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Systems of two quantal Einstein relativistic particles

by Terje Aaberge

Département de Physique Théorique, Université de Genéve, CH-1211 Genéve 4, Suisse
(28. X. 1977, rev. 21 .XII. 1977)

Abstract. We outline a method for the construction of quantal theories for the description of any
number of Einstein relativistic particles with any spin, by applying it to the systems of two particles of
spin 0 and the system of a spin 0 particle and a particle of spin s,. The point of departure for the construction
is the definition of an Einstein relativistic particle as being a physical system associated to an irreducible
unitary projective representation of the restricted inhomogeneous Lorentz group.

1. Introduction

It is usual to define a free quantal FEinstein relativistic particle of mass m’ and
spin s, as a physical system associated with a state-space carrying an irreducible
unitary projective representation, IUPR, (m’, s,) of the restricted inhomogeneous
Lorentz group SO(3, 1) x, R*. For example the electron and the proton bemg
particles of masses m, and m and spin 3, is described by the representations (,, 4
and (m,, 7). Moreover a hydrogen atom in a given internal stationary state of
internal energy e and total internal angular momentum j, is a particle of mass m, +
m, + Am(e) and spin j, and thus described by the representation (m, + m, +
Ame), j).

The problem being studied in this paper, and which is suggested by the above
example, is how to put together two quantal Einstein relativistic particles in such a
way that the center of mass of the system in a given internal stationary state appear as
a quantal Einstein relativistic particle itself.

This problem was first considered for two classical Einstein relativistic particles.
The construction of the present quantum theory is based on the results obtained in
the classical case [1].

2. The quantal Einstein relativistic particle
(@) The particle of ‘spin O

Definition 1. The quantal particle of ‘spin 0’ and kinematical mass m > 0 is a
physical system associated with

(i) the space {H,}, t € R, where each H, is a Hilbert-space isomorphic to
L*(M, d*p) (1)
with
M= {p*eR*|(p° + mo)> — p* > 0 &p° > —mc}.
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(ii) the kinematical symmetry group SO(3, 1) x, IR*, being represented by the
unitary projective representation

(DA, w), a*)/),(p") = exp (— %aﬂp#) exp (%' (~ u)pu)

x f(ATHO, whp” + mt(—w) (2)

with v4(u) = (c(y — 1), yu), 7 = (1 — w?/cH)~ 172,
(iii) the observables energy®) p°c, massdefect Am, momentum p, position x and
time ¢, being realized by the following self-adjoint operators

(8°N).(p") = p°f(p")
(M), (P =G V@ m =9 - m)f,-(p")
@®N.(p" = pfi(p"H
N w3 P __l P I
&f),(p" = zh(ap + o — op° > 0%+ mo) mc))ﬁ(p )
&1),(p") = tf,(p"). 3)

It is then easy to verify that the operators p* = (p°, p), A and i transform
according to

U~ Y(A(®, u), a")p"U(A@®, u), a*) = A®, u)* p* + mo*(u) = p'*
U~ Y(A(®, u), a") A U(A(O, u), a*) = AR
U~1(A(0, u), a*)tU(A@®, u), a*) = | 4)

while the transformation properties of X is expressed by

U~ 1(A(®, u))ih(ﬁpi + F’%’Jc ap° — %GO_%;@W) U(A(8, u)
= o(Am(p°, p). p, A®, w))iif (apj ¥ ﬁfun; aPO)
- (p,o’ﬁ”';w)z + - B =0, ©)
and )
0~ Y@)R0(@) = & + a — Fﬁa". ©)

The explicit expressions for the matrix o} are found in [1, eq. 6].
Another useful representation of H, is the one diagonalizing A and p. It is
obtained by the isometry

(Am + m)c* d Am d°p)
\/pz + (Am + m)*c?

') The usual definition of energy in the Einstein relativistic case corresponds to p°c + mc? in our
notation.

Vy_1: L2 (M, d*p) —» LX(M,

()
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defined by

f(p°p)— (f ¢)(Am,p) = Y(Am, p)
being induced by the diffeomorphism

1
¢: M —= M: (poa p)_) (Am,p) = E\/(po + mC)Z - p2 _map)

The operators p°, p, Az and & are now represented as follows

(5°%)(Am, p) = (/B* + (Am + m)*c® — moyy(Am, p)
(BY) (A, p) = py(Am, p)
(A (A, p) = Am y(bm, p)

@ @mp) = (o0 = 5 P v

(b) The particle of spin s,

Definition 2. The quantal particle of spin so(s, € {0,3, 1,3, . . . })*) and kinematical
mass m > 0 is a physical system associated with

() the space H,, t € R, with each H, being a Hilbert-space isomorphic to
LY (M, I?;d*p)®) @)

(ii) the kinematical symmetry group SO(3, 1) x . IR* being represented by the
unitary projective representation

Q0. 0. 113" = exp 5, ) exp (5 (-,
X DA, (0", A, W) (A~ O, Whp* + mA(—w) ©)

where ¢, (p*, A(6, u)) is the angle defined by the rotation
Ad,) = L™ (p")A®, w)L(A™'(®, w'vp" + mv*(—u))

L(p*) = A(F,—‘f%)- (10)

D moreover, is a unitary projective representatlon of SO(3) in /2, such that
bh=3%2 sa50+ 1. D® where D® is an IUPR of SO(3) in T+, We
denote by §° i = 1, 2, 3 the self-adjoint generators of D.

%) Notice that for s, = 0 we get a notion of spin 0 different from the one discussed in the last section.
% ThlS is to be considered as the Hilbert space of functions on M with values in the Hilbert space
12 = _€*** ', such that

s so,so+1,.

J (f ("), f(p*)dp <

where (, ), is the scalarproduct on /2.
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(iii) the observables energy p°, massdefect Am, momentum p, position X, spin S
and time ¢. Of these observables, p°, p, Am, x and ¢ are realized as in
Definition 1(iii), while S is represented by the operator

SNP") = 1G)(P").

It is easy to verify that the operators p* and A transform as in (4); moreover,
the transformation properties of & are the same for the rotations {0} and the trans-
lations {a*}. Finally, S is invariant under the translations, and

01 (A®, w)S'TA®, W) = A~ 1, (p, A1, W) 37 = A®,,(p, A®, ) S".
As for the ‘spin 0’ case, we can define a representation like (7) diagonalizing Ar and .

3. The dynamics of the one-particle system
The evolution of an Einstein particle is by assumption given by a family of
unitary operators [2]
Vt(T) ‘H,— H,,
induced by a permutation of the real line,
I—>t+4+
i,
I‘}t+r1(‘{:2)f/t(‘51) = VI(TI + 75).
Under suitable technical conditions this is equivalent to the Schriédinger equation
iho,f, = #.f,
where #, is a self-adjoint operator on H,, the Hamiltonian of the system.

(@) The particle of ‘spin 0’

We will consider only the free case and postulate that the Hamiltonian # is
represented by the operator

2f)(p") = (p Py fé’)f(p“),

2m

on (1) [1], for #(>3mc?) being a constant denoting the internal energy of the system.
On (7) it thus takes the form

(A#Y)(Am, p) = (c VP + (Am + m)*c? — (Am + m)c?

Am*
o ¢+ é) W (Am, p)
Let the operator & be defined on (7) by

A 2
@) emp) = (am+ 52 = £} yomp) an
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& is evidently self-adjoint on a properly chosen domain and its spectrum is purely
continuous. Thus, it determlnes a decomposition of H = f soH @ du(e). Further-
more, the Hamiltonian 5# commuting with &, also decomposes according to

# = AP du().
sp ()

By assumption, the energy-spectrum of the system is given by the spectrum of
HOin HO, je.

(3?(0)‘100)(1)) — (C \/I)Z s m?2 o2 (1 s ni_fz) _ mc2) 1//0(p)

where

e LZ( _ Rodp ) ~ HO,
/P2 + m*A( + 24 /mc?)

We will express this by saying that the system satisfies the Lorentz-invariant con-
straint ‘¢ = 0’.

Accordingly, by applying the constraint ‘e = (°, we recover a theory which
is essentially equivalent to a Wigner theory of spin 0 and mass m + Am =
/1 + 2£/mc In fact, also the representation U (2), decomposes according to 4,
U = @ U® du(o) each U'® being an IUPR of SO(3, 1) x ; R*.

(b) The particle of spin s,

Let P, be the projection operator

P LZ(M [%;d*p) — L} (M, C*o*1; d*p)
defined by the Lorentz-invariant constraint

W) (P*) = ((* — soso + D) (P*) = 0 (12)

The Hamiltonian of the free particle of spin s, is then assumed to be given by

), (p") = ((”—E v 2, f)f) (")

where % = %P and # denotes the internal energy of the system.
Let & be the operator corresponding to (11), and let
H = j-sp(a 7 H*?du(w,y) and S = Isp(a ) A du(e, )

be the decomposition of H and s# with respect to & and §. By assumption, the energy-
spectrum of the system is represented by the spectrum of H00 in HOO We
express this by saying that the system satisfies the constraints ‘4 = 0’and § = 0.
Again the constraints serve as irreducibility conditions, and we obtain a theory
which is essentlally equivalent to a Wigner theory of spin s, and mass m + Am =
m. /1 + 24/mc>.
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4. The two-particle system
(@) The system of two ‘spin 0’ particles
Definition 3. The system of two particles of ‘spin 0’ is by assumption associated
with
(i) the space {H, | t € R}, where each H, is a Hilbert-space isomorphic to
L*(M, dpf) ® L*(M, dp3) = L*(M x M, dp} dp3); (13)

(i) the kinematical symmetry group SO(3, 1) x, R* acting by U=U,®U,,
where U, and U, are the representations associated to the individual
particles (2);

(iii) the observable p?, Am,, p,, x, (i = 1, 2) and ¢ realized in the same way as
for the one-particle systems (3). In addition we will consider observables
P° AM, P and X describing the center of mass and p*, ¢* describing the
internal system.

For the purpose of realizing the second set of observables, we consider the
representation

L*(M x M, d*Pd*p)

which diagonalize the representatives of P* and p*. This representation is obtained
from (12) by the isometry

(V-1 (21, P) = g(P*, p*) = /Ty ((P*, ") (f = d)(P*, p¥)
induced by the diffeomorphism ¢: M x M — M x M defined by
P* =pi + P}
ph = L™ Y(ph + phys hypy — mMyp,y (14)
- my+m,

with L(P*) = A(Pc/(P® 4+ Mc).J,_, isthe Jacobian determinant of ¢ ~'. Moreover,
in terms of the coordinates (P*, p*), the manifold M x M is characterized by

{(P*, p*) e R® | (P° + Mc)* — P > 0, P° > M,

%\/(PO ¥ Mo —P2>p°> —-’:—; JP° + Mo)? — P2,

m((P° + Mc)* —P*) — M?p*p, o _m(P°+ Mc)? — P?) — sz“p,,}
2m,M /(P° + Mc)* — P2 2m,M /(P° + Mc)® — P?

Remark. There exists another choice of two-particle space which is preferable
from a technical point of view. That is to take L*(N, d*P d*p), where N is the manifold

N = {(P“,p“)e]R8 | (P° + Mc)* — P2 > 0, P° > — Mec,

%K/(PO + Mc)? — P? > p° > —% V(P + Mc)? > —Pz}-
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Thus,
M x M = ((P*, p*)e N|
{ml((PO + Mc)* — P*) — M?p*p,
2m,M /(P° + Mc)® — P? |
0. m,(P° + Mc)*> — P?) — sz“pu}
2m,M /(P°® + Mc)?® — P?
is a submanifold of N, and L*(M x M, d*P d*p) is a subspace of L*(N, d*P d*p).
With the choice L*(N), the one-particle observable Am; and x; (i = 1, 2) cannot

be represented on the whole space, but only on the subspace L*(M x M). In the
following we will consider the theory on L*(N).

In the representation L*(N; d*P d*p), the observables P*, Am, X, p* and ¢* are
realized by the self-adjoint operators

(P g)(P*, p*) = P*g(P*, p")

AP, ) = (BT M =B — M o(P*, )

> P

s, 1 P

% BBy — _ _ TR

(p"g)(P", p*) = p"g(P*, p*)
(9"9)(P*, p*) = ih dp,g(P*, p*). (15)

For a more complete discussion of the two sets of observables we refer to [1].
The representation U of SO(3, 1) x , R* is given by

(U(A(ﬂ, u), a’)g)(P*, p*) = exp (——;; a‘”P#> exp (% tu‘“(—u)pu)
x g(A~'(0,u) 4P + Muv*(—u), A®,(P", A~'(8, w)))ip")

where 0, is the angle of the rotation

A@,) = LIA®, w)"P* + Mv*(a))A(®, u)L~'(P). (16)

Thus the operators p*, AM, p* and §* transform according to

U~ Y(A(®, u), ap)P*U(A(@, u), a*) = A6, u)“P* + Mv*(u)

U~ Y(A(®, u), a*) AM U(A(®, u), a*) = AM

U~ 1(A(®, u), a")p*U(A@®, ), a*) = A®,)p"

U~ (A0, u), a")q*U(A(®, u), a*) = A@, )3 (17)

The transformed of X is more complicated than (5). It depends on the internal
degrees of freedom in the same way as the transformed of the position operator of a
particle with spin.

Moreover, it is possible to define a representation like (7) for the center of mass.
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(b) The system of two particles, one of ‘spin 0’ and one of spin s,

Definition 4. The system of two particles, one of ‘spin 0’ and the other of spin s,
1s by assumption associated with

(i) the space {H, | t € R} where each H, is a Hilbert-space isomorphic to
L*(M,d*p,)) ® L*(M, I*;d*p,) = L* (M x M, 1*;d*p, d*p,); (18)

(i1) the kinematical symmetry group SO@3, 1) % R* being represented by the

unitary projective representation U = U, ® U,, where U, and U, are
defined by (2) and (9) respectively, i.e.

(U(A(®, u), a*)g) (p%, p%) = exp (“ £ Pl,,) exp (h tw*(— u)Pl,l)
X exp (—5 a"pz,,) exp (g 1o —u)pzu) DD, % AG, )
x g(T'~'(0, u)vp] + mv*(—u), A~1(0, u)"p} + m,v*(—u))

with D as in (9) and ¢,, being the angle of the rotation defined by (10);

(iif) the observables p, Am, X, p4, Am,, X, s, of the individual particles and ¢,
which is realized as for the individual particles, and the observables P*,
AM, X describing the center of mass and the observables p* and ¢* describing
the internal degrees of freedom.

To realize the second set of observables by operators on H,, we will choose
another representation than (18). To define this however, we need to extend the
representation D of SO(3) in /2 to a unitary representation D of SO(3, 1).

Consider the operators F,, F, and F_ on /2, defined by

(F30), = C, /s> —m2 &1 — AmeEs,
Cov1 /6 + 1)2 — mE £
(F 1, = Co /(s — m)(s — my — D) &L,
— A, (s — m)(s + m, + 1) &, 4,
Copi1 /(s +mg+ (s +mg + 2) &5
F_&p = —C, /s +m)(s +m, — 1) &L
— A, s+ mYs —m, + 1) E,_
Cor1 /G —mg + D(s —m + 2 &

with
ST os(s + 1)
0P =)+ KD
CS—S\/ 4s* — 1 ey

{&, } is the canonical basis for the decomposition D = »& . ., D" diagonalizing
2
s?, s,
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The operators {s’, k' | i = 1, 2, 3} with

k' =3F, + F)

k? = %(F— - F+)

= F, (20)
then form a basis for an irreducible representation of the Lie algebra so(3, 1) of

SO(3, 1). By integrating the representation of so(3, 1), we obtain an IUPR D of

SO(@3, 1) on /2. Disa representation in the principal series characterized by the two
numbers (s, ik) [3]. )
We then denote by V,_, the isometry defined by

(Voo )4, PB) = /T 4e i (P¥, P*) D~ HL(PY))
x D(L(pH)(P*, p")(f = 9)(P*, p*)
= g(P*, p") (19)

L3 (M x M, 1*;d*p, d*p,)— L*(M x M,1?;d*P d*p), ¢ is defined as in (14).
In this new representation, the observables P*,AM, X, p*, g" are supposed to be
realized as in (15); moreover, the representation U of SO(3, 1) reads

(U(A(0, u), a*)g),(P*, p*) = exp (—% a“Pu) exp (% tv“(—u)Pu>

x D(A@, (P, A®, u)))g,(A™ (0, wiP”
+ Mv*(—u), A®@,(P*, A7'(0, w))ip")  (21)

where ¢, and 0, are defined in (10) and (16) respectively. Notice that in this
representation the Wigner rotations D(A(d,,)) depends on B* only, not p*. Accordingly
P*, p* and §* transforms as in (17).

5. The dynamics of the two-particle system

The dynamics of the systems of two particles is assumed to be described by the
Schrodinger and the Heisenberg equations.

In the following, we will consider the situation of two particles in mutual
interaction, the center of mass being a free particle.

(a) The system of two particles of ‘spin 0’

The Hamiltonian for the system of two particles of ‘spin 0’ is by assumption of
the form
. PP
H = L+ 4
M
where 4 = 4(p*, §*, 1), the internal Hamiltonian, acts nontrivially on the internal
space only.
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Moreover, consider the self-adjoint operators & and j3 defined by

. . AM 1,
ppo M 4 ©2)

Mc J1+ QMg

- For a conservative system, the internal Hamiltonian % is independent of §°
and 7, and &, § and # are mutually commuting operators and can be diagonalized
simultaneously. Denote the decomposition of H, # and Z with respect to & and 8 by

H = j.sp (a,B) H(a’ h dﬂ(a’ ﬁ)

H = .“sp(a,ﬁ’) 9?(“’ & dM(OC, ﬁ)
4= jsp(a,ﬂ) %(a,ﬂ) d,u(cx 18)
Then we assume that the total and internal energies of the system is represented by
the spectra of # (%9 and 2% % in H 0,

The only a priori conditions we can put on the form of Z, is that it should be in-
variant under rotations, and that in the case of no interaction (coupling constants — 0)

2 _ 0",
2m
with
m,m
m = #_bil 2 .
m; + m,

By interpreting the operators &, 5, P* and p* as operators on L3(M x M), we can
write

5> Pep, PP,

2M  2m

_ Pibiu | P3Py,

= ES ;
2m 2m,

Moreover, the constraints ‘4 = 0° & ‘B = 0’ implies the constraints ‘@, =0
& ‘4, = 0’ where &,(i = 1, 2) is defined by

AR

2m;

& = Am; +

Thus we recover the system of two free Einstein relativistic particles.

(b) The system of two particles, one of ‘spin 0’ and one of spin s,
Let ‘
P :L*(M x M, 1%, d%, d*p,) — L*(M x M,C>*% d*p, d*p,)
be the projection operator defined by the constraint
FNPL P = (8% — solso + DD (24, p3) = 0. (23)
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We denote by ﬁSO the image of PSO under the isometry (19); i.e.

(1,,9) (P*, p*) = (D~ Y(LP*D(L(pH)P, D~ (L(p£)DL(P*)g) (P, p*).

Using the facts that Disa representation of SO(3, 1), and that L is a Lorentz trans-
formation, we can write

D =Y L(PH)D(L((pH) (P, p*Y)) = DL (PHL(p*)(P*, p*)))
= D(L(L™(P*)"wp3(P", p")
+ muwH(P°, —P)A (@, (p4(P*, p*), L(P*)))
for w*(P*) = v*(Pc/(P° + Mc). Now

L™ (P"),p3(P*, p*) + mw"(P°, —P) = (% AMc + p°, p);

moreover, P, is invariant under rotations, thus

] t oy = | D o p
(Hsog)(P s P ) - (D(A((mz/M) AMC +p0 ¥ mzc))Pso

Py —1 pe B ph
D (A((mz/M) AMc + p° + mzc))g) (PP,

The Hamiltonian describing the dynamics of the system is supposed to be of the
form*)

" Pp
H = £ %’,
2M+ o

such that [, I, ,] = 0. Moreover, we impose constraints of the form (22) and the
constraint (23).

As for the form of the internal Hamiltonian, the only a priori conditions we can
impose are those of invariance under rotations and reduction to free case, i.e.

il ﬁ”ﬁ
ﬁm = (—j-’;q—u) ﬁsc,
when coupling constants — 0.

To study the spectrum of %! , and the associated energy spectrum it is worthwhile
to choose another representatlon Thus, consider the unitary transformation defined

by
(Fg)(P", p") = D=1 A b g(P*, p*).
’ (my/M)AMc + p° + myc
If we denote by Z, and 7 the image of %/  and %’ under F, we find that
4y, = 4P, = P 4.
Notlce also that since F is Invariant under the rotations, the representation U
(21) is invariant under F, ie. FOF ~! = U.

hy, = 41

%) From now on we assume the relevant operators to be defined on the space L?(N,[?) of which
L*(M x M, [?)is a subspace.



Vol. 51,1978  Systems of two quantal Einstein relativistic particles 251

Remark. In the treatment of the two-particle system we have worked with the
convention m,; > m,. Moreover, for simplicity we have assumed that the internal
energies of the individual patticles 4, = 4, = 0.

We also notice that although it is necessary to use L*(N) to define the two-
particle system in terms of its observables, it is natural to consider the dynamics
only on the subspace on which

m(AM + M)’ — 2m,M7% S0 my(AM + M)’ — 2m,M%
2M(AM + M)c P 2M(AM + M)c

- For a more complete discussion of these aspects of the theory, and for an
application, we refer to [4].
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