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Systems of two quantal Einstein relativistic particles

by Terje Aaberge

Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Suisse

(28.X. 1977, rev. 21 .XII. 1977)

Abstract. We outline a method for the construction of quantal theories for the description of any
number of Einstein relativistic particles with any spin, by applying it to the systems of two particles of
spin 0 and the system of a spin 0 particle and a particle of spin s0. The point of departure for the construction
is the definition of an Einstein relativistic particle as being a physical system associated to an irreducible
unitary projective representation of the restricted inhomogeneous Lorentz group.

1. Introduction

It is usual to define a free quantal Einstein relativistic particle of mass m' and
spin s0 as a physical system associated with a state-space carrying an irreducible
unitary projective representation, IUPR, im', s0) of the restricted inhomogeneous
Lorentz group SO(3, 1) xs R4. For example, the electron and the proton being
particles of masses me and mp and spin \, is described by the representations (me, {A
and imp, \). Moreover, a hydrogen atom in a given internal stationary state of
internal energy e and total internal angular momentum j, is a particle of mass me +
mp + Amie) and spin j, and thus described by the representation ime + mp +
Amie),j).

The problem being studied in this paper, and which is suggested by the above
example, is how to put together two quantal Einstein relativistic particles in such a

way that the center of mass of the system in a given internal stationary state appear as
a quantal Einstein relativistic particle itself.

This problem was first considered for two classical Einstein relativistic particles.
The construction of the present quantum theory is based on the results obtained in
the classical case [1].

2. The quantal Einstein relativistic particle

(a) Fhe particle of'spin 0'

Definition 1. The quantal particle of 'spin 0' and kinematical mass m > 0 is a

physical system associated with

(i) the space {Ht}, t e IR, where each Ht is a Hilbert-space isomorphic to

L\M, dAp) (1)

with
M {p" e R4 | 0° + mc)2 - p2 > 0 &p° > -mc}.
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(ii) the kinematical symmetry group SO(3, 1) x s
R4, being represented by the

unitary projective representation

(tf(A(9, u), a")f)t(p") exp (- l<fp\ exp U tv"(-d)Pfl

x f(A~He, u)>v + mv\-u)) (2)

with ti"(u) iciy - 1), yu), y (1 - u2/c2)"1/2.
(iii) the observables energy1)/?°c, massdefect Am, momentum p, position x and

time t, being realized by the following self-adjoint operators

(P0f)t(p") P0fiP")

(Arhf)t(p") =ßV0>° + ™? - P2 - ™W")

(pAO>") Pf.iP")

(xf)t(p") ä(sp + ~— Sp° - \ * V,a>")
\ p + mc 2 (jr + wc)/

PAO?") #(/>")• (3)

It is then easy to verify that the operators p" (p°, p), Am and t transform
according to

Û-\A(Q, u), fl>"L7(A(e, u), a") A(6, u)"v/?v + mv"(u) p'»

C/-1(A(8, u), a") Am #(A(8, u), a") Am

Û- 1(A(6, u), a")tf/(A(9, u), a") t; (4)

while the transformation properties of x is expressed by

Û- 1(A(0, u))ih(dPi + 0P' dp0 - \ P'
(7(A(0, u))

\ p + mc 2 (p + mc) J

a(Am(p°, p), p, A(6, u)))ih (ôPj + V^— dp0)
\ p + mc J

ihp" p'(y - l)c
x 07^0-,—3 + y*1 - o : t (5)

2(p u + mc)2- p" + mc
and

Û-^a^xÛia") x + a - ^y-? a0. (6)
p + mc

The explicit expressions for the matrix o) are found in [1, eq. 6].
Another useful representation of Ht is the one diagonalizing Am and p. It is

obtained by the isometry

V,_x: L2iM, d*p) -. L\M, i^±^fj^0 (7)
YV + (Am + m)2c2

') The usual definition of energy in the Einstein relativistic case corresponds to p c + mc in our
notation.
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defined by

fiP°,9)^ if°(p)iàm,\ì) iMAm,p)

being induced by the diffeomorphism

è: M-> M,ip°,p)-> (Aw,p) - J(p° + mc)2 - p2 -m,p).
c

The operators p°, p, Am and x are now represented as follows

(p°4/)(Am, p) (^/p2 + (Aw + m)2c2 - mc)i^(Am, p)

(pi/0(Am, p) pipiAm, p)

(Atfnl/)(Am, p) Am i/^Am, p)

(**)(Am, P) ih(eV - \p2
+

{A*+m)2c2) HAm, P).

(b) Fhe particle ofspin s0

Definition 2. The quantal particle of spin s0is0 e {0,j, 1,|,... })2) and kinematical
mass m > 0 is a physical system associated with

(i) the space Ht, t e R, with each Ht being a Hilbert-space isomorphic to

L2(M,l2;d4p)3) (8)

(ii) the kinematical symmetry group SO(3, 1) xs R4 being represented by the
unitary projective representation

(tf(A(G, u), a")/)0") exp (~^"p) exp U tv\-u)Pl)

x â(A(<pwO", Ai9, u)))/(A-!(e, u)>v + mv»i-u)) (9)

where «t^Q?", A(0, u)) is the angle defined by the rotation

A(<|>J L-lip")AiQ,u)LiA-\Q,nrvp" + mv\-u))

L(p") a( o
PC Y (10)

Z) moreover, is a unitary projective representation of SO(3) in I2, such that
D Z?= So,.So+!,...£<s) where D(s) is an IUPR of SO(3) in <C2s+1. We
denote by s' i — 1, 2, 3 the self-adjoint generators of Z).

2) Notice that for su 0 we get a notion of spin 0 different from the one discussed in the last section.
3) This is to be considered as the Hilbert space of functions on M with values in the Hilbert space
'2 I?=s„.s0+1....<n2s+l. such that

I (./(pnjipnx^Y < «
»'m

where )(2 is the scalarproduct on /2.
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(iii) the observables energy;?0, massdefect Am, momentum p, position x, spin S
and time t. Of these observables, p°, p, Am, x and t are realized as in
Definition l(iii), while S is represented by the operator

(§A(/>") WXip")-
It is easy to verify that the operators p* and Am transform as in (4) ; moreover,

the transformation properties of x are the same for the rotations {0} and the
translations {a"}. Finally, § is invariant under the translations, and

(7-1(A(6, u))SlÛ(A(9, u)) A-^Q), A" He, u))'jSJ A(9w(p, A(0, u))JS'.

As for the 'spin 0' case, we can define a representation like (7) diagonalizing Am and p.

3. The dynamics of the one-particle system

The evolution of an Einstein particle is by assumption given by a family of
unitary operators [2]

Vt(r):Ht^Ht + z

induced by a permutation of the real line,

ï-> t + x

i.e.

Vt + Zl(T2)Vt(ll) H*l + T2).

Under suitable technical conditions this is equivalent to the Schrödinger equation

ih djt *Jt
where Jft is a self-adjoint operator on Ht, the Hamiltonian of the system.

(a) Fhe particle of 'spin 0 '

We will consider only the free case and postulate that the Hamiltonian Jf is
represented by the operator

i^f)ip") fëf + Afip"),

on (1) [1], for A(>\mc2) being a constant denoting the internal energy of the system.
On (7) it thus takes the form

(jftij/)(Am, p) I c ^Jp2 + (Am + m)2c2 - (Am + m)c2

Am2 \„1c2 + Â) \p(Am, p)
2m j

Let the operator â be defined on (7) by

Am2

2m c
(#)(Aw, p) Am + -^~ - -j ip(Am, p). (11)
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& is evidently self-adjoint on a properly chosen domain and its spectrum is purely
continuous. Thus, it determines a decomposition of H jsp(a)Hi,l) dp(<x). Furthermore,

the Hamiltonian =# commuting with â, also decomposes according to

je #(a) dp(P).
sp(a)

By assumption, the energy-spectrum of the system is given by the spectrum of
/(0)in/j"0,,i.e.

(#<°ty°)(p) cjp2 + m2c2 [ 1 + ~2 \ - mc2)r(S>)
mc

where

r s L2 fa ;
mcd3p tf«».

\ Vp2 + m2c2(l + 2A/mc2))

We will express this by saying that the system satisfies the Lorentz-invariant
constraint 'a 0'.

Accordingly, by applying the constraint 'a 0', we recover a theory which
is essentially equivalent to a Wigner theory of spin 0 and mass m + Am
m yj\ + 2A/mc2. In fact, also the representation Û (2), decomposes according to â,
Û fspW ÛM dp(a) each ÛM being an IUPR of SO(3, 1) x s

R4.

(b) Fhe particle ofspin s0

Let PSo be the projection operator

FSo : L2(M, I2 ; d*p) -> L2(M, C2'»+1 ; dAp)

defined by the Lorentz-invariant constraint

(#)(/>") ((§2 - s0(s0 + lM)(p") 0 (12)

The Hamiltonian of the free particle of spin s0 is then assumed to be given by

i^fXiP") (jf^ + %so f)f)<J>*)

where Aso APSo, and A denotes the internal energy of the system.
Let St be the operator corresponding to (11), and let

H Ue „ H^ » difa y) and JT fsp(a, „ ^^ » dp(a, y)

be the decomposition of H and jft with respect to a and y. By assumption, the energy-
spectrum of the system is represented by the spectrum of ^i0'0) in H(0,0). We
express this by saying that the system satisfies the constraints 'â 0' and y 0.

Again the constraints serve as irreducibility conditions, and we obtain a theory
which is essentially equivalent to a Wigner theory of spin s0 and mass m + Am
mJl+ 2A/mc2.
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4. The two-particle system

(a) Fhe system of two 'spin 0' particles

Definition 3. The system of two particles of 'spin 0' is by assumption associated
with

(i) the space {Ht \ t e R}, where each Ht is a Hilbert-space isomorphic to

L2(M, dp\) ® I?(M, dpt) L2(M x M, dp\ dp\)\ (13)

(ii) the kinematical symmetry group SO(3, 1) x s
R4 acting by Û Ûx ® Û2,

where Ux and U2 are the representations associated to the individual
particles (2) ;

(iii) the observable/)?, Am(, p(, x; (i 1, 2) and / realized in the same way as
for the one-particle systems (3). In addition we will consider observables
P°, AM, P and X describing the center of mass and fP, q" describing the
internal system.

For the purpose of realizing the second set of observables, we consider the
representation

L\M x M, d4P d4p)

which diagonalize the representatives of P" and p". This representation is obtained
from (12) by the isometry

iVà-xf)ip1,pÇ) 9iP",p") ^J^1(P",p")(f°(p)(Ptl,P>')
induced by the diffeomorphism </>:MxM—>MxM defined by

P" Pi + PS

p» L-l(p»x + pW -lPl ~ miPl
(14)

mx + m2

withL(P") A(Pc/(F° + Mc).J(j>_l is the Jacobian determinant ofcp'1. Moreover,
in terms of the coordinates (P", /j"), the manifold M x M is characterized by

{(P\p>) e R8 | (P° + Mc)2 - P2 > 0, P° > Mc,

^J(P° + Mc)2 -P2>p°> -^l/(Po + Mc)2-P2,M M
mxgP0 + Me)2 - P2) - M2p»ptl Q

m2((P° + Me)2 - P2) - M2p>lpll

2mxM J(P° + Me)2 -P2 >P "

2m2Ms/iP° + Me)2 - P2

Remark. There exists another choice of two-particle space which is preferable
from a technical point of view. That is to take L2(N, d4P dAp), where Ais the manifold

N {iP",p») e R8 | (P° + Mc)2 - P2 > 0, P° > -Mc,

lj-JiP° + Mc)2 - P2 > p° > -"^JiP° + Mc)2 > -P2\-
' M JM
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Thus,

M x M Upi',p*)eN\
(m^P0 + Me)2 - P2) - MVi„

2m1My/(P° + Me)2 - P2>2

m2((P° + Me)2 - P2) - MV/>,
> p° > — L

2m2My/(P° + Me)2

is a submanifold of N, and L2(M x M, d4P d4p) is a subspace of L2(N, d4P d4p).
With the choice L2(N), the one-particle observable Am; and xt (i 1, 2) cannot

be represented on the whole space, but only on the subspace L?(M x M). In the
following we will consider the theory on L2(A).

In the representation L2iN; d4P d4p), the observables F", Am, \,p" and q" are
realized by the self-adjoint operators

(P»g)(P»,p') P«g(Px,p*)

(AMg)(P",pX) (- J(P° + Mc)2 - P2 - Ai\giP",jP)

i%g)iP»,p») in(t9 + j^-y - Itp^McJ2}^^
(p*g)(P",p«)=pKg(PK,p»)

(q"g)(P«,p») ihdpiig(P*,pi'). (15)

For a more complete discussion of the two sets of observables we refer to [1].
The representation Û of SO(3, 1) x s

R4 is given by

(Û(A(Q, u), fl")#)(F",/>-") exp (~a"PA exp (j tv"(-a)Pll

x g(A~l(Q, u) IP" + Mv»(-u), A(9W(P", A"1^, u)))>v)

where 9W is the angle of the rotation

A(9J L(A(Q, u)ïFv + Mi;"(u))A(9, u)!,"1^). (16)

Thus the operators p", AM, P" and q" transform according to

c7^1(A(9, u), ap)P»Û(A(Q, u), a") A(9, u)?Fv + Mv"(a)

Û' \A(Q, u), a") AM f/(A(9, u), a") AM

t/^(A(9, u), a»)p»Û(A(Q, u), a") A(ÔJ^
Û- \A(Q, u), a")r tf(A(9, u), a") A(9W)#\ (17)

The transformed of X is more complicated than (5). It depends on the internal
degrees of freedom in the same way as the transformed of the position operator of a
particle with spin.

Moreover, it is possible to define a representation like (7) for the center of mass.
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(b) Fhe system of two particles, one of'spin 0' and one ofspin s0

Definition 4. The system of two particles, one of 'spin 0' and the other of spin s0
is by assumption associated with

(i) the space {Ht \ t e R} where each Ht is a Hilbert-space isomorphic to

L2(M, d4px) ® L2(M, l2;dAp2) s L\M x M, l2;d4Px d4p2); (18)

(ii) the kinematical symmetry group SO(3, 1) x s
R4 being represented by the

unitary projective representation Û Ûx ® Û2, where Ûx and Û2 are
defined by (2) and (9) respectively, i.e.

(Û(A(Q, u), a»)g)ip>,p»2) exp (- l- a»px\ exp U tv\-u)pXll

x exp -- a*pu exp - tv"i-u)p2l, D(KKÌP^ MQ, u))
i \ /i
h

x g(T-\<ò,uYvp\ + mxv"(-u),A-l(e,uyvpl + m2v"(-u))
with Ô as in (9) and <j)w being the angle of the rotation defined by (10);

(iii) the observables p\, Am, Xx, p\, Am2, X2, s2 of the individual particles and t,
which is realized as for the individual particles, and the observables P",
AM, X describing the center ofmass and the observables/?'' and q" describing
the internal degrees of freedom.

To realize the second set of observables by operators on Ht, we will choose "

another representation than (18). To define this however,^we need to extend the
representation D of SO(3) in I2 to a unitary representation D of SO(3, 1).

Consider the operators F3,P+ and F_ on I2, defined by

(F3Osm,= Cs^s2-m2^ - Ajn£mt

-Cs+xy/(s+ i)2-m2^
(F+0sms CsJ(s-ms)(s-ms-l)?mslx

- As y/is ~ ms)(s + ms + 1) Çsms + X

+ Cs+ x y/(s + ms+ \)(s + ms + 2) Csl i
CP-ö:, - Cs J(s + ms)(s + ms - 1) ?m~-1

- AsJ(s + ms)(s -ms+ !)&_,
- Cs+xJ(s-ms+ \)(s-ms + 2) ^_\

with
s0k

sis + 1)

i Ijs2 - s2)(s2 + k2)
s^J As2 - I

Cs zJ J7i i ' ikeK).

{^J is the canonical basis for the decomposition D £f= SOi So+x _

Z)(s) diagonalizing
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The operators {s', k' \i 1, 2, 3} with

k1 UP+ + F_)
k2 |(F_ - F+)
P F3 (20)

then form a basis for an irreducible representation of the Lie algebra so(3, 1) of
SO(3, 1). By integrating the representation of so(3, 1), we obtain an IUPR D of
SO(3, 1) on I2. D is a representation in the principal series characterized by the two
numbers (s0, ik) [3].

We then denote by Vtj)_x the isometry defined by

iV^J)(p\,P2A Jj^_x(P»,p»)D-\L(P»))
x D(L(p»2)(P\p»))(j'° cp)(P»,p»)

g(PYp") (19)

L\M x M,l2; d4px d4p2) -+ L2iM x M, l2;d4P d4p), (p is defined as in (14).
In this new representation, the observables P", AM, X,p", q* are supposed to be

realized as in (15); moreover, the representation Û of SO(3, 1) reads

(Û(A(Q, u), aK)g)tiP«,p*) exp (-^ a»p\ exp
(± to"(-u)P„

x DiAWJP», A(9, uWgtA-^uXP*
+ Mv*(-n), A(QW(P», A-x(9, u)))X) (21)

where <()w and 9W are defined in (10) and (16) respectively. Notice that in this
representation the Wigner rotations ^(A^^,)) depends on P" only, not/?''. Accordingly
P", P" and q" transforms as in (17).

5. The dynamics of the two-particle system

The dynamics of the systems of two particles is assumed to be described by the
Schrödinger and the Heisenberg equations.

In the following, we will consider the situation of two particles in mutual
interaction, the center of mass being a free particle.

(a) Fhe system of two particles of 'spin 0 '

The Hamiltonian for the system of two particles of 'spin 0' is by assumption of
the form

P"P
^=-2W + "

where A A(pli, q", t), the internal Hamiltonian, acts nontrivially on the internal
space only.
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Moreover, consider the self-adjoint operators â and ß defined by

AM 1 ~
a AM + 2M-7^

Wl-m2 A

Mc J\ + i2/Mc2)A

For a conservative system, the internal Hamiltonian A is independent of q°
and î, and â, ß and A are mutually commuting operators and can be diagonalized
simultaneously. Denote the decomposition of H, 3P and A with respect to â and ß by

H= jM)H^l»dpia,ß)
¦# SM)JP^Vdpia,ß)

% L(*,t)%M)dpi*ß).
Then we assume that the total and internal energies of the system is represented by
the spectra of #<0-0) and Âi0-0) in H(0-0).

The only a priori conditions we can put on the form of A, is that it should be
invariant under rotations, and that in the case of no interaction (coupling constants —> 0)

2 _
P"P»

2m

with
m,

m
mx + m2

By interpreting the operators â, ß, P" and p" as operators on L2(M x M), we can
write

P"P p"p

2M 2m

__
PiPlt P2P2fl

2m 2m2

Moreover, the constraints 'â 0' & '/? 0' implies the constraints 'âx 0'
& 'â2 0' where fi.(/ 1, 2) is defined by

A™-2
a,- Am,. +

2m;

Thus we recover the system of two free Einstein relativistic particles.

(b) Fhe system of two particles, one of'spin 0' and one ofspin s0

Let

FSo : L2iM x M, I2, d4Pl d4p2) -> L2(M x M, C2o+ \ d4px d4p2)

be the projection operator defined by the constraint

(?/)(/>?>jPS) ((§2 - *o(*o + l)t)f)(Pi,P& 0. (23)
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We denote byÛSo the image of PSo under the isometry (19); i.e.

(ÛSog)(P", p") (D - \L(P")D(L(p^))PSoD " '(Up^D^P^gXP", /?").

Using the facts that D is a representation of SO(3, 1), and that L is a Lorentz
transformation, we can write

D-'WWKWXP^p*))) D(L-1(P")M(pt)(P'l,p'1)))

D(L(L-l(P»yvpl(P\p»)
+ m2w"(P0, -P)A-i(^w(p^(P",p>'),L(P^))

for w"(F") v"(Pc/(P° + Mc). Now

L-\PrvPl(P",P'l)+ m2w"(P°, -P) (^AMc+p°,v\,

moreover, P is invariant under rotations, thus
so

iK9)iP^)={\\imJM)j;+po+mj)K
X Ù\>((m2lM)AM9c\p° + mj})^^

The Hamiltonian describing the dynamics of the system is supposed to be of the
form4)

such that [A', ftSo] 0. Moreover, we impose constraints of the form (22) and the
constraint (23).

As for the form of the internal Hamiltonian, the only a priori conditions we can
impose are those of invariance under rotations and reduction to free case, i.e.

°° \2m) s°

when coupling constants —> 0.
To study the spectrum of %' and the associated energy spectrum it is worthwhile

to choose another representation. Thus, consider the unitary transformation defined
by

(Pg)(P>,p») d-1(a(7-———P—-6- ))g(P",p")-
\ \vn2/M) AMc + pu + m2cjJ

If we denote by Aso and A the image of M' and A' under F, we find that
% ÂP, P A.

so so so

Notice also that since F is invariant under the rotations, the representation Û
(21) is invariant under F, i.e. PÛP ~1 Û.

*) From now on we assume the relevant operators to be defined on the space L2{N, I2) of which
L2{M x M, I2) is a subspace.
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Remark. In the treatment of the two-particle system we have worked with the
convention mx > m2. Moreover, for simplicity we have assumed that the internal
energies of the individual particles Ax A2 0.

We also notice that although it is necessary to use L2(N) to define the two-
particle system in terms of its observables, it is natural to consider the dynamics
only on the subspace on which

mx(AM + M)2c2 - 2m2MÂ 0 w2(AM + Mfc2 - 2mxMA

2M(AM + M)c
> P >

2M(AM + M)c
'

For a more complete discussion of these aspects of the theory, and for an
application, we refer to [4].
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