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Helvetica Physica Acta, Vol. 51 (1978), Birkhduser Verlag, Basel

Oscillateur amorti quantique

par P. Huguenin

Institut de Physique, Université de Neuchatel

(1.I1I1.1978)

Ce travail est dédié au Prof. J. Rossel a I’occasion de son 60éme anniversaire

Abstract. The general solution of the equations of motion for a model of the damped harmonic
oscillator is given in the framework of quantum statistical theory. The formalism is based on the Wigner
isomorphism and a Fokker-Planck type equation in phase space. The solution shows that the Glauber
states evolve classically but that other states pass by a mixture during the relaxation.

1. Introduction

Etre professeur de physique théorique en pays horloger implique une réflexion
sur le temps, ses définitions possibles, 'irréversibilité, la relaxation, la dissipation, les
cycles limites, etc. Il n’est naturellement pas possible d’abandonner totalement ces
préoccupations pour la simple raison que la mécanique quantique est essentiellement
réversible, basée qu’elle est sur le formalisme Hamiltonien. J’ai donc longtemps con-
sidéré comme un défi, I'incapacité dans laquelle je me trouvais de ne pas pouvoir
parler d’oscillateur amorti en mécanique quantique. La solution proposée ici présente
les caractéristiques désirables suivantes:

(1) Les moyennes des observables position et impulsion obéissent aux équations
classiques de I’oscillateur amorti.

(2) Lesétats de Glauber restent états de Glauber et évoluent selon la loi classique.

(3) L’évolution est définie pour n’importe quel état de départ, mais il apparait
des mélanges statistiques au cours de 1’évolution qui se termine par I’état
fondamental.

Pour tirer parti au maximum de I'intuition physique, je me suis placé sur ’espace de
phase en me servant de 'isomorphisme de Wigner [1] entre matrice densité et fonction
sur ’espace de phase.

2. Rappel de quelques proprietes de I’isomorphisme de Wigner

A tout opérateur de I’espace de Hilbert des états d’un systéme a 1 degré de liberte,
il est possible d’associer une fonction des variables de phase g et p ayant des pro-
priétés tres voisines de la fonction classique (état ou observable) qu’il représente. Si
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I'observable A est donnée par ses éléments de matrice de I’espace des positions, on
a[2,3,4]

a(g, p) = Jdu< - -|A|q >-‘f""'"’“ 2.1)

On vérifie que I'opérateur unité a la fonction 1 pour image et que
d
Tr A4 = ja(q p)——— L p

L’image du produit de deux opérateurs est assez compliquée [2], mais nous
n’utiliserons ici que le produit avec les observables ¢ et p. Nous noterons ces produits
avec le symbole o. On vérifie

2.2)

1048) = [ @on) LL ~ [ ata. pbta. ) UL o3
En outre
i @ it 0
(a2 agm(e-22).
ih 0 ' ih ¢ ,
b =(p- 20 ey ). B

Le commutateur des observables g et p avec une fonction redonne bien le crochet de
Poisson.
Nous rencontrerons I'image des é¢tats de Glauber pour une masse m, une fréquence
@ et un centre ¢g,, po:

1 | _ 2
gth)po(q’ p) = 2exp {—gl:mw(q — q0)2 M:’}

ma (2.5)

Pour p, = g, = 0, nous avons I'image de I’état fondamental de I’oscillateur har-
monique. Le méme oscillateur a température 7 = 1/kf se trouvera dans le mélange
statistique [5]

2 2.5
B _ p e P Mg
wr. = fho exp{ B (2m + 5 )} | (2.6)
ﬁhw
= —Th
= hw 2 ha) 2.7

On reconnait la répartition de Boltzmann a une température 7’ modifiée par la
mécanique quantique.
3. Oscillateur amorti classique

Assez curieusement, il est rare de trouver une présentation du mouvement har-
monique amorti qui se place sur 'espace de phase, bien que la chose soit assez jolie en
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elle-méme. Il s’agit d’étudier I’équation
g+ 244 + wlqg =10 (3.1)

de solution générale

g = Ae *cos(wt + ¢) (3.2)

g= — Awe *sin(wt + @) — Aq (3.3)
Ou

w® = wi — A% (3.4)

Nous supposerons pour la suite que w est réel, c’est-a-dire que ’amortissement
n’est pas trop fort et que le systéme présente des oscillations amorties. Dans ce cas, il
est judicieux de choisir le conjugué canonique de g de la facon suivante

p =m(g + Ag). 3-5)

Ce choix de jauge simplifie considérablement la description de I’évolution mais p
cesse d’€tre la quantité de mouvement. Elle n’en différe que par un terme d’ordre 4 qui
s’annule pour une dynamique hamiltonienne. Introduisons une notation pour le
point d’espace de phase:

Q(f)) il
x(t) = = e "R, x(0). (3.6)
(p(t) ‘
ou R, est simplement une matrice de “‘rotation” d’angle w?
1
cos wt — sin wt
R - mow ‘
! —mm sin Wt  cos wt (3.7)

Ce mouvement obéit aux équations non hamiltoniennes
X* = {x' h} — Ax" (3.8)

avec

I o,
hix) = 5(’"‘“2‘1’2 T ) (3.9)

La fonction de Hamilton (3.9) qui apparait dans le crochet de Poisson de (3.8) n’est
pas I’énergie. D’abord a cause de ’apparition de w au lieu de w, dans le terme potentiel
et par ’apparaition de A dans I’expression (3.5) pour p. Plus précisément

E = im@3q* + §*) = h(x) — dmgq = h(x) + 2*q* — Agp. (3.10)
L’évolution temporelle de E n’est pas aussi simple que celle de 4. En effet

d
70 = —20h(). (3.11)

La valeur de la fonction de Hamilton (3.9) évolue exponentiellement pour tendre vers
zero avec la constante de temps 24, alors que I’énergie E, bien que monotone décrois-
sante, présente des paliers pour les points de rebroussement de la coordonnée ¢. La
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figure 1 illustre le mouvement sur le plan de phase ainsi que la signification de la jauge
(3.5) qui revient a I'utilisation de coordinnées obliques.

Si nous considérons maintenant une densité de probabilité w(x, ¢) emportée par
I’évolution déterministre (3.6), on peut donner la solution générale de ce probléme:

w(x, ) = e**w(e*R_,x, 0)

= jdzx’ 0P (x — e MR, x)w(x’, 0). (3.12)
Pour ¢ treés grand, w atteint le point fixe
lim w(x, 1) = N §(x). (3.13)
1 —c0
o
— (q(),po)
L(@y+Aay) (91.p1)
&
@f

Figure 1
Orbite de I'oscillateur amorti sur le plan de phase. Pour ce dessin, Q = w/2/ a été choisi égal a 3. La droite
oblique correspond aux points du plan de phase pour lesquels § = 0. Sur cette droite, les orbites ont une
tangente verticale.

Ou N est la normalisation de 1’état initial qui est préservée au cours du temps. On
choisit en général N = 2zh, ce qui est une intrusion utile des notions quantiques glans
‘un schéma statistique classique. L’évolution (3.12) satisfait I’équation aux dérivees
partielles:

0 aj*

. a u - i - - .
wx, 1) = —{w, h} + Aﬁ(x W) = —ﬁ(x w) = o (3.14)

Avec le courant issu du champ de vitesse x*:
J(x, 1) = x*w(x, ). (3.15)
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Dupointde vue quantique, I’équation (3.14) est inacceptable. L’état asymptotique
(3.13) n’est pas I'image d’un état quantique. A un facteur prés, c’est I'image de
Popérateur parité! [6]. Il faudrait aboutir 4 une fonction gaussienne plutdt qu’a la
fonction é sur I’espace de phase. On peut s’inspirer ici des équations de Fokker—Planck
et ajouter un courant de diffusion

ow
o - A . :
JDitfusion AkTe ax’ (3.16)

Les coefficients ¢**(x) sont des paramétres que nous choisirons de telle sorte que I’état
asymptotique soit la répartition de Boltzmann. L’équation d’évolution de w devient:

; 0 , ow
W = —{W, /’l} + i@[x‘“w + kTc* —“:|

ox” (3.17)
La répartition de Boltzmann satisfait les équations
oh 0\ »
(axv T &F axv)w“"(x) =0 (3.18)
Pour que w3 soit un point fixe de (3.17), il suffit de choisir
_ oh
(C 1)\:‘ux‘u = axv'
C’est-a-dire
1 2
() = ( fmed 0) (3.19)
0 m
Et
0 ch ow
D= —w h 0 | on ‘ |
W {w, h} + 4 75 C [ax” w+ kT axv] (3.20)
La solution générale de (3.20) est de la forme
_ B , o dix
W(x: t) = J~w’113"(1~e'27~t) (x — € MRtx )W(x ’ 0) Y ) (321)

Cette expression généralise la solution (3.12) pour T # 0. 1l suffit de poser T = 0
pour la retrouver.
On vérifie explicitement que

(1) Les valeurs moyennes des coordonnées
{x"> = Tr (wx")

évoluent comme les coordonnées d’espace de phase (3.8).

(2) L’évolution est un semi-groupe.

(3) La thermalisation s’effectue exponentiellement avec la constante de temps
24. Il y a donc liaison entre thermalisation et dissippation.

(4) L’état asymptotique n’est pas tout a fait la répartition de Boltzmann. Il
faudrait remplacer 4 par E pour I’obtenir. Notre systéme reste en contact avec
le réservoir de chaleur et nous ne connaissons pas parfaitement I’état
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I’équilibre dans ces conditions. J’ai choisi ici d’utiliser I’expression qui me
paraissait la plus simple.
(5) L’énergie libre

F = <h + kTlogw)

est monotone décroissante et bornée inférieurement.

4. Transcription quantique

Les propriétés des solutions de la forme (3.21) laissent espérer-une interprétation
quantique a la condition de choisir kT > hw/2. Dans ces cas, I’état asymptotique est
de la forme (2.6) et satisfait Iinégalité (2.7). Etudions donc spécialement le cas limite
kT = hw/2. Dans ce cas

2 2h(x — e ¥Rx) ., d*x'

et I’équation d’évolution s’écrit explicitement sous la forme suivante.

viz——{wh}ﬂhii 3 0_¢ +i +f’3@ﬂ w
B ’ oq T 2mo dq op d 2 dp) |

Les opérations du second membre peuvent étre écrites au moyen du produit
associatif o introduit au § 2. Il convient de construire les opérateurs d’annihilation:

1 mw ) 1
a=y§[ /"2 4 /mp:l- @.2)

On a bien, comme on le vérifie a I'aide de 2.4

h = ho(a* oa + 3)

1
—{w, h} = E[how — woh]

ia w = i (@aow + a*)
. 2mw 0q 2mw "
mhw i y 1 /mho (@ow — woa®
P =% iV 2
0 1 0 i
;3;_%(‘10 - °q) %—5(1“ """"" °p)

En regroupant
) w
w(x, t) = 7 [a¥caow — woa*od]

+ AM2aowoa* — {a*caow + woa*ca}]. (4.3)
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On peut maintenant écrire la méme équation pour les opérateurs auxquels les
termes correspondent :

W = —%[W, H] + A2AWA* — {A*A, W)). (4.4)

Le premier terme engendre 1’évolution réversible et le second est une combinaison
astucieuse qui préserve trace et positivité des états, comme I’a démontré E. B. Davies
[7]. Nous tenons donc une solution quantique de ’oscillateur harmonique amorti.

Il n’est pas difficile de calculer I’évolution d’un état de Glauber tel que (2.5), en
utilisant la formule (4.1). On trouve

W(X, 1) = go_ aeg,x,(%). ‘ (4.5)

Les états purs de Glauber restent des états purs de Glauber au cours de 1’évolu-
tion. C’est une propriété quin’a pas son équivalent pour les systémes ayant un nombre
fini d’états. Pour un spin, il est impossible de trouver une équation linéaire qui
présente une relaxation pour des états purs, qui restent purs au cours de 1’évolution.

En contraste, ’évolution a partir d'un état propre de I’'Hamiltonien fait apparaitre
des mélanges statistiques. Les mélanges diagonaux en nombre d’excitations restent
diagonaux. Posons dans une notation universellement admise:

a0

W) = Y c, (0l <n. (4.6)

n=0
L’équation (4.4) donne le systéme différentiel
¢, = 24[(n + Dc,.1 — ¢, 1 4.7)

C’est une chaine de Markoff. Les 2 solutions suivantes sont instructives. Si le systéme
se trouve dans I’état 1 au temps ¢ = 0, alors

Golf) =1 =& g =g2#¥ (4.8)
Si le systéme se trouve dans I’état 2 au temps ¢ = 0 alors
co@) =1 —2e72M 4 74 ¢ =2 M — e ) ¢, =e M (49

Le systéme ne passe jamais par I’état pur |1 qui apparait au plus avec la probabilité 3.
La partie dissipative de I’évolution étudiée ici ne fait pas apparaitre la cascade
habituelle pour laquelle les états propres de H sont métastables. Elle serait d’ailleurs
incompatible avec I’'amortissement sans a-coups postulé au départ.

L’apparition des états propres de I'Hamiltonien, phénoméne si fondamental
pour la formation de la mécanique quantique est donc, en réalité, autant le reflet de
'interaction électromagnétique que de la quantification du mouvement.

5. Conclusion

Nous avons construit un exemple, résolu complétement, de systéme quantique
relaxé. Ce systéme conserve la pureté de certains états convenablement préparés
(¢tats de Glauber) mais produit temporairement un mélange statistique pour d’autres
ctats.
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Du point de vue pratique, il ssmble qu’une situation de ce genre apparaisse dans
les cavités micro-ondes a basse température. Ce serait Ia un champ d’applications
intéressant mais le but de ce travail était de montrer une solution correcte de ce
probléme qui n’admet pas d’équation de Schrédinger linéaire pour la fonction d’onde,
contrairement a certaines affirmations hatives [8].
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