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A new relativistic model for the hydrogen atom

by F. Reuse?)

Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

(13.X.1977)

Abstract. A new theory for the description of relativistic particles of spin £ interacting with an external
electromagnetic field is used to formulate a model of the hydrogen atom. The energy spectrum predicted
by this model is in agreement with the spectrum obtained from the Dirac model when radiative corrections
have been added. Our model, thus, predicts a Lamb shift. Energy levels are expressed in terms of the

usual quantum numbers n, [, j, m and contrary to the Dirac model / is a "good’ quantum number in our
model.

1. Introduction

The present paper is devoted to a study of a relativistic model of the hydrogen
atom, considered as a particle of spin 1 and electric charge e in an external electro-
magnetic field described by the Coulomb potential. The model is based on the theory
presented in [1], and before giving the detailed definition of our model, we will
shortly review the necessary properties of the general theory.

The spin 3 particle is assumed to possess a continuous superselection rule [2]
associated to the time-like unit four-vector n*, u = 1, 2, 3, 4 withn* > 0and such that

gun'n’ = =, (g,,=1,1,1, =c?).

It is thus described by a family of Hilbert spaces H,. Each of which is isomorphic
to €2 ® L*(IR*, d*x), the space of two valued functions

¥ .
V) = [wz(x)]’ ze R

with the scalar product

2
<Y, 9> = [ d*xyt(x)p(x) = J d*x 3, YF(x)e;(x).
R4 R4 i=1
Accordingly, a state of the particle is described by a given time-like unit four-
vector n* and a unit vector y, of the corresponding H,.
The superselection rule n* is closely related to our interpretation of the spin 4
in the relativistic case. In fact, our spin observables are characterized by four 2 x 2

') Supported by the Swiss National Science Foundation.
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matrices W) with p = 1, 2, 3, 4. For n* = nj = (0, 0, 0, 1) they are given by
Wi = (30, 0) (1)

where ¢ denotes the Pauli matrices. And for any n* we define W* by
Wy = L)W, 2

where L(n); denotes a boost, i.e. L(n)¥n, = n*.

The physmal interpretation is as follows. Let us consider a space-like unit four-
vector s, i.e. g,,s*s" = 1 and such that g, s"n” = 0. The observable s, W} then
corresponds to a measurement of the spin with a Stern-Gerlach apparatus whose
time direction is given by n* and for which the (space) direction of the magnetic
field is given by s*. This defines completely the state of the spin.

There exists a position observable in space-time g* = (q, ) and a momentum-
energy observable p* = (p, E/c?). The position observable is given by the four
contravariant self-adjoint operators:

(@), (x) = x4, (x) 3)

and the momentum-energy observable by the four contravariant self-adjoint
operators:

(P"Y),(x) = —ihg"" 0, (x). (4)

0, denotes the partial derivative relatively to x".
The evolution of a particle is parametrized by a Lorentz invariant parameter t,
the historical time, and is governed by the Schrodinger equation

ih 0, = (Ky),

where the operator K is a Lorentz invariant and self-adjoint operator. Moreover
the evolution of »* is by assumption such that n* tends to be parallel to the mean
value of p* [1].

For an electron (or positron) of charge ¢ and mass M, interacting with an
external electromagnetic field 4,,(x) = (A(x), — V(x)) we have proposed the following
operator of evolution K.

1
K= gu(p" — eA"@)(p* — e4"(@)

91“0

3 (0" — eA"(@)F, (W,

©)

g1 )
+3 AZJ =220 F, (@n*F* (g)n*

Iallo _ux ,
- -~i—~2—0 nuFuv(Q) Wn

where F, (x) = 0,4,(x) — 0,4,(x) and F, (x) = 28#WF’ #4(x). We denote by u, the
Bohr magneton eh/2M andg,, g,, g, are dlmenswnless phenomenological constants.
In fact we have shown in [1] that g = g, + g, is naturally interpreted as the g-factor
of the anomalous magnetic moment.
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2. The hydrogen atom

In the model of hydrogen atom the electron interacts with an external electro-
magnetic field described by the Coulomb potential:

A,(x) = (o, -—V(x)):(o, ¢ 3), r= || (6)

dmey r

where ¢, denotes the vacuum dielectric constant.
The spectrum of the atom is identified with values of E — Mc? obtained by
determining, for n = n,, the solutions of the eigenvalue equations

K = —3Mc*y )
and
E
piY = ?!//- 8)

For the given choice (6) of 4 (x) we have:
(Fp3(x), F3,(x), Fy5(x)) = F'*(x), F**(x), F?%(x)) = B(x) = 0
and

—e X
(F1), F24(0), Fao) = (F2(0, F'(0), F2(0) = B() = 7=
Thus for n = n, we obtain the following evolution operator
K, = 5 0 — E0* — S V(@)
"o 2M c?
H g3
+ 20 (b A E@)o + 2 5 EXQ) ©)

Since K, does not depend explicitly on ¢* we have [K,_, p*] = 0 and the solutions
of the eigenvalue equations (7) and (8) are of the form

W(x) = exp (—iEt/h)p(x) (10)

where ¢(x) themselves are in €2 ® L*(R3, d%x) and are solutions of the following
eigenvalue equation

—h? 1 e 1\* g.u e X
. A — = _ 170 Sl
|:2M 2Mc? (E Y 4re, r) 2Mc? 4mg, PALe

giuz  er 1 1 '
+ M (47180)2?} () = —5 Mc*p(x) (11)

which has been obtained from (9). Since K, and p* are rotation invariant they commute
with the total angular momentum operators J = L + ho/2 where L = q A p is
orbital angular momentum. Moreover it is evident that the operator L? also commutes
with K, and p*. Consequently we can determine solutions of (11) which also are
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eigenvectors for L2, J? and J;
Lp(x) = Il + Di*p(x)
Pox) = j( + Dh*(x) (12)
J30(X) = mho(x).
Thus, on the contrary to the Dirac model, the orbital angular momentum / is here a
‘good’ quantum number.

In view of the interpretation we point out that according to the symmetries of the
solutions we have:

jwdsxqo*(x)p(p(x) = 0.

This means that the corresponding wave packet around the mass shell, built up from
the solutions of (10) and (11), represents a particle moving in space-time along the
time axis. Thus the condition #n = n, is clearly in agreement with the equations of
evolution proposed in [1].

Because of (12) the solutions of (11) can be expressed by

@(r, 0, @) = R(n Y0, ) (13)
in spherical coordinates, i.e. [3]

ywe@—wu+1rm[0¢m+éWH?*Waw}
FNASE -

£ £m + DPRYPHIRE, )

for respectively / = j + 1/2. (¥;"* /> denotes the spherical harmonics.)
Now

Lo Y70, ¢) = c(j, DY (0, @) (14)

for ¢(j,I) = —1 — 1 orlaccording to whether / = j + 1/2 or j — 1/2. Moreover
L WP L? (15)
oM T 2 20T 0 T it

in spherical coordinates. (13) is therefore a solution of (11) if the function R(r)
verifies the following differential equation:

-h*1 h? 1+ 1) 1 e 1\ gpe e c(, D)
il : - E+ — —
|:2M r drid. + 531 r? ma\" T dney r 2Mc*4ne, 1r?
gakp e 1 _ MZ
* 3Mc? (4ney)* r* Rr) = 2 R (16)

obtained by replacing (13) in (11) and taking account of (12), (14) and (15).

We will put this equation in a more convenient form. For this purpose we intro-
duce the fine structure constant o = e2/4neyhc and the Bohr radius a, = 4ng,h?/Me?.
Since u, = eh/2M we obtain:
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[_hz—d i R+ 1) g% JMc*ad

2M M 2 r A
M 2Mc?
+ 491 ¢ (_] l) 692 c aO R()
32
E? - Mzc4
==y RO 7)

Thus finally the energy spectrum will be determined by the values of E — Mc? for
which the solutions R(r) of the radial equation (17) are in L2(R, _r? dr).

The radial equation (17) formally looks like the corresponding one in the non-
relativistic case where the particle interacts with the singular potential:

a, JMc*al JgiMc* o ad 6gch as
i - e 12" ed 2R
o B R U )r3+ 32 4

Since E is of order Mc? we note that terms in  ~2, 3 and r ~* are just perturbations.
Moreover one can show that exact solutions of (17) in L2(R , , r* dr) behave like

Lo
R(r) = exp (—ro/)0@rostextin), = 2224, (18)

for r — 0. Actually only terms in r 3 and r~* are relevant for the nature of the
singularity and thus (18) is in agreement with the results given by W. M. Frank,
D. J. Land and R. M. Spector for a potential of the form gr=* + f,;r™3 + f,r™2
where g, f, and f, are constants and g > 0 [4].

Accordingly solutions of (17) look like the corresponding one in the non-
relativistic Schrodinger model except near the origin i.e. in the region where r is
smaller or of order r, noting that r, « a, is much smaller than the mean value of r.

An important point is the comparison of our radial equation with the corre-
sponding one for thelarge component wave function in the model of hydrogen atom
derived from the Dirac equation As a matter of fact we have shown in [1] that a
free particle with n = n, in a state being an cigenstate of K, = g,,p"p’/2M with
eigenvalue — Mc?/2 can be identified with the correspondmg large component of
the Dirac theory when p? is smaller than M 2¢c2.

In the Dirac model of hydrogen atom [5] the energy spectrum is obtained by
determining eigenstates ¥/ ,(x) of the Dirac hamiltonian H/,

Hp = cap + eV(x) + Mc%p
with

_ 0 o I 0
a—|:o_ 0] and ﬁ—-|:0 ——I:l
for eigenvalue E, which are also eigenstates of J2, J, and fr, where the operator = is

defined by
mWp(X) = Yp(—X).

In spherical coordinates such a solution is a four-spinor of the following form
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u(r)Y;'(0, )
Yo(r, 0, @) = [ .
P u(r) Y770, @)
where respectively /" = j F 1/2 for | = j + 1/2. Corresponding eigenvalue of fr is
(-1
The radial functions u(r) and v(r) are solution of the following first order
differential system

ich G dr — l%c(],l)) u(r) + (E + Mc? — eV(n))o(r) = 0

ich (lr dr + 1+—:U’Q) v(r) + (E — Mc? — eV (r)u(r) = 0.

For positive energy solutions the large component is u(r)Y[",(6, ¢) and we have to
compare the second order differential equation for u(r) obtained by eliminating v(r)
in the previous system,

w1, R+ -  a
|:2M pArd g~ vET
2Mc? a*Mc*al (c(, ])
+ E + Mc*(1 + o?ay/r) 4 _13( ro a ) |4
2 af2.4
= Lﬁu(r) ' (19)

2Mc?

with the corresponding one (17) for R(r). Actually the comparison is meaningful
only in the region where p*> « M?c?, i.e. in the region where electromagnetic field
is not strong. In fact it is more convenient to compare the Dirac radial equation (19)
with the one obtained from (17) by putting, in view of (18),

ﬁ(r) = exp (ro/r)R(r). (20)
We then obtain
—h% 1 5 h? I+ 1) — o? 5 @0
[2Mr_2d'r Ry VIR ey
«*Mc*ay( c(j, 1) " E? — M?*c*
Zof, M - . (21
+ 4 r2(9'1 " g.4d, | | R(r) IMe? R(r). (21)

For g, and g, equal to 1 this equation looks like (19) except for a factor 2Mc?/
(E + Mc*(1 + a’a,/r)) in the last two terms. Actually this factor is very close to
1 if r » a?a, i.e. also greater than r,. Then except in the region where electro-
magnetic field is strong our radial equation (21) forg, = g, = 1 givesrise to solutions
very close to the corresponding ones of the Dirac model.

The spectrum has been evaluated in part 3 and the following results have been
obtained. For/ =+ 12 # 0

4

2 3 -1
E—Mc2=—Mcz|:a L ( n ‘Zi n(g, )i%))+0(a6):l

2n*  2m*\j + 1 2+ DU+ 3

(22)
where the principal quantum number n takes integer values such that n >/ + 1.
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Forl=j—-3=0
2

E— Mc* = —Mc? |:2O; + “ ( = 231— —n(g, — 1)) + O(as)] (23)

and we note that for g, = g, = 1 these expansions coincide with the corresponding
one from the Dirac model [5], i.e.:

, 2 4 3
E— Mc*= —Mc*| = + (-2 — 7} + 00 | 24
For g, and g, not equal to 1 expansions (22) and (23) differ from (24) by energy shift
ot — 1
T Mc? 2 for I=j+1#0 (25)

(G +I0+ 319

and
4

M&%ﬂ%—l)md=& (26)

Such terms remove the degeneracy relatively to / in the Dirac spectrum and give rise
to the Lamb shift.

Usually the Lamb shift is obtained as radiative corrections to the Dirac results.
The 1correcting energy shift terms obtained by such a procedure are [6] for / =
jt3#0

4 16 R 1
M2 2 (1o y 27
¢ n3n( gK(nl) G+HG+ 4 %)) @7
and for/ =0
" ot 8a 1 R, 19
Mc 23 3m (2 log + logK( 0) (28)

For a definition of K(n, /) and R, we refer to [6]. Actually to compare these
results with the corresponding ones (25) and (26) given by our model, we need only to
know that for / # 0 the ratio Ky(n, I)/R, is very close to unity for any n (about)
0.95-0.97). For [ = 0 this ratio is about 19.8 for n = 1 and varies slowly with # to
15.7 for n = 4 and it is not much smaller for n = o0.

These radiative corrections are in very good agreement with the results of
measurement performed on the S, , and ?P,, states, moreover there is also con-
firmation for S states of various n.

A comparison shows that the energy shift (25) and (26) depends on the principal
quantum number » in the same way as (27) and (28) if we neglect the dependance of
Ky(n, I)/R, on n which in any way is weak. In fact, we obtain a good numerical
agreement by putting in (25) and (26) g, about 1.0015 and g, about 1.048.

Note that the experimental determination of the Lamb shift is indirect, it is
extrapolated from the splitting of the Zeeman effect for different magnetic fields [7].
Since in our model, the dominating terms for the Zeeman effect, are the usual ones
(with g, + g5 = g), the interpretation of that experiment is the same.

To conclude we note that to obtain complete agreement with experimental
results we must put in (15) and (17) instead of M, the free electron mass, the corre-
sponding reduced mass and thus to take account of the non-infinite proton mass. In
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our theory such a modification can be understood in a completely covariant way [8],

[9].

3. Evaluation of the energy spectrum

Our aim is now to evaluate the eigenvalues of the energy spectrum. More
precisely we expect to determine the first terms of the power expansion in «? of these
eigenvalues until term in a*. To do this we use a perturbation method based on the
observation that the radial wave function in our model is not so different (except
near to the origin) from the usual ones obtained in the non-relativistic Schrédinger
model of hydrogen atom.

At first we consider the case / # 0 for which the standard perturbation method
can be directly applied. Let us consider the following eigenvalue equation:

I:mhz_l_d d hz l(l E” 1) Ez _ 2 4

2M 2M  p? 2Mc?

whose formal analogy with the radial equation of the Schrodinger hydrogen atom is
obvious.

Then the solutions in L2(]R+, r* dr) of this equation are just the usual radial
wave functions R, ,(r) [10] in the non-relativistic hydrogen atom. The correspondlng
eigenvalues are

E? — M?3c* a2

——— = —Mc* —; 30

2Mc? © 2n? %0)
where 7 is any positive integer such that n > [ + 1.

We evaluate the spectrum by considering (17) as a perturbation of the previous

eigenvalue equation. The perturbation terms are thus:

- occhzaTO] R(r) = R(P) (29

a Mc? a? g, Mc? g2Mc ag
—az(EuMcz)%—oc4T—g+oc4 (), 1) o 25 A=W
and the standard perturbation lead us to wrlte (at first order)
EZ _ Mzc4 az o)
—ipd = —Mc? 5zt L r* drR} ("WR, (1)
In other respects we have [11]:
(1/n? for k = 1
I/(l + Hn’ for k = 2
J r dr( ) |Rn (] = . , (31)
0 l/l(l +3)( + Drn® fork=3and! # 0
_exists fork =4and/ # 0

the term in r~* in W which contributes to the spectrum by a term in «°® can be neglected.
Finally by virtue to the previous formula we obtain the relation

E2 — M32c% ) 2 2 M2 4
R VRE P YOS SR
2Mc 2n n 2 (I +3)n
MCZ 4
+ 22 G

I+ H + Dn?
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that gives
| [ o2 at [ n g ne(j, 1) 3
E — Mc* = —Mc? 71 — =) + 0(a®
¢ C_M2+Z#C+%+2KL+JLFD ot ik
or
[~ L2 4 3
M — _me2| 2 o n 3
b= Me C_m2+2w(p+% 3
n gy~ 1 ) 6:| 1
+ + 0@ | ifl=j+ 1 (32)
2 hG+i+p) TN :

We consider now the case / = 0. Obviously the standard perturbation method
is not applicable in this case and must be modified. Actually we must consider the
differential equation (21) for R(r) defined by R(r) = exp (—r,/r)R(r), where we
have/=0and ¢(j = 3,1/ = 0) = 0, i.e.

h? 1 Mc2 a2 g,Mc*a} .
_ e Zo _ 472 Zo
[2M drid — o E > 2 o R d, | R(r)
E MZ 4 i
=g RO 9

In view of (18) for / = 0 and the definition of R(r), R(r) is in L3(R,, r? dr) if R(r)
is too and conversely. Then the spectrum is also given by this value of E — Mc?
such that there exists a solution of the previous Equation (33) whichisin L*(R , , r? dr).
As a consequence we can consider (33) as a perturbation of (29) for / = 0, the
perturbation terms being |

2 52 3 48
Mc“a; a4gch a;

—a2(E — Mc?) 20 — 4+ =5 %0 N4 =w
@ ( <) r R 4 2’7
and write as a first order perturbation
EZ _ MZCA- al Jao
— = —Mc*— + r?drR¥ ,(NWR, o).
2MC2 2n 2 0 & 9

n 1s any positive integer.
' Except terms given in (31) we have to calculate, in this expression, the term

aldR, ()
R * 0 ¥ o\ / 2

Since R, (r) are real functions and since R, (r) — 0 as r — o it can be also written

w .3 3
a d o, S 2
J; 2 & Rno(r) dr Rno(())

Finally we have the relation

E? — M2c* , o N5 ot ot
e sepanrny e s ey - e MO s Mc2 —
2Mc? Me 2n? (B = Me )n2 ¢ n? * gaiie 2n3
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that gives

) | o? ot 3 "
E — Mc —Mc §’~1—2+§;~n“—2——n(‘gz—l) + 0(=®) |- (34)
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