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Abstract. A new demonstration of the coherence effect in the three nucleons system is presented and

generalized for N nucleons. Application to proton—proton and alpha-alpha final state interaction is given
with a comparison with the free two particles scattering.

1. Introduction

The coherence effect in the scattering of three nucleons, as described by the
Faddeev equations, was found by Amado [ 1], and consists in a coherent addition ofall
terms in the expression of the break-up operator. As a consequence, a Moller operator
appears as a common factor and contains all the information on the final state inter-
action (FSI) between a given pair of nucleons. However the demonstration given in
[1] is restricted to the use of the Faddeev equations, and its extension to higher number
of nucleons is not available. In the following section, we give a new demonstration [2]
whose application to N nucleons (N > 3) can be easily generalized. In Section 3, we
give two examples of application to FSI. In Section 4, we discuss the differences
between free particle scattering and FSI. A general conclusion will be given in the last
section.

2. Theory

2.1. The case of three nucleons
We consider only the final state of three nucleons
anything — 1 + 2 + 3

by anything we mean any incoming particles compatible with three outgoing nucleons
(here n + d, for example).
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The corresponding Méller operator is given by:

QUZ) =1+ VGZ) =1+ VG(Z) + V,GZ) 2.1
where
V=V1+V2+V3, I7i=Vj+Vk Z?l:‘]#k (22)

V; is the potential acting between the nucleon j and k (see Fig. 1 for illustration),
Z = E + ie where E is the energy in the center of mass and G(Z) is the total Green
function.

Figure 1
Ilustration of the relation 2.2.

The Moller operator Q(Z), when applied to the three nucleons outgoing plane
wave, produces a scattering solution of the full Hamiltonian.

Using

G(2) = G(Z) + G(Z)V,G(2). (2.3)
We find [2]

D) =1+ VG(2) + VGLDVG(2) + VG(2)

= (1 + ViG(@)N( + ViG(Z)) = 0,(Z2)-Q(2), 2.4)

where G; is the sub-Green function for the pair i.

This result is known as the ‘coherence effect’ in 3 nucleons scattering, and is a
property of the final state only. The Méller operator ; acts on the pair i while Q,(Z)
acts on the three nucleons.

2.2 The case of N free nucleons
If we have N free nucleons in the final state:
anything — 1+ 2+ .-+ N

the same result holds, because we still have

V=V -V, V=

i L

V..

1

™M =

i=1

Therefore the generalization to N free nucleons is trivial.
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2.3. The case of three free composite particles

Consider now the more useful situation of 3 free composite particles in the final
state

anything — 1 + 2 + 3
we still have

NZ) =1+ VG2 + (V; + V,)G(2D) i#j#k (2.5)

G(2) = G(2) + GOV G(D), (2.6)
but now V; is the sum of all the potentials acting between the two particles belonging
to the pair i, and V; is given by

Vi=V—-V,—Vi—Vk=V,+ V,+ V' i#j#k, (2.7
where V' (see Fig. 2) is the sum of all the potentials that bind the nucleons belonging to
the particle i. By repeating the same algebraic manipulations as before, we obtain:

Q2) = w(2)-Y2) - V'G(2). 238)

In this case, the coherence effect is not complete because we have a ‘background’
containing the potential V* which binds the nucleons in the third particle (here i).

Figure 2
Illustration of the relation 2.7.

3. Application of the coherence effect to FSI scattering

3.1. p-p FSI

Considering the p—p pair (quoted 3 in the following) in the break-up reaction
p+d—p+ p+ n,we have (see 2.3)

Q2Z) = 0;3(2)Q4(2).
Consider only the operator w,(Z). Acting on a plane wave <k, q
<k, qlo;3(2) = {q, Y(Z, k)| (3.1

where y(Z, k) is a diffusion state for two protons, and q, k are the Faddeev—Lovelace
[3] variables, associated with the pair 3.

, this operator gives
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If we consider only S wave scattering then, from y(Z, k) we can factorize the
inverse of the Jost function [4] L (k):

W(Z, k) = Fo(k)po(Z, k) | (3.2)
with
ei(ﬁo
Fyk) = —— 3.3
TR G
and we get for the differential cross section
630' 2 2
— ) . : 34
3E, 00, 30, cte |[Fy(k)|*- Mk, q; Z|*-p (3.4

where M contain the remainder terms (Q;(Z) matrix elements) and p is the phase
space factor [5].

The presence of the Coulomb potential makes the application of integral equa-
tions or dispersion relations, to the calculation of LJ (k) very difficult. The function
Fy(k) was therefore calculated by solving the Schrédinger equation for the p—p
scattering, and using the fact that the radial solution for small » behave like

Fy(lo)r. (3.5)

Calculations were performed using 7 p—p potentials: Gaussian, Yukawa, exponential
[6], hard-core of Christian and Gamel and Thaler [7] and Ried soft and hard-core [8].
The function F,, was also calculated for a separable interaction using the formalism of
Ali et al. [9]. All the results obtained indicate a very marked stability of form (see
Fig. 3 where we compare our results with the data of Briickmann’s experiment [10]).
On the other hand, large differences were found in the absolute value.

This stability of form permits us to make valuable comparison with the experi-
mental results. As is seen in Fig. 3, there is certainly an S wave dominance in the p—p
FSI.

0 05 1.0 15 2.0

Figure 3
Comparison of the factorization for various potential.
potential, ® Briickmann’s data, —-—- CZ (pure Coulomb).

Gaussian potential, — — Ried soft-core
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The same comparison was done by Briickmann [10], but using an effective range
expansion [11], and an asymptotic form of the wave function calculated for some
matching radius.

We explain in Appendix A why his result was still reliable.

3.2, o—a FSI

We repeated the same analysis for two o particles. However in this case there is an
essential difference due to the composite nature of the « particles. We can either use

(1) phenomenological potentials,
(1) or a resonating group method (RGM).

For the first case, we have calculated the factorization for the potential of Ali-Bodmer
[12] and Chien-Brown [13] and for RGM we used the formalism developed by
Thompson et al. [14] (concerning the validity of the factorization see Appendix B).

Subsequent calculations showed the same overall stability for each of the two
possibilities for low energy (see Fig. 4). It is not possible to reproduce the resonance of
the ®Be O ground state by either model.

10F
Sk
O 1 1 |
0 0.5 1.0 15 2.0 25
E [MeV]
Figure 4
Comparison of the factorization in the a—x case. —-—- potential of Ali and Bodmer and Chien et al.,
— — potential of Thompson et al. (RGM), - - - potential of Brown et al. (RGM), —— C{ (pure Coulomb).

The main difference between (i) and (ii) comes from the nodal behavior of the
wave function resulting from the RGM calculation [15]. This nodal behavior in the
absence of bound state is due to the non locality of the ‘potential’ [16]. But in the
particular case of the RGM, it is an artefact coming from the description of the wave
function by Gaussian [15]. Thus a priori it is not sure that the RGM result is more
reliable than the phenomenological one.

We performed o—« FSI experiment with the ®Li(a, ad)a reaction [17] and as it is
shown in Fig. 5, no potential diffusion was observed but only the ®Be O* ground
state.
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Figure 5
Observed a—o FSI in the SLi(a, ad)a reaction at 42 MeV.

4. Discussion

If the free p—p scattering, in the contrary of the break-up reaction, the factoriza-
tion which is the same does not account for the form. Only the argument of the Jost
function contributes and not its module. This can be easily shown if we recall the
expression of the diffusion function (for uncoupled case) in term of the Jost solution

fi*(kr):

kl
ilhr) = g (L4 G kr) = L (kn)f )
Cak' (o LK),
= T{f, (kr) L} ® 5 (kr)} 4.1)

where the constant @ depends on the choice of units and normalization. It is clear from
the expression (4.1) that only the argument (L = |L,|e™") of the Jost function
contribute to the amplitude f;:

Jik) = <R\ k> 4.2)

where |/k) is the / partial plane wave.
However, if we consider the function y,(kr) only in a neighborhood of the origin,
since for r near zero Y, (kr) behave as i and

Li(kr) = lim f* (kr). (4.3)

r=0
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We get

ak'
/ o e pl

which depends of the module of L*.

Therefore, one possible explanation of the success of the factorization in the
description of the form of the FSI is that the interaction hold in a small volume. As a
consequence in the expression of the matrix element, for the break-up reaction, one
replaces the function Y, (kr) by F,(k) and integrate over a small volume. This is
nothing but the old Watson—-Migdal [ 18] idea.

One question arises, is the small volume connected with the fact that the relative
energy is small ? If yes, then low energy FSI is a special case. For higher relative energy
FSI like ®Be first excited state, it is possible that the factorization does not account for
the form. Unfortunately, the different possible theoretical approaches do not give
unambiguous results (see right part of Fig. 4).

In fact, as it is reported in the literature [ 19], some discrepancies exist which are
more or less explained by off shell effects or interferences.

It remains to explain the S wave dominance. Our observed results for the o—x
case seem to indicate that the many body dynamics favors strong interaction (only .S
wave) over electromagnetic one.

It should be noted that, since L;' is dimensionless, the presence of the factor k'
prevent comparison at the level of the factorization.

(4.4)

5. Conclusion

The preceding calculations and comparison with the experimental data show
that

(i) for p—p case the factorization of F,, from the amplitude well describes the
form of the FSI in the d(p, pn)p break-up reaction and we have an § wave
dominance;

(i1) for o—o case: the O* ground state of ®Be dominates in the low relative energy
domain, and no potential scattering is observed.

It will be possible to check the various hypothesis and explanation we presented, as
soon as it becomes possible, taking into account the Coulomb potential to calculate
the deuteron break-up reaction by a proton. The most promising method is that of
Merkuriev et al. [20], which describes the three-body reaction in configuration space,
in which the inclusion of Coulomb potential [21] is ‘simple’. It will then be quite easy
in the calculation of the matrix element, to restrict the integration to a small volume.

Our final conclusion is that if it is relatively simple to describe the form of the
FSI, the description really depends on the complete dynamics rather than on a sub-
process alone.

Appendix A

If we calculate 1/Lg (k) using a separable potential in the formalism of Rahman
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et al. [9], we obtain
e'r — [A(@)/R + kCi(k)H(k)]
20 Z, — h(2)/R — ikCi(k)
where Z, is given by

Colh) 20

Zy(k) = Ci(k)k cotg 6, + %(%)

h? ) 27 UZ, Z,e*
Me’ Coltk) = exp {2na} — I T T Rk

B =

and

o Golkr)qo(r) dr
H(k) = ] L
J&° Folkr)qo(r) dr
h(x) 1s a function evaluated by Jackson and Blatt [22], g,(r) is the nuclear form factor,

and G, F, the irregular and regular Coulomb functions.
Briickmann’s [ 10] expression is

oo Co) Zy+ [1r, + BIn(Br) + 2y — 1]
2 O Z, — h@)/R — ikC2(k)

where f = 1/R and y is the Euler constant, and r_, a matching radius.
We see that the difference arises from the terms in brackets which for very low
relative energy do not differ in their behavior.

Appendix B

In the resonating group calculation, the radial antisymmetrized wave function is
given by

00

up(r) = ug(r) + J No(r, r'ug(r’) dr’
0
where Ny(r, r') is the kernel resulting from the antisymmetrization, given that the

kernel of the integro-differential equation for U,(r) is hermitian, the generalized
theorems [23] remain valid and we still have

k
uy(r) = m Bo(r)

where ¢,(r) is the regular solution (¢,(r) ~ r near origin) and thus

0

7’“3(") = Lgk(k) {(Po(f‘) + jm No(r, r')o(r") d”’}‘

This shows that the principles of factorization remain valid.
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