——+V,
K=1 2my

N (1)
V=322 Vkelrgr)s rxo =t — 1y
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K#L
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where the V., are arbitrary functions of their arguments, the invariance of the
Schrédinger equation
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as well as of the corresponding classical Hamilton—Jacobi equation
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S TH=0 =V, )
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under the 10-parameter Galilei group has been known for a long time (for a detailed
discussion of this group see [1]). However, it was realized only recently that in the
absence of interactions equation (2) is invariant under a wider group of transforma-
tions, the 12-parameter ‘Schrédinger group’ [2], and equation (3) under a 13-
parameter group containing the Schrodinger group as a subgroup [3],') and that
the invariance under the Schrodinger group also holds for both equations for inter-
actions of the form (1) with [3]

Vir = Cxirki- 4)
As noted in [3], it was already known to Jacobi [5] that Newton’s equations of
motion for an N-body system with interactions of the form (4) are invariant under
this 12-parameter group, and therefore it was suggested that it would be more
appropriate to call it the ‘Jacobi—-Schrodinger group’.

This group has been the subject of a number of recent investigations [6 14],
most of which are concerned with representations of the group.?) Its relation to the
conformal group was studied in [10] and [11] by comparing the Jacobi—Schrédinger
group to the nonrelativistic limit of the conformal extension of the Poincaré group.
This i1s a 15-parameter Lie group, as is its nonrelativistic limit; however, it does not
contain the Jacobi-Schrodinger group as a subgroup, but has a more complicated
relation to it. In [3], instead, various conformal extensions of the Galilei group were
defined in physical analogy to that of the Poincaré group. They are much wider than
the latter, being gauge groups (i.e. containing arbitrary functions), and do contain
the Jacobi— Schrédinger group as a subgroup.

The invariance of equation (2) under the Jacobi—Schrédinger group was estab-
lished in [3] from that of the action integral

_ M_ *61,0 B h? 61//*61,&_ N
A% ) PN e o

T 2my 0xy Oxy

(where here and in the following summation over the range of any repeated index
denoting components — but not particle labels —is understood), where 61 = 0
implies (2). This not only simplifies the calculations considerably, but, as noted in
[31, the invariance of (5) under the infinitesimal transformations of the 12-parameter
group, by Noether’s theorem [15, 16], implies the existence of 12 local conservation
laws (conserved currents), in addition to the well-known law of conservation of
probability

0 * h * ¥y | —
5;(‘»” l//) + ;VK'[E (l/’ VK'wlj - '.bVKlﬁ ):| = 0, (6)

which follows from the invariance of (5) under changes of phase.

No corresponding variational principle exists for the Hamilton—Jacobi equation,
and therefore its invariance does not guarantee the existence of conservation laws.
However, it has been shown by Van Vleck [17] (for generalizations see [18-20])
that the ensembles of particles described by this equation satisfy a conservation law
analogous to (6)

B For a different approach to the symmetries of the Hamilton—Jacobi equation see [4].

%) The studies concerned with the kinematic invariance groups for arbitrary external potentials not
describing interactions [9, 12, 13] use a different approach from that of this paper. From the point
of view taken here only the potentials (2) with (4) are invariant under all the transformations of the
Jacobi-Schrédinger group.
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is the Van Vleck determinant formed from a ‘complete integral’ of (3) containing
3N arbitrary constants a/, ¢ stands for the 3N components xk of the N rys,>) and

OH
K=oV, S ©)

This is the consequence of a very deep rooted relation between equations (2) and (3),
which allows us to derive from the classical Hamilton—Jacobi equation (3) a modified
classical Schrédinger equation

h oy 2 |

—— ¢ = H —— Y V2R 10

i Ot l"I“-FZRKmKVK Ve (10)
where

R=|D|¥3, ¢, = RS (11)

and # has the dimensions of action, but does not necessarily have the same numerical
value as Planck’s constant [18-20].

Although equation (10) can not be derived from a simple variational principle,
it is shown in Section V that it is possible to exploit the similarity of equations (2)
and (10) to obtain local balance equations from equation (10) which are analogous
to the 12 quantum mechanical conservation laws of equation (3), and which reduce
to true local conservation laws under certain conditions. Illustrations of these laws
and equations for a system of free particles are given in the Appendix.

The 12 conservation laws obtained from equation (2) are those following
directly from Noether’s theorem. However, since the integrand in the action integral
(5) is homogeneous quadratic in ¥ and its derivatives, it follows from a theorem of
Steudel [21] that there exists an infinity of conserved currents, which can be obtained
from the original conserved currents by a procedure established in [21].
Correspondingly, there exists an infinity of balance equations for equation (3).

The physical interpretation of the local conservation laws obtained, and especially
of the global ones following from them under appropriate conditions (to be discussed
in Section VI), is facilitated by comparison with the conservation laws of Newtonian
point mechanics. These are most easily obtained from the classical action integral
appropriate to the Hamiltonian (1) [and corresponding to the quantum mechanical

) Although the entire theory can be developed in generalized coordinates [18, 19], for our purposes it is
more convenient to work with Cartesian coordinates except as noted otherwise. Also, some authors
include a factor (—1)*¥ in the definition (8), but the difference is irrelevant for our considerations.
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action integral (5)]

I = j(z Imyvi — V) dt,
K

dr
=

where V is given in (1). This integral is invariant (up to a divergence) under the Galilei
group for arbitrary V,;, and under the additional transformations of the Jacobi-
Schrodinger group for the special interactions (4), and thus with these interactions
there exist 12 conservation laws, which are derived in Section III.

(12)

b

II. Noether’s theorem and the Jacobi—Schrodinger group

The fundamental connection between the invariance properties of a variational
principle and the conservation laws has been expressed in two theorems by E. Noether,
referring to the invariance under a finite and an infinite continuous group, respec-
tively.*) We consider an integral

op\ .,
l=fL(q”,¢a,g‘?)dq, u=0...n—1, a=1...4, (13)
with the Lagrangean derivatives
L L
L, = 0 — ¢ 0 ’ (14)
09, 0q" 509,
aq"
and the infinitesimal transformations
q’# — M + 5 nu,
’ q q (15)
qoa = qoa + 5(pa5

where ég* and d¢, are functions of the ¢*, ¢,, 0¢,/0q" depending linearly on the p
infinitesimal parameters of a group G,. Then, according to Noether’s first theorem,
if 7 is invariant under the infinitesimal transformations of GIJ up to a divergence,
ie. if

oc*
L' dq = Ld"q + o7 dq, (16)

where L’ is the same function of the transformed variables (14) as L is of the un-
transformed ones, there exist precisely p linearly independent combinations of the

%)  The theorems were given in [15], and with a slight generalization, also credited to Noether, in [16].
Many statements of the theorem in the literature of physics are incomplete if not incorrect; further-
more, in quantum field theory usually only the special example of Poincaré invariance is considered
(compare e.g. [22]). For further references, with some comments, see [23]. The connection between
conservation laws and invariance groups is discussed in some detail in [24].
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Lagrangean derivatives which are divergences; they have the form

d oL d¢ - aL o
:— L Vo— 0 Ct|= L, dp, — —26q") (17
aq‘u a a(pa aqv v 5q a a(pa (pa + a( (Pa aqﬂ q ) ( )
oq* oq"

and thus imply p local conservation laws if the Euler-Lagrange equations
L,=0 (18)

are satisfied.®)

If L is homogeneous quadratic in the ¢, and the dp,/dq", and 4., A,, A; are
three (not necessarily distinct) elements of the Lie algebra of the invariance group of
(12), then, according to a theorem by Steudel [21],

A=4A,4,45 + A5 4, A) — (19)

is also an element of this algebra, and via Noether’s theorem implies a local con-
servation law. Thus for such an L there exist infinitely many conservation laws.
The action integra_l (5) is of the form (13), with

n=3N+1 A=2 ¢ =1,

ql...q"_l Exi,x%,)c?"‘x}v,vasx}%’ (20)
EX}( (K=1N, l=1,2’3)' '
The action integral (12) is also of the form (13), with
n:]., A=3N9 q0=t’
@ Pay = x1, x2, X3 oxl x2 X3
1 3N 1> X1s Xi N> XN> XN (21)

=x, K=1...N, 1=1,213).

We take the ten independent infinitesimal transformations of the Galilei group in
the customary form

(1} o= v dxp =0,

) 6r=0, oxt = o,
() ot=0, oxk = Pk, pL= —Bi,
AV) 6t =0, o6xt =gl

u

corresponding to time translations, space translations, rotations, and Galilei ‘boosts’,
respectively, and the additional infinitesimal transformations of the Jacobi-
Schrédinger group as

(V) 6t =2y, dxg = yxk,
(VD) 6t = A%, dadke = Jixk,

%) We are not concerned here with the converse of this theorem, or with Noether’s second theorem.
Also, it has been shown in [21] that the transformations (16) are equivalent to transformations of
the ¢, alone as far as the conservation laws resulting from (18) are concerned, but no use will be
made of this here.
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corresponding to the Schrodinger dilations and expansions, respectively. To assure
the invariance of (5) under the transformations (I)-(VI), we must take

Sy = Sy* = 0 (22)
for the cases (I)-(III), and

o = 5 Y mgexi,
K

. (23)
i
SY* = -7 Y. mgexy*,
o = —3, * = —3py, (24)
oYy = —% (3t — %Zmekx}()!,{J,
) (25)

[

A
o = =3 (3 + § T merkork
K

for the cases (IV), (V), and (VI), respectively, as well as C* = 0 in all cases. The form
of the oy in equations (23) and (24) follows from the finite transformations (36) and
(40) given in [3], and that of equation (25) from the infinitesimal transformations
(44) of [3] (correcting a misprint in the sign of the last term), if due account is taken
of the fact that the action integral (5) refers to N particles, whereas the equations of
[3] quoted refer to the case of a single particle.

Unlike (5), for some of the transformations considered the action integral (12)
is only invariant up to a divergence, i.e. because of the identifications (20), up to a
time derivative. While C° = 0 for the cases (I)~(III) and (V), we have

C® =) mye'xy (26)
K
and
C% =1 myixixl (27)
K

for the cases (IV) and (VI), respectively. The form (26) is well known [16, 23]; the
form (27) follows immediately by evaluation of (16) for the transformation (VI).
The local conservation laws following from (5), (17), and (19) are of the form

d
a—’t’+v-j =0, V=(V,...Vy) (28)

Thus ‘local’ refers to localization in configuration rather than in physical space. A
local law of the form (28) leads to a global conservation law

d
EJ pdSNx = 0 (29)

only if

JV-jd”x=Jj-nd<p=0, (30)
v b4
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where v is the entire configuration space and & the surface bounding it. It should be
noted that equation (30) is not satisfied in general. It is, however, satisfied for the
conservation law (6); indeed, a wave function is only acceptable if this is the case, as
otherwise y*i could not be interpreted as a probability density.

The existence of local conservation laws which do not necessarily imply a global
conservation law is of course well known from electrodynamics, where energy can be
‘radiated away’ to infinity. However, even for time-independent fields some of the
surface integrals may not vanish in many cases. In particular, this may occur for the
conservation laws obtained from the invariance of Maxwell’s theory under conformal
transformations by Bessel-Hagen [16], which are discussed in Section VI, and we
shall encounter similar cases here.

The conservation laws following from (12), (17), and (20) are of the form

dB

— =0, 31

7 (31)
where B, unlike the conserved quantity (29), is a function of the x} and their derivatives.
Nevertheless, there exists a close analogy between the conservation laws (29) and (31),
which will be exhibited in Section IV.

ITII. The conservation laws of the Newtonian /N-body system
The conservation laws for the Newtonian N-body system described by the

action integral (12) follow from the transformation (I)-(VI) and equations (17), (18),
(21), (26), and (27) without any difficulty. Written in vector notation, they are

dH _ « b _ oL
(IN) E‘*—O, H=§§"n—K+ V, pK:a—v;—_vaK,
dP
(IIN) — =0, P=) pg,
dt X
dJ
(III N) ?1?20’ J =) rg xpyg,
K
dG
(IVN) E=O, G = ) myrg — P,
K
dab
(VN) E:o, D = 2Ht — ) vy pg»
. K
a4 2 1, .2
(VIN) - = 0, A= Ht* =) (rg-pxt — 3Mgl'y)-
K

The first four have of course been known since the last century, and were first derived
via Noether’s theorem by Bessel-Hagen [16]. The last two [valid only for free particles
or interactions of the form (4)] are due to Wintner [25]°) but seem not to have been
derived previously via Noether’s theorem.

®)  Wintner credits them to Jacobi [25], who did consider the transformations (V) and (VI), but did
not explicitly write his results in the form of conservation laws.
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For the validity of the conservation laws (I N)«(VI N) it is of course irrelevant
whether they are written in terms of canonical variables (positions and momenta) as
above, or of positions and velocities. But if expressed in terms of canonical variables,
H,P,J, G, D, and 4 form a representation of the classical Lie algebra of the Jacobi—
Schrédinger group, which is

i, J1 = &des [G:,» G;1 =0, [P, P]=0,

[Ji’Pj] =3ijkPka [G;, Pj] =5ijZmKa [P, H] =0,

K
[D, /] = 0 [D, Gl=6G, [D,P]=—-P,
[4,J]1 =0, [4, G;] = 0, (4, ] = -G,

this differs from the quantum mechanical Lie algebra [2] only by omission of the
factors i and replacement of commutators by Poisson brackets. The first nine brackets
are those of the Lie algebra of the Galilei group. The last nine involve the expressions
(V N) and (VI N) and are easily verified to hold for the conserved quantities (I N)-
(VI N). The structure of the algebra as well as various isomorphisms of the Jacobi—
Schroédinger group have been discussed by a number of authors [2, 6, 7].

IV. The conservation laws of the Schrodinger equation

The local conservation laws for the Schrédinger equation follow by applying
the transformations (I){(VI), to the action integral (5) and using equations (17),
(18), (20), and (22)—25). A straightforward calculation yields

19) IS or Ve + vy |

+ 2 Vi [ ” (xw*‘” Kw%”;)]=o,
K
0
@s a—[ X(v i - van)
0 h* oyr*
5;{-[2," VUVl + o (v/* o %})
W,*d,] s (a¢* o, a"',*)}= -1

2 \ X% Oxy DX Ox

0
Jd | h «f OV o oy oy* | *
(IIT S) at{zlé:li'/’( X Xk éx—:xxx)_'ﬁ(anxx @' x)]
h « OV oy*
* ZaxK{ I:me VeV® Vi + o 2i ('/f I W)

+ Vl//*;,h:| (6"xy — O"x%)
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From these local laws of the form (28) we can obtain global conservation laws of
the form (29), provided that the surface integrals (30) vanish. This clearly imposes
conditions on the wave functions that are much stronger than those following from
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the standard requirement that equation (6) should lead to conservation of probability.
Assuming that these conditions are satisfied, transforming the various volume
integrals by integrations by part and expressing the spatial derivatives of ¥ and y*
in terms of the momentum operators defined in (2), we obtain

n

as) it W*HY d3x = 0,
il

(I1S) — | y*Py d*Nx = 0,
dt )y

(111 S") 4 WY d3Nx = 0,
dt JY

aAvVsS) = | y*Gyd*x =0,
dt )y

' d [ 3N

(VS) = | y*Dy d3x = 0,
dt )y

(VIS) d W*Ay d3Vx = 0,

where the various operators in the integrands are given in terms of the individual
position and momentum operators as in equations (I N)-(VI N), except that in the
expressions for J, D, and 4 we have to apply the usual rule of symmetrization in the

ordering of the factors of any product of ry and p, [26].

V. The balance equations of the Hamilton—Jacobi equation

To obtain local conservation laws for the Hamilton—Jacobi equation, one can
not make use of Noether’s theorem, since no variational principle of the form (13)
is available. Instead, we can exploit the similarity of equations (2) and (10). They
differ only in the last term of (10), which enters the equation just like a potential.
Thus it might appear at first sight that one could write down conservation laws of the
form (I S)(VI S), but with Vi replaced by

V + g 1 ViR |y (33)
Z2REme & JTF

[Of course, if non-Cartesian coordinates are used, >, Vi must be understood to be

the operator

0 I,
g_ Uza_qi(gl/Z glk _é_‘}k_), .i, k=1-.-3N (34)

(where g'* is the contravariant metric tensor of configuration space, with determinant
g~ 1), both in (33) and in the Schrédinger equation, with corresponding changes in
its action integral (2) and in the Hamilton—Jacobi equation (3).] However, the validity
of several of these laws depends on the fact that ¥ is a function only of the r, rather
than of the individual coordinates and that it is independent of the time. No such
statements can be made about R™' >, mg 'VZR in general. The form of this term
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depends on the particular form chosen for the complete integral of the Hamilton—
Jacobi equation. Even in the simplest case of free particles and Cartesian coordinates
it does not necessarily vanish, although solutions exist for which it does.

If we substitute the expression (33) for Vi in the conservation laws (I S)«(VI S)
(with ¢ replaced by ¥, everywhere) and evaluate their left hand sides, the terms in
which R™! ¥, mg 'VER is not differentiated will provide the additional contributions
needed to take into account the difference between equations (2) and (10). However,
there will be further terms obtained by differentiation of R~ Y myg 'VZR which,
unlike the analogous terms following from differentiation of ¥, do not necessarily
vanish, and thus must be introduced as source terms on the right hand side. We then
obtain

(s 5| S VotV + (v + 5 23 virhev
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gt
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h? 1 |
7%?{@ [’VK‘(E ViR + ¢

, 2 %3
dt R

i

where . and R are defined through equation (11) with (8).
Thus we obtain true local conservation laws only if

1 OVER _
T mgdt R ’
:
Fa ()57
Il Givin) + 2 575 -

=1,2,3,

0,

0,

405

(35.1)

(35.2)

(35.3)

(35.4)

(35.5)

(35.6)

for equations (I H-J)(VI H-J), respectively. These equations are of course satisfied
if ViR vanishes, but are less restrictive than this condition.

Provided that the various surface integrals vanish, equations (I H-J)-(VI H-J)
imply global balance equations [which reduce to global conservation laws if the
expressions (35) — or at least their volume integrals — vanish]. They are

d

I H-J' * [ . 3N
( )dtulll wdle/l‘ZKmxaercd e
d h o V2R
MHH-J) — *Py d3Nx — LR K 3N
( J) dtu l)bc l/’cd X JV'J/C ZmKVK R wcd X,
2
(111 H-J') jt WY, d¥Nx = J U '—K x Vg (V ).p d*y,
JY K
2
(IV H-J") ;t Y*Gy, d*Vx = J Y* —zz ! (V"R)w %,
d i
(VH-IT) — | y* (D + hZz-z V,Z(R)u,bc d*Nx
dr Jy R%
1 2R
- j .;,*hzz{_ [vK.(%fzv,z(R) AP ]}w avx,
v K Jt R
’ d h 2
(VI H-J") 5 np* A+ — ZV . d*Vx
1 r , @ VER
e {w[ (_xsz) i ]}V, v,
,[ me| AR K ot R

1 8 ViR
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where the various operators in the integrands of the expressions on the left hand sides
are given as for the corresponding expressions in Section 1V, including the definitions
of the individual momentum operators py = —ihVy. On the right hand side, of
course, the factors y*i_ in all the integrals reduce to R* from the definitions (11).

It should also be noted that solutions to the classical Schrodinger equation have
a significance in classical mechanics only if S and R are real. For bound states this
is true only for limited ranges of the separations ry; . Therefore once the center-of-mass
motion is separated out, the remaining part of the density D and thus of R vanishes
outside a limited region of configuration space, and one can always choose the
surface & such that all surface integrals vanish apart from the contribution of the
center-of-mass motion. The latter depends on the particular form of the complete
integral of the Hamilton—Jacobi equation.

Illustrations of the balance equations (I H-J)(VI H-J) for a system of free
particles are given in the Appendix.

V1. Discussion

The various equations describing a system of N particles with central two-body
interactions either classically or quantum mechanically are invariant under the ten
transformations of the Galilei group, and for interactions of the form (4) also under
two further transformations; the infinitesimal form of the transformations of this
12-parameter Jacobi—Schrodinger group is given by equations (I)—(VI) of Section I1.
The corresponding 12 well-known conservation laws of Newtonian dynamics
(I N)~(VI N) are rederived in Section III via Noether’s theorem. In Section IV the
corresponding local conservation laws of the Schrédinger equation (I S)—(VI S) are
derived by the same method. Under appropriate conditions on the wave functions
these yield the 12 global conservation laws (I S)—(VI S’); the conserved quantities
are the quantum mechanical averages of the operators corresponding to the New-
tonian conserved quantities.”)

The Hamilton—Jacobi equation (3) implies a classical Schrodinger-type equation
(10) that differs from the Schrodinger equation (2) only by a potential-like term
involving the Van Vleck determinant (8), but due to the presence of this term, equation
(10), in contrast of equation (2), is not derivable from a variational principle of the
form (13) and thus no local conservation laws are implied by its invariance properties.
However, exploiting the similarity of equations (2) and (10), it is possible to obtain
12 local balance equations (I H-J)-(VI H-J) for the ensembles described by the
Hamilton—Jacobi equation analogous to the local conservation laws of the Schrédinger
equation, and 12 corresponding global balance equations (I H-J)~«(VI H-J'). These
contain source terms which vanish only under special conditions. For the special
case of gravitational interactions, the first four of these balance equations may be
of use in the study of problems of celestial mechanics.

It is instructive to compare the global conservation laws obtained in Sections
III-V (which are implied by invariance under the Jacobi—Schrédinger group that is

) Although the local conservation laws (1 S)~(IV S) following from Galilei invariance most likely have
been obtained before, I have not been able to find them in the literature; the global ones are well
known consequences of the general principles of quantum mechanics. The laws (V S) and (VI S)
are new.
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one of the conformal extensions of the Galilei group [3]) with the global conservation
laws of electrodynamics (which are implied by invariance under the conformal
extension of the Poincaré group [16]).%) The ten Maxwellian conservation laws
implied by the Poincaré invariance are {compare equations (27a, b) and (28) of [16]}

d &l
IM) — hd3x =
( ) dt.”f x 03
d r
IIM) — 3x =
( )dzﬂpdx 0,
d [ 3
(IIT M) 7 r x pd’x =0,
u"V
d( (h
(IV M) = (?r—pt)d3.x=0,
JYt

where 4 and p are the electromagnetic energy and momentum densities ; furthermore,
h/c* is the mass density u of the electromagnetic field. Therefore these conservation
laws are completely analogous to the Newtonian conservation laws (I N)-(IV N)
(as already noted in [16]) as well as to the quantum mechanical conservation laws
(I S)~(IV S’) implied by Galilei invariance.

The additional Maxwellian conservation laws implied by conformal invariance
in the absence of ponderable matter are {compare equations (27c, d) of [16]}

d &
(VM) — | @ht — 2r-p)d3x =0,
dt )y
iy L (h = 2prt e )arx =0
dt ), & ’
d ol
(VII M) = [2hrt — t’p —r(xp) —r x (r x p)]dx = 0.
Y

The last of these conservation laws has no Newtonian analogue. The laws (V M)
and (VI M), on the other hand, are analogous to the Newtonian conservation laws
(V N) and (VI N), except that in each of these laws the terms involving r-p appear
with a factor two missing from the Newtonian laws. This extra contribution arises
from the specifically relativistic effect of the equality of the momentum density and
the energy flux divided by ¢* (which is responsible for the symmetry of the energy-
momentum tensor 7*°, compare, e.g. [27]).

Maxwell’s equations correspond to a classical rest mass zero, spin one field.
All fields of rest mass zero (i.e. implying d’Alembert’s equation) which satisfy
Poincaré-invariant field equations corresponding to integral or half-integral spin
[28-31] are also invariant under the conformal extension of the Poincaré group
[32, 33]. For all spins s other than zero they satisfy conservation laws that are pre-
cisely of the form (I M)—(VII M) [32], where now h and p are the energy and mo-
mentum densities of the field of spin s. For spin zero (scalar field U), the conservation

¥)  These laws are of a very simple form if written in four-dimensional notation, but will be given in
three-dimensional notation to emphasize the analogy to the Newtonian conservation laws.
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laws implied by Poincaré invariance are still of the form (I M)~(IV M), but the

additional conservation laws implied by conformal invariance {equations (10) and
(11) of [32]} take the form

d oU
V7)) — —r- R e
( )dth(h[ rp+Udt)dx 0,
oU?
ot

(VI Z2) %f (htz —2r-pt+c—’12r2— U? + t)d3x=0,
v

d
(VI Z) EJ [2hrt — c*’p — r(x-p)
v

g
—rx(rxp)+%—t—r}d3x=(),

which, because of the appearance of quadratic combinations of U and its derivatives
other than 4 and p, are not analogous to any Newtonian laws.

This paper was concerned with a study of the conservation laws for the case of
particle interactions with potentials of the form (1). However, the methods used here
are equally applicable for the case of external potentials if they admit appropriate
symmetries.

Part of this paper was written at the Institut de Physique Theorlque Lausanne,
in the Summer of 1977, and I am grateful to its members for their hospitality. I am
also indebted to Dr. J. Plebanskl (I.P.N., Mexico) and Dr. J. Stachel (Princeton) for
helpful discussions.

Appendix

As noted in Section V, in general the balance equations (I H-J)-(VI H-J) of the
Hamilton—Jacobi equation (3) do not reduce to the local conservation laws; whether
they do depends on the particular form of the complete integral of (3), i.e. on the
particular ensemble described by this integral (for a discussion of such classical
ensembles see [17-20, 34, 357]). Here this will be illustrated for the case of a system of
free particles.

Then one possible complete 1ntegral of (3) is

S=>Yrgpx— Et, E= Z
K
where the py’s are arbitrary constant vectors. Thus from equations (8) and (11) we
have
D=1, R = +1, (A.2)
and therefore
ViR =0 (A.3)

, A.l
> e (A.1)
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and equations (35) are trivially satisfied. On using the definition (11) of {,, equations
(I H-J)<(VI H-J) can then be written

0
athmK+ZV( )=O,

(Il H-T") sz +L5g ("K"K) =0, =123,
K

" a n n
(ULH-T) 2% (e = o)

(I H-J7)

t Lo [p" (XkPx — x}(p"K)] =0, Ln=123,
IV H-J") — Z (myxy — Pk?)

+Z (pKK-'-p’I;pK):Oa 131)2,37

VET) £ ( - reon)

+ ZVK-{—ErK _ 4%1«::
K

K

1
+ —2mK [pkrx — z(rK'pK)pK]} =

w0 Pi
(VI H-J") prea (—rx Px! + ymgry + ﬁt )

K

+ ) VK-{—Eth + IrEpg
K

1
— — [(rg P)Px! — Epyt® — %p?(rxt]} =0
Mg

Precisely the same expressions follow from the quantum mechanical conservation
laws (I S)(VI S) on substitution of a wave function for free particles of definite
momenta

Y = exp (Z Ig Px — Et) /h,

as is obvious from equation (11) with (A.1) and (A.2). Although these expressions
are all of the form (28), the specific form of the densities has little physical content,
since many of the time derivatives and divergences vanish separately because various
terms in the densities do not depend on the time and the coordinates, respectively.
Furthermore, they do not lead to any global conservation laws, since the integrals of
all the densities diverge; but just as it is possible in quantum mechanics to use free-
particle wave packets instead of (A.4) which yield finite integrals, one can use ensembles
other than the simple one given by Egs. (11), (A.1), and (A.2) to describe a free-

(A.4)
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particle system which yield finite integrals in the case (I H-J)+(VI H-J'), a point
which will not be pursued here.
Instead, we shall consider a complete integral

N C! C2t2 3
.&=z[—~—( 2+z<$%—;0

. 2mg \ 2mg <
2 3 C2 2 3/2 _
gg( +C|xK—-£K|) ]Cl

(where the £ are arbitrary constants and C is a constant needed for dimensional
reasons), for which equation (A.3) does not hold. It can easily be verified that (A.5)
satisfies equation (3) in the absence of interactions, and that

_ C C2t2 -1/2
Dz‘G)rW42+q“‘“)’

(A.5)

C\3Vi2 212 — 1A (A:5)
R=(5) (G che-ar)
and therefore
1V 2R 5 C?t? -2
SR 2y (Gt C - ) c A7)
K K K,n

Substitution of these expressions together with the definition (11) into equations
(I H-J)«(VI H-J) yields very lengthy expressions; therefore, only the first one of
these will be given explicitly. We obtain

0 3C%? C
I - " _ o n _ n
(I H-J") at{[; T 2 5, Pk~ &

K K. n K
W3 o C (C% ] g2
+ 58 Z g (g + Ot tl) ] ]
8 W1 [(C o\
+,§,,ax;{-m(—4 7+ b - fK')

2
2my

3C %4
i hhzm—é
3 (3CH iz g
55 )" 5]

2my

a5 1 /C -2
— e OB el s N =
> 61[16 2 mK(4mK + Clrk 5"') ]
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Clearly, because of equation (A.7), the classical y, determined by equations (A.5)
and (A.6) only satisfies the modified ‘Schrédinger equation’ (10), but not the quantum
mechanical equation (2).
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