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The number of states bound by non-central potentials

by T. Dreyfus™*)
Department of Theoretical Physics, University of Geneva, CH-1211 GENEVA 4, Switzerland

(23.1.1978)

Abstract. Levinson’s theorem on the relation between the number of bound states and the scattering
phase shift in any given angular momentum sector can be generalized to abstract scattering systems [5].
In the present paper this abstract result is applied to a maximally large class of potential scattering systems
in three dimensions. In the special case of a spherically symmetric potential Levinson’s theorem is recovered.

1. Introduction

It is the aim of the present paper to give a mathematically rigorous generalization
of the result commonly known as ‘Levinson’s theorem’ to a maximally large class of
non-relativistic quantum mechanical scattering systems in three dimensions. In
particular, no symmetry requirements will be imposed on the potential.

While working on the inverse scattering problem, N. Levinson proved that for
the differential equation —y” + v(x)y = Ay on the half axis [0, o0) the relation

N = 8(0) — 8(c0) (1)

holds between the number N < oo of eigenvalues and the asymptotic phase shift
0(4) appearing- in the asymptotic behaviour of the solutions [10]. The obvious
generalization of (1) to the Schrédinger equation with a spherically symmetric
potential became known in the physics literature as ‘Levinson’s theorem’ [11,
§ 12.1.3; 16, § 12.e]. Levinson’s theorem turned out to provide not only some deep
theoretical insight into the scattering process but also a considerable potential for
applications; for a review, see [1]. Therefore it appeared worthwhile to discover
analogous relations for more general scattering systems and in particular for scattering
by three-dimensional non-central potentials. Such a generalization is a priori non-
trivial since on the one hand the asymptotic phase shift is not a well defined quantity
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for a partial differential equation and on the other hand summation of (1) over all
partial waves leads in general to a divergent right-hand side.

Substantial progress was first achieved by Buslaev [2], who proved a Levinson
type relation for Schrodinger equations with rapidly decreasing infinitely differentiable
potentials. Most realistic potentials cannot be assumed to have these properties.
In the present paper a similar relation is shown to hold for all integrable potentials
satisfying the Rollnik condition. This class contains most potentials for which a
non-modified scattering theory is known to exist. There are strong indications that
for any larger class a Levinson type relation cannot be expected to hold.

The method employed in the present paper is based on abstract stationary
scattering theory. The results of the abstract part have been presented in [5] and will
be reviewed in Section 2 (Theorem 1). Section 3 is devoted to the proof of the main
result (Theorem 2). In Section 4, finally, Levinson’s result will be obtained as a
corollary (Theorem 3). Applications which go beyond potential scattering may be
found in [6] and [7].

This paper is based to a large extent on part of the author’s PhD thesis [8].
Recently, R. G. Newton [12], as well as T. A. Osborn and D. Bollé [13] have inde-
pendently obtained related results. Newton’s results differ from the present ones
insofar as they use more restrictive methods and apply to a considerably smaller
class of potentials; in return, they provide some more detail. The results of Osborn
and Boll¢, on the other hand, cannot be considered complete. In fact, they express
their extended Levinson’s theorem in terms of the trace of a ‘time delay operator’.
Such an operator has, however, never been shown to exist as a bona fide operator
on a Hilbert space, and much less even as a trace class operator. A careful analysis
of [14], and of all papers about time delay cited in [14], reveals that the notion of
time delay in the full configuration space exists only as a numerical valued function
T(¢), which associates to each state ¢ the limit as R — oo of its time delay Tx(¢p) in a
finite sphere of radius R. Moreover, even the function 7(¢) has not been shown to be
well defined for all scattering systems with potentials in L' n L?, for which results
are claimed in [ 13, 14], but only for a considerably smaller class of scattering systems.
Therefore, a further exposition without the above drawbacks on a generalization of
Levinson’s relation appears necessary, whereas a satisfactory treatment of time delay
for quantum scattering systems is still outstanding.

2. The abstract Levinson’s theorem

In this section the abstract version of Levinson’s theorem presented in [5] will
be recalled. Consider two selfadjoint operators acting on a separable Hilbert space #
The *free Hamiltonian’ H, with spectrum o(H,), resolvent set p(H,) and resolvent
operator Ry(z) = (H, — z)~! for z e p(H,); and the ‘perturbation’ V, factorized
according to V = AB, with B = |V|V? = (V*¥)"* and 4 = DB. Note that V =
DB?> = D|V| is the polar decomposition of ¥; in particular D is selfadjoint and of
norm one. V is a perturbation of H, in the sense specified by Assumption 4:

(A) 2(H,) < 2(B). The densely defined operator BR,(z)4 has a compact extension
for all z ¢ p(H,). There is a z ¢ p(H,) such that I + BR,(z)A is invertible. The
boundary values lim; , BR,(4 + i6)4 exist in norm for all 4 ¢ R, uniformly on
each compact subset of IR,
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The following notations will be used throughout:
B(z) = BRy(z) forze p(H,),
Q(z) = I + BRy(2)A for z & p(H,),
Q,(4) =lmQ £ i5) forieR,

510
p = {z ¢ p(H,)/Q(z) has a bounded inverse!},
I' = {4 ¢ R/Q,(A) have bounded inverses},

Y(z) = Q(2)7'Q(z) — I forzep,
Y(A) = lim Y(A + i0) forAeT. (2)

510

Furthermore, f will denote the border of o(H,); this notion is precisely defined
in [5]. Here a partly intuitive description may suffice: f consists of the boundary
points of the complement in R of o(H,); e.g. if 6(H,) = [a,a + 1] U [a + 2, )
then f = {—o0,a,a + 1,a + 2}. The value of a function f(4) on  will be taken to
mean the sum of the signed values of f at the points of f§, the sign being + for upper
and — for lower endpoints. For the above example:

[y =fla+2) —fla+ 1)+ fl@— lim f().
A= — 0
Several supplementary assumptions are now introduced (Assumption B has
been dropped ; see [5, Remark a]):

(C) (1) Y(z)is a continuous traceclass valued function on p.
(i) For 6 > 0, Y(4 + id) is continuously differentiable with respect to 4 in
tracenorm topology.
(11) The limit in (2) exists in tracenorm; the convergence is uniform on each
compact subset of T'.

(D) AepP, |A| < oo=41el,

(E) B(z) 1s a continuous Hilbert Schmidt operator valued function on p(H,).
Furthermore, there exist ¢ > 0 and n < 1 such that, for ue g, |B()|3 <
clz — p| ™" when z varies over a small semicircle with center p and such
that Re z does not belong to a(H,).

Formula (1) can now be given the following abstract generalization:

Theorem 1. Assume A, C, D and E. Then a suitable resolvent equation determines
a selfadjoint operator H on A with the following properties.

~ H 1s an extension of H, + V.

—p = p(Hy) N p(H). :

— The number N of isolated eigenvalues of H is finite.

— The wave operators Q, = s — lim,_, , , e e "M exist and are complete.
Moreover, there exists a spectral representation with respect to H,, given by a

unitary operator U from # to a direct integral Hilbert space % = [® (1) dA such that

the scattering operator S = Q*Q_ is diagonal :
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@
USU™ ! = J S(3) dA

and for Ae T’

— S(A) is unitary on %(1),
- S(X) — I(A) is of traceclass on 4(1),

—det S(1) = det [ + Y(A)]. 3)
Finally, det S(1) is continuous on I" and satisfies the generalized Levinson relation
In det S(1)|, = 2miN. 4

Theorem 1 is proved in [5]. Here we only recall that the logarithm in (4) is
defined as the boundary value of a continuous logarithm of det [/ + ¥(z)],Imz > 0.
This definition of the logarithm of det S(4) is justified by (3).

3. Application to non-central potentials

A concrete case in which Theorem 1 is applicable is non-relativistic quantum
mechanical scattering in three dimensions by a potential in L' n R. More precisely,
let A be realized as L>(IR®), H,, as the unique selfadjoint extension of the Laplacean
— A acting, say, on Cg and V as the maximal multiplication operator with a real-
valued measurable function v(x), x € IR? satisfying
r
lv(x)| d*x < o0

o
and

»

lox)| |x — ¥|7*|o(y)| d*x d3y < 0.
It will be shown in this section that for the above scattering system Assumptions
A, C and E are satisfied. This is known for A [15] and easily verified for E. For the
validity of C, in particular C(iii), a detailed proof will be given. It is based on an
analysis of the integral kernel of Y(z) and makes use of a criterion by E. B. Davies
for convergence in tracenorm of positive operators (see Lemma 2 of the Appendix).

Proposition 1. Suppose #, H® and V as above. Then Assumption A is satisfied.
Moreover, Q(z) is analytic in p and tends in norm to the unit operator I as |z| tends to 0.
The convergence is uniform in 0 < argz < 7.

Proof. 1t is sufficient to assume V € R. In [15, § 1.4] it is shown that 2(H,) <
%(B), that BR,(z)A has an extension Q(z) — I which is a Hilbert Schmidt operator, -
that this operator valued family is analytic and that it has boundary values in Hilbert
Schmidt norm. A slight extension of the proof of Theorem 1.23 in [15] yields

oG + is) — 1|* sje“‘wmv"wms' f(s) ds.
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Using the Riemann Lebesgue Lemma one concludes that
|Q(4 + i6) — I| - 0 uniformlyindasi— +o0

and uniformlyin Aas§ — + co. It follows that Q(z) — I uniformlyinargzas|z| — co.
In particular it follows that Q(z) is invertible for |z| sufficiently large. This completes
the proof of the proposition. ||

Proposition 2. Suppose #, Hy and V as above. Then Assumption E is satisfied.
Moreover, B(z) is analytic in p.

Proof. 1t is sufficient to assume V € L. Then

|B(2)|3 = le(x)] e~ 2z Yl (4uix — y)) "2 d3x dPy

= [v(®)|, Je‘“"“f“‘ (4mu) ™ 24nu? du
= [[v(x)| (87 Im,/z) ™ *.

The estimate in Assumption E now follows from the fact that Im,/z > ||
for Re z < 0. Analyticity follows from a similar estimate of the Hilbert Schmidt
norm of (B(z") — B(2))/(z' — z) and an application of the dominated convergence
theorem. |}

1/2

Proposition 3. Suppose #, H, and V as above. Then Assumption C is satisfied.

Proof. Observe that
Y(z2) = —0(2)7'[Q(z) — 0(2)] = Q(2)"'(z — Z)B(2)B(2)*D (%)

by the first resolvent equation. The traceclass property of Assumption C(i) now
follows from the Hilbert Schmidt property of B(z) proved in Proposition 2. The
differentiability in Assumption C(ii) follows from the analyticity of Q(z) and B(z)
proved in Propositions 1 and 2.

Now turn to the verification of Assumption C(iii). In view of (5) and Proposition 1
you know that, for AeI’, Y(1 + id) converges in Hilbert Schmidt norm to
— Q. (MO () — Q_(A)] as 6 | 0. It is then sufficient to show that the sequence
of positive Hilbert Schmidt operators

K(5) = (2)~(z — 2)B(2)B(2)*, & = Imz

converges in tracenorm as ¢ | 0.
This will first be shown for the case where the potential is a continuous function
of compact support, ¥ € C,. In this case the integral kernel

ky(x, y) = o) V2 (eVTFBRA oAyl (Bilx — y])fu(y)| 2
of K(d) and the kernel
k(x,y) = [v(x)|"* sin \/4 [x — y| (4n|x — y|)~[o(y)|*/?

of the limit operator K = lim;,, K(6) are in C, as well. You may then conclude from
Lemma 1 (Appendix) that the operators K(5), K are in traceclass with traces

tr K(3) = (4m) ™ [o(x)|| 27 VA2 + 8H)Y2 + 1)
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and tr K = (4m)~ '||u(x)|| ,A*/?, respectively. Thus lim; , tr K(§) = tr Kand Lemma 2
(Appendix) implies that the convergence takes place in tracenorm.

Returning to the general case Ve L' n R, choose ¢ > 0 and V' € C, such that
[|ox)[*"* — v'(x)"?|, < &. The following argument then shows that K(J) is a
Cauchy sequence in tracenorm:

|K(y) — K9, <
< ||yB(A + #)B(A + iy)* — yB'(A + iy)B(A + ip)*|,
+ |yB'(A + iy)B(A + iy)* — yB'(A + ip)B'(A + iy)*|,
+ [|yB'(A + iy)B'(A + iy)* — OB'(A + i8)B'(4 + i6)*|,
+ HcSB’(/I + i0)B'(A + i0)* — 6B'(A + i0)B(A + 1'5)"‘”1
+ |6B'(A + i8)B(A + id)* — 6B(L + id)B(A + id)*|;.
In this sum the third term is small according to the first part of the proof because
V' e C,. The other terms are bounded as follows:
||5B’(/1 + i0)B(A + i0)* — 6B(A + i0)B(4 + ié)"‘”1
= 5”B'()v + i0) — B(A + i5)\|2||B(/1 + i5)*H2
= 6(87 Im (4 + i6)1/3)~1/2
0'(0)'? — o] 2| (8 Im (4 — 8)"/2)~ 2| o) ]
where the Hilbert Schmidt norms have been evaluated as in the proof of Proposition 2.
Since Im (4 + i8)1/2 ~ § for small § the above expression can be made small by
choosing ¢ small. The three remaining terms are estimated in much the same way.
This implies that K(J) converges in tracenorm uniformly on any compact subset of IR

and Y(4 + id) converges in tracenorm as ¢ | 0 uniformly on any compact subset
of . |}

We are now ready to state and prove the main result of the paper.

Theorem 2. Consider a non-relativistic quantum mechanical potential scattering
system with a potential V € L' n R. Assume that 0 is not an exceptional point, i.e.
assume 0 € I'. Then the relation

27iN = In det S(0) (6)

holds between the number N of bound states and the determinant of the scattering
matrix. Hereby the logarithm is given as the boundary value of the continuous function
Indet [1 + Y(z)], normalized by In det S(—o0) = 0.

Proof. From o(H,) = [0, o) one has f = {— o0, 0}. Since 0 € I', Assumption D
is satisfied. So are Assumptions A, C and E according to Propositions 1, 2 and 3.
Theorem 1 may thus be applied. In particular, the determinant of the scattering matrix
S(4) is well defined and, from (4), 27iN = In det S(0) — In det S(— o). For details
about the definition of the logarithm the reader is referred to [5]. Here we only
recall that for A smaller than the lower bound of the spectrum of H one has 4 € p,
Q.(1) = Q_(4), Y(4) = 0Oanddet S(4) = det I = 1. Thisallows forthe normalization
Indet S(—o0) = 0. |}

There is no general class of potentials for which assumption D can be verified.
It is well known [11, § 11.2.2] that even for a square well potential there are isolated
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values of the coupling constant for which extraordinary phenomena occur: the cross
section is infinite, the phase shift does not tend to an integer multiple of n at energy
zero and there exist states which remain infinitely long in a bounded region without
being proper bound states. For these values of the coupling constant 0 is an excep-
tional point. For many potentials it is possible to show that such coupling constants
are isolated. An argument may be found in [9].

3. Levinson’s relation

If the potential is not only in L' ~n R but also spherically symmetric, relation (1)
follows from Theorem 2.

Theorem 3. In addition to the assumption made in Theorem 2, assume that v(X)
depends on |x| only. Then there exists a family of projection operators P,, l€ N
(projections on subspaces of fixed angular momentum), commuting among themselves
as well as with Hy and H such that for U as in Theorem I and for every e N

®
UP,U! =f P,(3)d,

P,(1)S(A) = exp (2i5,(AN,(A), : (7
0,(c0) = lim &,(4) exists
A= ®

and
N, = 6,(0) — d,(0),
where N, is the number of bound states of angular momentum .

Proof. Since both, H, and H, commute with P,, all operators of interest in the
argument commute with P, and you may restrict attention to P.2#. Formula (7) is
well known to hold in the 2/ + 1 dimensional space P,(1)%(Z) [16, § 6¢c]. An applica-
tion of Theorem 2 in P, 5# then yields

2mi(2] + 1)N,
= In det P,(0)S(0) — In det P,(— o0)S(— 0)
= 2i(2] + 1)[6/0) — o,(—0)].

The factor 2/ + 1 on the lefthand side of the equation expresses the fact that N, is
defined so as not to count the (2/ + 1)-fold degeneracy due to symmetry.

It remains to show that é,(+o0) = §,(—o0). Recall from Proposition 2 that
Q(z) tends to I uniformly in 0 < arg z < = as |z — oo. With

1Y) < 2|1 - Q@) Q=)

it follows that Y(z) tends to zero uniformly in 0 < argz < 7 as |z| - . Now,
P,Y(z) 1s an operator of rank 2/ + 1, at most. (From [5], equation (18) one has
K(A)P,Y(2) = P(ALS(A) — I(A)]K(A), where [P,, Y(2)] = 0 and K(A) is isometric
on the range of Y(Z). Together with equation (7), this implies that the range of
P, Y(4) is of dimension 2/ + 1, at most.) Thus the convergence Y(z) — 0 takes place
in trace norm. It follows that det [/ + P,Y(z)] tends to 1 uniformlyin0 < argz < =
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as |zl — oo and that In det [I + P,Y(z)] takes identical values at z = +oo and
z = —o0. Using (3) and (7), you find the required equality §,(+o0) = d,(—0). |

Both, Theorems 2 and 3, give strong indications that L' n R is the best class of
potentials for which a Levinson type relation is to be expected. If you examine the
‘power law behaviour’ of potentials then L' n R just admits potentials behaving
like »~37¢ at infinity and like r~2** at the origin. But this corresponds exactly to
the range of validity of Levinson’s theorem [ 10, 12, 16], namely spherically symmetric
potentials satisfying |, r|o(r)|dr < oo and f“’ r*|v(r)|dr < co. Moreover, if one were
to drop the requirement ¥ € L! then the determinant in (6) would cease to be well
defined, whereas dropping V' € R will render the choice of the Hamiltonian H a very
delicate affair. This substantiates the claim made in the introduction that a suitable
generalization of Levinson’s relation (1) has been proved for a maximally large class
of potential scattering systems.
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Appendix

Lemma 1. Let # = L*(R", d"x), K > 0 a Hilbert Schmidt operator with kernel
k(x,y), continuous and of compact support. Then K is in trace class and

|K||, = tr K = Jk(x, X) d"x < 0.

Proof. Let K = Y2, A|y;><¢;| be the canonical expansion of K. K being
positive and k(x, y) continuous and of compact support, Mercer’s theorem [3,

§ III 5.4] applies so that k(x,y) = 272 4L,y,(X)¥,(y) pointwise with y,(x) continuous
and the sum converging absolutely and uniformly in x and y. From the monotone
convergence theorem it follows that

0 > fk(x, X)d"x = Jlim i /lil//i(x)m d"x

J2 oo i=1

J o]
= lim ¥ ,1,.J‘|¢;,.(x)|2 dx =Y A =uT |

J7w i=1
The following criterion due to E. B. Davies is proved in [4, lemma 4.3].

Lemma 2. Let K,, n > 1 and K be positive traceclass operators. Suppose K, — K
weakly and tr K, — tr K. Then K, — K in tracenorm topology.
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