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Relativistic dynamics for the spin $ particle

by C. Piron and F. Reuse')

Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

(13. X. 1977)

Abstract. We develop a model for the interacting spin 4 particle in the context of Relativistic Dy-
namics, a theory for which quantum states are given by rays in L2 (IR*, d*x) and the evolution is labelled by
an invariant parameter. We propose a new definition of spin 3 in Relativity coming directly from the
information given by the Stern—Gerlach apparatus. This leads us to introduce a continuous superselection
rule and a family of Hilbert spaces isomorphic to €* ® L? (R*, d*x). We exhibit a representation for
which the state transforms like a Dirac four-spinor and we prove the existence of covariant position and
time self-adjoint operators. An explicit equation for the evolution of an interacting particle with external
electromagnetic field is proposed. We state the results of this model applied to the hydrogen atom. Finally
the Bargmann, Michel and Teledgi equation for the precession of the spin is shown to follow from this
evolution equation as a quasi classical approximation.

1. Introduction

In a previous article "Relativistic Dynamics’ [1] we proposed a model for the
spinless relativistic particle and a quantization method free from the usual difficulties
associated with the Klein—-Gordon equation. This article is the continuation of [1].
We formulate here our model for the spin 3 case.

At first let us recall our point of view. Each particle as a classical object is assimi-
lated to a point in the four-dimensional space-time. So in our theory space-time plays
the same role as the three-dimensional space in Newton’s theory. To be able to de-
scribe the motion of this point we introduce a new variable T which is just a parameter
labelling events during the evolution. It is not an observable like the fourth coordinate
t, which is an observable associated with a clock. This parameter t plays the role of the
Newtonian time; we therefore call 7 the historical time in contrast to #, a geometrical
time.

Our quantum model for a spinless particle proposed in [1] is the following.

The states are described by the Hilbert space of the four-dimensional square-
integrable functions Y/(x) = y(x, ¢) with the scalar product

Y, @) = J d>x dnf*(x, De(X, 1),
R4

The Lorentz transformations A act on the states by unitary transformations U(A)

(UAW)(x) = Y(A™'x)

'Y Supported by the Swiss National Science Foundation.
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where
(Ax) = Alx', g.v=1,234,
IulNi A, =g,,,, and g, = (1,1,1, —=c?).
The observables are the position-time ¢* = (q, ¢) given by the multiplication operators
'Y (x) = x*Y(x)
and the momentum-energy p* = (p, E/c?) given by
P (x) = ihg""0,y(x),

where 0, denotes the partial derivative with respect to x”.
The evolution of this particle is described by the Schrodinger equation

iho. Y. = Ky,

and for a charged particle of charge e in an electromagnetic field we have proposed [1]

]
K = ﬁg,w(p“ — ed*()(p" — eA"(q) (1)

where the constant M denotes the mass of the particle. By virtue of the generalized
Ehrenfest theorem, a four-dimensional wave packet, sufficiently small, follows the
trajectory of a classical charged particle (this is the correspondence principle).
The wave packet must be small enough in such a way that the electromagnetic field
is more or less homogeneous in the region where y(x) is large.

2. The spin 3 particle

A particle with spin is characterized by new observables compatible with p* and
¢". In the usual formalism this is done by replacing the one-component wave function
¥(x) by an n-component one

Wy (x)
!ﬁn(x)

The scalar product is given by

Y(x) =

Y, @) = J d’x dty " (x, De(x, 1)

R4

_ j Pxdi’Y P D0 1)

i=1
and the Lorentz covariance by

(UAW)(x) = D(AW(A™ 'x)

where D(A) is an irreducible unitary representation of the Lorentz group (more
exactly of SL(2, C), on the n-component vector. space.

But such a model leads to the following difficulty: since each such non-trivial
representation is infinite-dimensional, » is infinite and the corresponding spin also.



148 C. Piron and F. Reuse H.P. A

This result is in disagreement with experiments and the well-established degeneracy
of order two for electrons in atoms or metals.

To overcome that difficulty we must introduce a super-selection rule, i.e. a
family of Hilbert spaces [2]. Let us consider the Stern—Gerlach apparatus defining
the spin observable and more precisely the symmetry of the magnetic field of this
apparatus. Such a magnetic field is characterized by a strong gradient. It defines not
only the space direction of the spin but also a unique time-like direction, the direction
of the time given by the frame where the field is purely magnetic. Then the state of the
spin $ particle is characterized by a direction in space (the spin) and a time-like four-
vector n* with n* > 0 and g, ,n*n* = —c>.

We postulate that this four-vector »* is a super-selection rule and we introduce
a family of Hilbert spaces H, indexed by n*. The Lorentz group acts on this family
according to the representation defined by [3]:

(U(AW),(x) = D(n, A)Yp-1,(A” ') (2)
where D(n, A) = D(L™'(n)AL(A ™ 'n)), L(n) are boosts such that

Linyny =n with n§ =(0,0,0,1)
and D the usual 2 x 2 unitary projective representation of the rotation group
corresponding to a spin 3.

In other words, to every time-like unit vector »* is associated a Hilbert space H,
of two-component wave functions which is identical to €2 ® L*(RR*, d3x dr) and the
Lorentz transformations applies H, onto H,, by (2).

For n* = nj the spin observable is given by the four matrices

Wi =3¢, i=123 and W} =0
where ¢' are the Pauli matrices. For any n* we can define

Wy = L(n)y; W, (3)

and son, W} = 0. This definition is justified by the following physical considerations.
Suppose a localised state is given in the usual representation of the Pauli matrices as

e %2 cos 6/2
vax) = | [, 1).
€2 sin 6/2
One can easily verify that such a state is an eigenstate with eigenvalue + 4 for the
observable

1 = b — o WH
286 = s, W) = s, W,

where s* = (sin 0 cos ¢, sin 0 sin @, cos 0, 0) and s"* = L(n)"s’. In other words the
observable s’ W* corresponds to a measurement of the spin with a Stern—Gerlach
apparatus whose time direction is given by #* and the (space-like) direction of the
magnetic field given by s'#.
Let us now check the covariance of W¥. We have
D(n, W, D™ '(n, A) = L(A™'n):D(n, )W, D~ '(n, A)
= LA™ 'n)¥ (L™ '(n)AL(A 'n)), "W},

= Ay UL Wh = AWy ' (4)
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since for any rotation R
D(R)a'D™'(R) = Rj "o/,
Then we get the expected transformation law for such spin observables as it is easy to

see from our physical interpretation.
On the other hand we have the following commutation rules:

[Wh, Wo1 = Lin)i L(n), [Whe, Wl

= L(n)ﬂ L(n)v lg‘u pgv ‘e p).ot W:on:)
= ig¥ g*v'e ew Wen* (3)
where ¢, pi = E1for uvpi an even or odd permutation of 1, 2, 3, 4 and 0 otherwise.

The spin observables can be defined in another way which is in fact the usual one.
For an infinitesimal Lorentz transformation

o §H up S5 v
Ab=d"+ Gpvo @, = —@,,

let us write the corresponding D(n, A) in the form
D(n,A) =1 - i%S,,""a)p

We have
W = 384050 0" (6)

‘ To prove this formula we first remark that it is compatible with the law of
transformation under the Lorentz group. In fact we have [4]

Srnt = 1g  Tvopt

,uva. _2‘ uvpi
where
0 0
ZP=8*+iln— — n*—
on, on,
and

D(n, AZY-.,D " '(n, A) = A " A] 1P Ew

Then we have just to check the equality in (6) for »* = nj and this is obvious since
Si = 4ot

where i, j, k are cyclic permutations of 1, 2, 3.

To compare our model with that of Dirac, we want to reformulate it as closely
as possible to Dirac’s theory. More precisely we want to change our two-component
representation in a four-component representation in such a way that the new wave
function transforms under the Lorentz group as a Dirac four-spinor. Let us realize
the Lorentz group as elements of SL(2C), and write A and L(n) for the corresponding
2 x 2 matrices. In this notation the law of transformation (2) can be written as

(UMW)Ax) = L™ (Am)AL(n)Y,(A™ ).
Alternatively we can choose the adjoint representation A~ = (A~ ') and write:
(UAW)an(x) = L™~ HAmA™ L™ (n)y,, (A~ 'x)
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since
L™ Y AnmA~ L~ (n) = L™ '(An)AL(n)e SU(2).
Given ¥, (x), we define a four-component wave function as follows:

& 1 "L
wn(x) - ﬁ [L”(n)] l//n(X).

The transformation law of such an object is then

(D)) = [3 H Dp-nA™ 1)

and the scalar product becomes

<!//n, (0,,> = J

R

” [] @,(x, ).

xdifix, 0 |
T Yo (x )[1 0

)

We recognize ,(x) as a Dirac four-spinor. Performing an additional trans-

formation given by

I .
e -5 !

(8)

we obtain what corresponds to the usual Pauli-Dirac representation of large and

small components The scalar product is then given by

Y, 00> = j dx dty}(x, D@,(x, 1)

]R4

= J d3x dry 2t (x, DBel(x, 1)

where

o=ly

and the transformation law under the Lorentz group is

(UP(AW ), (x) = S(AWR- 1, (A ")

with
R R
SA=2|_; o a-dlr 1l

Introducing further

a=[0 G:I, ¥ = Pa and 7y* = B/c
g O

&)

(10)

(11)

(12)
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we find the usual relations for Dirac y matrices, i.e.
0"y 1e = — 291,
STHAYS(A) = ALy
and
ST AP = BS(A).
Then the ‘current density’ is given by
W )y Y (x)
where ¥ ,°(x) = y/21(x)B transforms like a four-vector:

(UP(AW P), ()" (UP(AW P),(x)
= AUR- (AT YR (A7 1),

In this Pauli-Dirac representation the observables ¢* and p* are defined by self-
adjoint operators

'Y (x) = x"Yl(x)
and
PYL(x) = —ihg"d,¥.l(x)

which are the same as those, only formally defined, in the usual Dirac theory. More-
over according to (5) the spin observables W, are defined by

I A
D __ 1 VA VP gt
Wﬂ,.u - ZSquASD B = 48uv,aiy y'n

since
i

S"PE_ v P

are the well-known generators of the Dirac four-spinor transformation S(A).
Explicitly we have

W2 = 1(n*E — in A a/c)

n

and

WP, = —in-X with E= [g ﬂ (13)

Finally choosing as in the canonical formalism a pure Lorentz transformation
for the boost L(n) we successively find

(n* + DI — n-o/c

V2@ + 1)

L(n) =
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and

(n* + l)d’n(x):l . (14)

(n-o/c)y,(x)

Let us now discuss the dynamics. In the case of the free particle of spin 3 the
dynamics is the same as the spinless particle. Then

h2
T M 2M
and the four-vector n* is a constant of motion. For the spin 0 case, the usual theory,

more precisely the Klein-Gordon equation, is interpreted here as an eigenstate
equation

Ko¥(x) = — MY (x).

This fact suggests a change of representation: the four-dimensional Fourier trans-
form followed by the change of variables in the subspace K, < 0 given by

Y2 = (n* + )71 [

K, 9., p'p’ = — O (15)

Y(p) = (2ﬂh)“ZCJ Y(x) exp (—ig,,p*x*/h) d*x dt

|m 1/2c .
W7 4 ey Y sien(me? + mtc?)'c).

Yw(p) —f(p, m) =

The corresponding scalar product is

- @

+ o0

dm f 3 d’pg*(p, m) f(p, m) = {o@, ¥).

The constant of motion .

p p
qr=q—%(;3;f+f;,z)

decomposed in this new representation turns out to be just i d,, 1.6. the Newton-
Wigner position operator [1].

The same is true for the spin 3 case. We can define through the same way the new
representation in the subspace K, < 0. The corresponding scalar product is

gt = J_m dm L d>pgl(p, m) f,(p, m) = o, ¥,>.

Then the Newton-Wigner position operator is given by the same formula as
before and corresponds to the same constant of motion g,.

The comparison of our theory with the Wigner theory where the states of the free
particle are described by an irreducible unitary projective representation of the
Poincaré group is easy. A Wigner state for a particle of mass M defined for given
momentum and spin corresponds in our model to an eigenstate of K, for the eigen-
value —3Mc? and the same given momentum and spin and a time direction n*
parallel to p*. Strictly speaking, the two theories are completely equivalent only for
such special states.
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To compare more closely the two theories let us consider in the canonical
formalism a Wigner state ¢(p) corresponding to a momentum sharply defined (with
an uncertainty or mean square deviation o(p?) « M2¢?). According to the Foldy—
Wouthuysen transformation such a state corresponds in the Pauli-Dirac representa-
tion to the four-spinor

M—lll(p4 + M)—l/z [(P4 + M)(P(p)]

(6-p/c)o(p)

where p* = (p? + M2c*)V?/c > 0. This Dirac spinor can be approximatively
identified in the Pauli-Dirac formulation of our model (14) with

(n* + 1)90(p)]

D =m* + 1) 1?2
Yo (p) = (0" + 1) [(c-n/c‘)ﬁf’(l’)

where for #»* we have chosen
d’p P
nt = —o'(p)— :
LS s ()77 0@

In other words such a sufficiently sharp state of the Wigner theory can be
identified with a corresponding eigenstate of K|, for the eigenvalue —3Mc? in our
theory. For n* = n} such a state can be identified with the ‘large’ component of the
usual Dirac theory.

3. The spin 1 particle interacting with an external electromagnetic field

Let us consider now the case of the spin § particle in an external electromagnetic

field 4,(x) = (A(x), — ¥V (x)). The Schrodinger operator is given by the correspond-

ing one for the spin 0 case [1] modified by the terms due to the spin interaction with
the electromagnetic field. Especially for the electron (or positron) we propose

1
K= _——g,p" — ed(@)p" — ed(q))

2M
g1k " ,

- Sz P — e E@W; (16)
g5 14 93lly ,

+ 8Mc4. F,u\'(q)nvF:)‘(q)np — 7 nﬂva(q) W:

where F,,(x) = 9,4,(x) — 0,4,(x) and F,(x) = %z,,,,F"*(x), ie.:
B = (F235F319F12) = (F149 F249 F34)
E = (Fi4, Fpu, F34) = (FB» FSls Fu)-

The electric charge of the particle being e, u, denotes the usual Bohr magneton
eh/2M and g,, g, and g, are dimensionless phenomenological constants.

Let us now discuss this expression of K. Since K is a Lorentz invariant we may
consider only the case n* = nf. Clearly the first term is responsible for the Lorentz
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forces on the charged particle and the others are just perturbations. The second term,
which can be written as

- g]“lﬁf ((p — eA(@)W, A E(@) + (E — eV(9)W, B(q)) (17)

describes a spin-orbit coupling. It is formally self-adjoint since
[p, — ed,(q), F*(@)] = —ih 0,F*(q) =0

by virtue of the homogeneous Maxwell equations. The third term
93 M
8M?

E*(q) (18)

is a contribution to K due to the spin-orbit coupling. Finally the fourth term

_gsﬂownoB(‘]) (19)

is the only possible Lorentz invariant term coupling the magnetic field and the spin
variables.

In view of the expressions (17) and (19) it is clear that for the particle at rest in a
purely magnetic field, one has

K~ —3Mc* — (g, + 93)W,,B

and by definition g, + g is the g-factor of the electron magnetic moment. We have
chosen factors in (17), (18) and (19) in such a way that g, , g, and g, are approximately
equal to 1 for the electron. In fact application of our model in the hydrogen atom
case [5] leads for g, = g, = 1 to the following energy spectrum which coincides
with the results of Dirac [6] up to terms of order o*

o ot n 3
E .= M1 - — i is i I
nl.j ¢ ( In? 2n4(j T 12 4) * )

n, l and j are the usual quantum numbers for energy levels in hydrogen atom and « is
the fine structure constant. For g, and g, different from 1 we find

* — 1 -1
Eoo,12— En1,12 = Mczi‘(gl -+ 12 ),n >2

n? 6 2 -

i.e. the Lamb shift [6].
To completely determine the evolution of the state we still need an equation for
n*, If the evolution is induced by automorphisms such an equation is of the form

i = f(n) (20)

with the condition f*(n)n, = 0 due to the constraint n“n, = — ¢2. Physically our
comparison with Dirac’s theory suggests that the evolution is such that »* tends to be
parallel to { p"». In many cases the direction is practically the same as the one given
by {4") since we have:

] 1
¢ = 5K ¢] = ;T,.f(f’” — ed'(q) -

In general such an evolution is not of the form (20) and gives rise to some irreversible
process like radiation.

g1lo y
= i@ W) @1
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As an application we consider the evolution of the spin in an electromagnetic
field which is not necessary homogeneous. More precisely from the expression (16)
of K and from the definition of W* we can write an expression for the derivative
W“ According to the formalism of continuous superselection rules [ 7] we have

W =+ [K W]+ 0wy 22
where
by — W
0, W¥ = lim W""*"%t "0 = 3,L(n(x)Ys Wy,

is the usual derivative with respect to 7 if the isomorphism between the Hilbert spaces
H, . and H, ,,, is the identity. This is the case for n* = nf if L(n, + dn) is a pure
Lorentz transformation, i.e.

L(ny, + on)* = 6% + (nhydn, — dn*n,,)/c?

as is easy to check (since nén, = 0). Then we successively obtain
O LD, |uy=no = (M0, — Fifng,)/c?

and

0. Who = nig(fo, Wpo)/c* (23)
since ny, Wi = 0.

Performing a Lorentz transformation L(n)! on

. i .

Wi = S IK W1+ nbGio, Wh)/e® 24)
we find

e = %[K, Wi + ni(h, W)/, (25)

Finally a straightforward calculation of the commutator in (25) leads to the following
equation

g M A
iger E@W (P — ed ()

— F@Wn,(p* — ed®(q)) + Fign* W, (0" — eA*(9)}
ZEY
h 2
+ nt(n, W)/c?.

W =

(26)
+

WF,(QWin" + ¢ Fi(q) W}

From this general expression of W* we are able to justify the BMT equation [8] as a
semi-classical approximation.

Let us consider a wave packet around the mass shell and sharply defined in
space-time, momentum-energy and spin. For such a state we can approximate
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(F,(q) by F,, = F,,({g») and then write:

1
nt = (Pt — edi(q)) = <4 27)

o (@ > K D) = o Fen (8)

Performing these approximations in (26) and rearranging the terms, we find the
following equation which is the BMT equation for the precession of the polarisation
of particles moving in an electromagnetic field

W =2 (gFeWy + (g = Dn E W), =
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