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A proof of spontaneous magnetization in the
d-dimensional ising-, XY- and Heisenberg-models, d = 2*)

by N. Szabo
Départment de Physique Théorique, Université de Genéve, 1211 Geneva 4, Switzerland

(13. X. 1977)

Abstract. The existence of spontaneous magnetization has been proven for the Ising-, X'Y- and
Heisenberg-models in d > 2 dimensions. The results are achieved by the fact that the partition functions
are monotone increasing in the coupling constants. Further, it is shown that the two different definitions
of the spontaneous magnetization are the same in these models. This last result is achieved by new
cumulant inequalities.

1. The absence of an exact solution of the 3-dimensional Ising model has
awaked the interest in the approximate studies of this model. Further there is no
sound about the solution of the quantum XY- or Heisenberg-models in 2- or 3-
dimensions. Recently progress has been made in proving the existence of the
magnetizations of these models [1, 2].

Here we complete the ideas about the proofs that the magnetization is different
from zero for d > 2 dimensions in the Ising-, quantum X Y- and quantum Heisenberg-
models, defined on the d-dimensional lattice Z%. To do so, we consider at first the
anisotropic Ising model. Its configuration energy is:

HAd = Z v,(k, ki)okaki (k = ky), 4y
{(k<kieA4)}
where k = {k,,..., kb and k, = {k,, ..., k;_ ki + Lkipys-. . kg}, AgcZ®. The
coupling constants v; are different in each space direction, i.e. they are anisotropic
in space directions. In equation (1) o, takes values +1 and all of the constants
v{k, k;) are positive. v,y(k, k) are chosen such that
i=0,...,d
- Y vk k)oo, =0 (2)
keAg

and therefore —H, > 0. To be able to say something about the bounds of the
partition function, we give some mathematical preliminaries about monotone
increasing functions, then to relate them to thermodynamic functions.

A real function f(x) is convex in an interval 7 of the real line if for 0 < 4 < 1,
Xy, X, € I one has

SOxy + [1 = A1x;y) < A (x)) + [1 — A1 f(x,). €)

*)  Presented on the SPS-meeting in Bern, October 1977.
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A is real. The second derivative of a convex function f(x) is non-negative, wherever
it exists:

f7(x) =2 0. 4)
Further i1t holds:
S(x) = f(xo) + [x — x01/ (%) (5)

for x and x,, € I, if fis differentiable at x,,. This inequality equation (5) states that the
first two terms of the Taylor expansion of a convex function f(x) give a lower bound
to f(x) [3]. The inequality equation (5) can be generalized to linear self-adjoint
operators 4 and B on a Hilbert space if: the spectrums of the operators A and B
are in the interval 7I; f(x) is differentiable on I; < I'which contains the spectrum of B;
the operator f(4) — f(B) — (A — B) f'(B)isof trace class. For us this generalization
1S not necessary.

A monotone increasing-function f(x) has the further property that the first
derivative of f(x) is positive definite:

J'(xp) > 0. (6)

Here the interest is in the singular behaviour of the free energy per site and of the
susceptibility. The free energy is defined as

—pf; = lim L InZ, ({v;}{) = lim k= In Tr {exp (— BH,,)}. 7
- Ag— o Ad Ag— © Ad

From this definition and equations (1) and (2) it is clear that — ff, is a monotone
increasing function in the coupling constants {v; > 0},i = 1,...,d. This is, because
x — x, of equation (5) corresponds to an increase in the coupling constant v; and
—f"'(x,) of equations (6-7) to the energy expectation value. The latter is positive by
Griffiths-inequalities [4]. f"(x,) corresponds to the specific heat expression of the
model. From the above equations (1-7) it follows that the partition functions
Zy,(09), Zy, ({3171 and Z, ({v;}9) fulfil the inequalities

1
—1n Z, (2v,) +

§95 1d— 1
2A1 2Ad-—1 ln Z/\d-l(lzvl}l )

1

= Ilen Z\ (o} > A,
where we used Cauchy-Schwartz inequality to derive the upper-bound. The above
inequalities are the generalizations of the isotropic cases [2]. Specially for d > 2, the
bounds can be given by the 1- and 2-dimensional ones, where we have the Ising- and
Onsager-solutions of the 1- and 2-dimensional Ising-models [ 5, 6]. The 1-dimensional
Ising-model possesses no finite magnetization, it does, however, exist in the 2-
dimensional model and that it is different from zero. The mathematical tool, to prove
this fact in 2 dimensions, is given by the Szeg6—Kac-theorem [7]. In higher dimension
than two we prove the existence of finite magnetization with help of the Szego—Kac-
theorem by constructing a lower bound to the d > 2 dimensional susceptibility

ta(mynlo) = Blo,0,>4({n;}) = lLim pLonOuDan,({0:}) ©)

Aa= o

InZ,, ({v}i™ ", ®)

where m,ne A,_,.
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As we have seen above the free energy is a monotone increasing function in the
coupling constants. This fact allows to construct lower bounds to the susceptibility
equation (9). One can exploit the monotone increasing character for our purpose by
introducing an extra term into the configuration energy by

H\,(A) = H,, — lo,0, (10)
with m,ne A,_, or m, n e A,. Then one has

InZ, {(v}{|A)>mZ,,_ ({v;}3" "D (11)
where we used Zp! > Z, . Becauseln Z, candIn Z,  is monotone increasing

in {v;} and in A the 1nequa11ty is retained if one takes the derivatives after 4 in (1 1)
One has

{6,,0, >d,1\d({ui}dl) 3 Sl Ja 1, Ag- 1({”;‘ }1_ 1) 7 (12a)
or
<6man>d({vi}‘}.) > 0,0, 04— 1({”:‘}1_ Y (12b)

in the thermodynamic limit at A = 0. The inequality (12) allows to prove finite
magnetization for d > 2 dimensions by applying Szegdo—Kac-theorem to the 2-
dimensional lower bound:

(OnOa > 0,0,0, (d > 2), | (13)

andm,ne Z1.

2. For the d-dimensional XY- and Heisenberg-models the susceptibility can
also be bounded from below by the 2-dimensional one. We denote the XY- and
Heisenberg-model Hamiltonians by H Arand H ,{‘:, which we assume negative definite,
and add to them a term — Ao o [10] to generate the corresponding susceptibilities.
An appropriate choice for m and n can be in the subspace A, orin A,_;, A, = Z'
and A,_, « Z*'. The Hamiltonians with the extra A-term are: H*(1) = HY —
Aa o, and the corresponding Heisenberg-Hamiltonian. It has been shown that the
partition functions belonging to these models fulfil certain inequalities [2], which
we generalized to the anisotropic lattice here. The result is:

In ZAd({zvi 1 | A)=3In Zﬁr({vi % | A)
> In ZA‘,({%U:'}‘{ | $H—3hn ZAd({"”Ui}‘i |0) ' (14)
and
1ln Z,’\(:({Zvi 5 l A) + 1ln ZAd({Zv-}“ | A =4ln Z;{i({v-}d | A).
> In ZAd({zv }"|") — izt (1_20 M |0) (15)

where the Golden-Thomson-theorem [8, 9] has been used. Z,,, Z{' and Z denote

the Ising-, X'Y- and Heisenberg-partition functions on the d—dlmensmnal amsotroplc
lattice Z¢. Because it holds

—In ZAd({—vi}‘{ | 0)>0 | (16)
and '
~In ZX¥({-20,}4 | 0) > 0, an
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the corresponding terms in the inequalities (14-15) can be neglected. Further using
the upper bound (14) in the upper bound of (15), one gets the inequality

3 Z,, (4034 | ) = 310 ZZ ({0} | D) = In Z, (o} | D). (18)

The In of all ferromagnetic partition functions in (14-15) and (18) are monotone
increasing functions in the variables v,(>0) and A(>0). This fact allows us to dif-
ferentiate the inequalities (14) and (18) with respect to 4. One gets

$omon2a({20:}1) = om0 xy({0:3D) = omorda(130:}D), (19)
3ononva({dv;}]) = 3<onanda »({0:i}1) = <onanda{zoi}]), (20)
where we have taken the thermodynamic limit and m, ne Z1.

Now it has been shown that the 4 > 2 dimensional Ising susceptibility can be
bounded from below by those of the 2-dimensional one. Therefore we just proved the

Theorem : The space anisotropic, quantum X Y- and Heisenberg correlation functions,
in the case of d > 2-dimensions, are bounded from above and below by the 2-dimensional
ones and therefore the magnetization of the X'Y- and Heisenberg-models are different
from zero below a critical parameter values vi(d > 2,v{ ~ T,):

lim < onoy, (v} = M2, ({v}) = Mi({v;}7) > 0, (21)
o = XY or #.
M, ., denotes the magnetization in the XY-model, M, ,, and M, those of the Heisenberg-
and 2-dimensional Ising-model.

The isotropic models also show, of course, spontaneous magnetization, which
is a special case of the above theorem.

3. In this section we will show that the two known definitions of the spontaneous
magnetization coincide in the considered d-dimensional models.

Let us define the partition functions Z, . ({v;}4 | A) and Z,, | ,a,,..({v:}1 | A
with the model Hamiltonians H,,.(4) = H, ., — Ao;o;, where H,,., stands for
the d-dimensional, space anisotropic Ising-, quantum X'Y- or quantum Heisenberg-
models (x = I, XY or 5#). Further, we assume the following: me A, ;,ne A, , and
H,,,<0.

Lemma 1. It holds for any d-dimensional Ising-, XY- and Heisénberg-model and
any finite Ay |, Ay , = Ay © Z° with condition Ay, " Ay, = ¢

ln ZAd;tz({vi }‘i I ,’i’) > in ZAd,;UAd, 2;1({01' }‘: | A‘) (22)
and

AOmTs P = SO0 Y (23)
at 4 = 0 in the thermodynamic limit.

The proof of the inequality (22) can be established along the ideas of ref. [2],

combined with the Trotter product formula for instance. Afterwards, the inequality
(23) follows from the inequality (22) by differentiation after A at A = 0. The above
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lemma uses again the convexity and the monotone increasing property of the partition
function in the coupling constants.

Lemma 2. Let A, , and A, , be finite sets with the property that their intersection
isempty, Ay y " Ay, = ¢; Ay 1, Ny, = Ay = Z° Then, it holds for any d-dimensional,
space-anisotropic Ising-, XY- and Heisenberg-model :

<G:z>d,,3({vi ‘i) > {on>a({yv; ‘D > <G;>d-1({yv‘i}‘i_1) (24)
and |

<5;>d—1({4dvi}‘if1) > {0y {4, '{) > <6;>d,ﬁ({vi ‘i) (25)
where ) < y < land f = XY or J#.

In the Ising-expectation values we drop the Ising-index /.
To sketch the proof, we note that the inequalities

InZz,, uAd,z;ﬂ({vi ¥ | A) > In Zy, . uAd,Z({yvi}‘i | A)

> ln ZAd—l,l UAd_1’2({in}c{_1 |£’) (26)
and
InZ,, ,a,({4dv}{7" | 4) > In Zy, o409
>InZ,, uAd,z;B({U:’}‘i | 4) (27

are fulfilled and the partition functions are defined with the Hamiltonians H,  ,(4)
as in Lemma 1. Here we have taken different coupling constants to satisfy the above
inequalities. Taking the first A-derivative of the inequalities (26) and (27) at A = 0,
the inequalities (24) and (25) follow immediately.

From the above two lemmas one has a consequence the following theorem:

Theorem. The two point cumulants of the d-dimensional, space-anisotropic
Ising-, XY- and Heisenberg-models fulfil the inequalities

Comon>5({ddv;}7) = Conor i j({v;}1) = onoi>5({v: 1) (28)
and the equality
mlinn_l_w <G;U:>d,p({vi}‘i) = (a,’c‘>d,ﬁ({viE)(‘ch)d,ﬁ({ui}‘i) (29)

under the condition, {v;}} > {v;}4. Further, } = I, XY or #,d > 2andm,ne Z".

Proof. The Ising-, XY- and Heisenberg-partition functions fulfil the inequalities
InZ, ({4dv;}1 | D) = In Z, ,({v;}{ | ) = In Z, ({v;}7 ]| A)
from which follows:
(0T, 2({4dvi}% o= <6;0:>d,ﬂ({vi ‘i) > 0,0, 2({Ui}%)~

We dropped again the Ising-index [ for the two dimensional case in the theorem and
in its proof. When we combine these above inequalities to the Lemmas 1 and 2, the
inequalities (28) follow by using the fact

{om>,({4dv;}7) = o>y s({0:19).
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This above relation can be derived on a similar way as we have derived the two
above lemmas. If we take the limit lim,,_,_, in (28) the upper and lower bounds
are going to zero [7, 11] and therefore the equality (29) follows. This theorem
completes the theorem of Section 2.

The author is grateful to Charles Enz for critical reading of the manuscript.
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