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Comparison of power series solutions to
the stationary monoenergetic neutron transport equation
for slabs

by B. Sigg and J. Mennig
Eidg. Technische Hochschule Ziirich, Institut fiir Reaktortechnik, 5303 Wiirenlingen

(5. V. 1977)

Abstract. A perturbation expansion of the neutron flux in powers of the total cross-section or an
ordinary power series expansion with respect to the space coordinate inserted into the transport equation
lead to the same system of linear equations for the expansion coefficients. Two different truncation methods
are compared, and after showing the asymptotic behaviour of the flux expansion coefficients, various
asymptotic approximation methods are formulated, which permit to reduce the truncation error by
several orders of magnitude.

1. Introduction

The following investigations were initiated by some work on phonon transport
in a slab-shaped insulator containing small amounts of impurities [1, 2]. The problem
could be described by a linear transport equation being equivalent to the one-speed
neutron transport equation for an absorption-free material with isotropic scattering.
Whereas in [1] the problem was treated by a simple approximation of the scattering
integral, applicable for weakly anisotropic flux, in some later unpublished work [3],
the problem was tackled by expanding the particle flux into powers of the collision
cross-section, the latter being considered a small quantity, and truncating this at
order 2. Both methods led to solutions which were shown to be relatively accurate
for small optical thicknesses and, against expectation, also for large ones.

Whereas in a few recent publications perturbation expansions into powers of
the inverse optical depth were successfully used mainly for the treatment of neutron
transport problems in large systems [4-7], a corresponding expansion into powers
of the collision cross-section or equivalently the optical thickness was used in this
work like in [3], first. It proved to be identical to a spatial power series expansion of
the flux, a procedure that has evidently been used by other authors before (e.g. 8-10).
However only in [10], for more general problems in radiative and neutron transfer
the same treatment of the angular variable was chosen. The aim of the present
investigation is to present first two power series approximations with different
truncation and to show then especially the asymptotic behaviour of the flux expansion
coefficients which will be used for improved approximations, afterwards.
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2. Formulation of the power series method

In one-dimensional slab geometry the monoenergetic stationary neutron
transport equation may be written in case of linearly anisotropic scattering as follows:

x COEJ(¢++¢)du+u202j(¢+~—¢)ﬂdu
0

The meaning of the symbols in (2.1) being:

i#

(2.1)

1 E [0, 17 modulus of projection of angular unit vector on x-axis
¢ T (x, u) = ¢(x, 1) angular flux (upper sign in equation (2.1))
¢~ (x, u) = ¢(x, —p) angular flux (lower sign in equation (2.1))
total cross-section
¢, moments of scattering and fission kernel.

Equation (2.1) shall be solved in a homogeneous slab with half-thickness d
and the boundary conditions:

¢ (x = —d, p) = ST (u)

B ~ (2.2)
¢~ (x =d, ) = S ().
The flux is expanded into the power series:
Zx)
senx Y EL pr, 23)
v=0

Insertion of this truncated expansion into (2.1) and sorting out coefficients of equal
powers in Xx leads to the following recurrence relation:

1 1 ' 1
f= o (f =2 | G -t [ O —mwa) @a
0 0

7]
With the definitions:
1
= f ST+ L) dw (2.52)
0
1
= j (f, = £ du (2.5b)
0

/.* can be expressed in terms of foi and the above coefficients:
. 1 v v— 3 v—1 _
5 =(¥E) (fo Z A (F ) — 1 ) B,,(+.u)”“) (2.6)
n=0

where f;f (1) remains to be determmed by the boundary conditions.
The coefficients 4, and B, represent simply the expansion coefficientsof integrated
flux and current respectively, since with (2.3) and (2.5)

Fo(x) = j @+ o emdis Y Ea, 2.72)
0 |

v=0

Fy(x) = J (@7, ) — ¢ (x, I dp ~ Z Zx)v B,. (2.7b)
0 v=0
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Insertion of (2.6) into (2.3) yields after satisfying the boundary conditions and some
rearrangement for0 < v < N:

- A e, & s 3¢, o — o+l
= )12 Y A(Fu togr Y. B(Fp

X Bm B u O + 3 )n +1
* mgo m !/"m) |: ; (7 7 Bl*
91’
_ v 1
< £l es)
where

0 = Xd. (2.9)

Making use of (2.8) in (2.5) would yield a system of equations for the coefficients
A, and B,. Some special features of these equations may be visualized more easily,
however, when using (2.6) instead of (2.8). Obviously, it is necessary to distinguish
between even and odd v. (2.6) in (2.5) gives:

d,
Ay = J; ‘u,u [fo +fo — ¢o Z Azzi‘ — 3¢y Z th+1M21+2J (2.10a)

=0

s

' du - + o 21+1 : 2141
Aypry = sl Iy = Jg = & Z Ayt = 36y Z By
Jo H 1=0 1=0
(2.10b)
R + - 2041 : 20+ 1
Byiia = =il fo —Jfo — ¢ Z Azt — Je, Z B,
4 F =e =0 (2.10¢)
B _ ! @ + - e 20 3 e B 21+2 2 IOd
2k+1 T fo + 1o Co Z Ay Cq Z 21+ 1H (2.10d)
Jo Hag 1=0 1=0
Taking the difference between (2.10a) and (2.10d) yields:
By = Ay(1 — ¢p) (2.11a)
and similarly from (2.10b, ¢)
Biira = Agprr(1 = o). (2.11b)

These relations permit to substitute the coefficients B, in the equations for A,
Formally, this can be done also for B, by introduction of a dummy coefficient

By=(1 —co)A_,. @.11c)

The final eqﬁations result from (2.10a, b) after insertion of f7 from (2.8) and the
coefficients B, from (2.11). In these equations certain exponential-like integrals occur,
being defined as

20 = [ e E) )

0 m=0m!:u
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With this, one obtains

sy 2t gm 20+1 gm
Y, A {Co Y = J;r'.v(k 1-n+m T 36,(1 — ¢p) Z ‘]Z(k - 2)+m}

1=0 m=0

(Nf2] | 21 Bm
- —Jy
i ;:;k Ay {5)‘,1 = Co( 20— k) + | : mz 1 201 1)+m)}

[(N—1)/2] | 2041 gm
+ 2 Ay {301(l - CO)(_Z(I— X + 3 Z m.‘]2(k e 2)+m)}

I=k

1 N Hm =1 N
= J du(S* + S”),u"z"( Z — ) 0<k< [*} (2.13a)
0 m=0 M m! 2
and
k—1 2l1+1 Bm 21+2 Gm
lzl Azriq {Co Zo JIZV(k T 3¢, (1 — ¢q) Z J2(k 1- 2)+m}

[(N—1)/2] 1 2i+1 9m
+ Z A21+1 {5k,l + CO (_2(1 k) + 1 0 Z J2(k - 1)+m)}

=k

KN—2)/2] 1 21+2 Bm
A - _
+ ng 20+ 1 {36’1(1 Co)( 20— k) + 3 Z 2(k 1- 2)+m)}

1 N m = _
— J duﬂ“(2k+1)( y 4 ) —1<kc< [N___l} (2.13b)
0 m=o H"m! 2

In these equations, the expressions [ N/2] etc. stand for the integer part of the
numbers in brackets. Moreover, it is understood that a sum vanishes if the lower
index exceeds the upper. ¢, , is the usual Kronecker symbol.

If the boundary sources S* are expanded into power series of pu, the 1ntegrals
on the right-hand sides of (2.13) can be expressed in terms of the functions J¥, as well.

After determination of the quasi-exponential integrals, which is performed via
a partial fraction decomposition, the matrix elements are calculated by a recurrence
procedure. Then, equations (2.13) can be solved for the coefficients A,. In practical
computation, the coefficient B, was kept back in the equations, because the case
¢, = 1 would have required special treatment, otherwise. With the coefficients A4,
and B, the fluxes and the current may be calculated for every point in the slab.
Numerical results will be given in Section 5. In the following, the above expounded
method will be referred to as the Consistent Approximation (CA).

3. The limit N — oo and the Inconsistent Approximation (IA)

If this limit is taken, the number N may simply be replaced by oo in all equations.
Furthermore, the quasi-exponential integrals converge towards:

1 o)
lim JY¥(6)— J,(0) = J p- e+ o=bin gy — J Ene % de. (3.1)
1

N—w 0

The functions J,(6), elsewhere [11] denoted by «,, are related to the usual exponential



Vol. 50, 1977 Power series solutions of the stationary neutron transport equation 471

integrals as follows:
J_(0) = E) = j E7" ™% d. (3.2)
1

Of course, the infinite system of equations resulting thus from (2.13) cannot be solved
directly, it is possible, however, to make further approximations in order to obtain
finite systems.

The most simple assumption is to truncate the flux expansion at some order M,
1.e. to put

A, =0 forv> M. (3.3)

The resulting equations are essentially those of (2.13) with N substituted by M in the
summation limits if J) and the truncated exponential power series are replaced by
J, and exp (—0/u) respectively. Because this method can be obtained from the CA
by this substitution procedure, it is called Inconsistent Approximation (IA). It must
be noted that it satisfies the boundary conditions exactly as well as the CA.

Finally the fluxes and currents for the IA-method can be calculated according
to (2.3) and (2.7) with N replaced by M. The main advantage of the IA- over the CA-
method is the ease by which the functions J, may be calculated even for high order,
where the partial fraction expansions in the calculations for J¥ lead to large numerical
errors. As a matter of fact, the IA is obtained certainly for 1sotroplc and most probably
also for anisotropic scattering if expansion (2.7a) and truncation (3.3) is inserted into
the integral form of the transport equation [8, 9]. Therefore, this approximation
may be considered to be consistent with integral transport theory where it has been
used earlier at least in [9]. There, a relatively slow convergence was reported for the
power series method, a result which is confirmed by our own calculations. Numerical
results can be found in Section 5.

4. The asymptotic behaviour of the flux expansion coefficients and its use for approxi-
mation methods

In order to show this behaviour, a modified version of the limiting form of
equations (2.13) shall be used, which is obtained therefrom by help of the recurrence
relations (A.1, A.4) and equation (A.6). In addition, a power series expansion

S* =
is inserted into equations (2.13), too. For the sake of simplicity, all coefficients being

due to anisotropic scattering are omitted, because no relevant additional contri-
butions arise from them. One obtains after some rearrangement:

(F 1)iSE 1t 4.1)

Tpa-

o 921 2]
; Aztcom k-2 + 2k — 1) — 1 (Vak-2 — J2-1)

+ A,y + ZA

I
= Z ((—])iSi+ + Si_)JZ(kﬂz)—i 0 <k < oo,
i=0
(4.2a)

22k — )»1
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© 921+1 21 + 1
Y. A6 _(57__;_1_)!'(‘]2.!:—-1 + 20k — 1) — 1(J2k—1 - Jzz))

I=-1
I

= ¢
+ A + Y 4 0
2k+1 lgk 2l+1 2(k _ l) _ 1

= (Si_ - (_l)iSiJr)Jzk—x-i
i=0

-1 <k < . (4.2b)
In the second equation, the following convention was adopted:
8\!
— =0 forv<DO.
v!

Because of the asymptotic behaviour of the functions J, for large v (A.3), the
leading term on the right side of (4.2a) is of order J,, _,. Dividing this equation by
J,.—, and neglecting terms of order (2k — 2) ! yields:

A @ 62! 21
3 g Y Ay, (1 ) ~ S + S;. 4.3)
=0

o en\" Tk —n -1

Because the sum in (4.3) must be bounded, one can show that in the limit of k — o0

limﬂ=a =8; + S, — ¢ §A219—21
koo J2k—2 ¢ =t 20)!
=St +85 — c—zo(Fo(d) + Fy(—d)). (4.42)
Similarly, for the asymptotic form of odd coefficients results:
limm=a:5"—8+—c iA _gz;ﬂ_ﬁ
T &R 4 TR L T
= 55 — S5 — 2(Fo(d) — Fo—d). (4.4b)

With these relations and (A.3) the first asymptotic approximation for the coefficients
A, is defined:

- 2k — 2)!

Ay = ae( 92&—1) (4.5a)
5 2k — 1!

Apsr = au( 2k ) . (4.5b)

A higher order approximation is obtained if (4.4a) is subtracted from the
quotient of (4.2a) and J,, _,. After neglecting terms of order smaller than 2k — 2)~1,
there results:

AZk o0 92!—1 9 9 _ "
T, %™ T LA g1 k=2 S

(4.6)
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The order of magnitude of the sum in (4.6) can be estimated by inserting (4.5a). One
obtains:

Ay, i == 1
T, G Tty 5 L1t w2
Therefore, the following second order asymptotic formula results:

_ 2k — 2)! e 21 Qk — 3)!
Ao = e g |1~ 52 21';0 w1 1) e g (Ads)

and similarl§ for odd v:

- 2k — 1)! cd *? 1 2k — 2)!
B oy  BE=LR & WD @
2k+1 = Qw1 T3k (1 % — 1 l;) 2+ 1) +a,. g1 (4.7b)

The leading asymptotic terms (4.5a, b) have an interesting physical meaning, since
they contribute significantly to the transient part of the flux at the surfaces x = +d
of the slab. Admitting 4, = 0 and using (4.5) for k > 1 in (2.7a) results in

F) =2 > % (1 +5—)1n(1 +i—§)+ % ;’ e (1 —a)m (1 —g) + auﬂg-

(4.8)

This looks very similar to the transient solution for the Milne problem [12].

With this, a number of asymptotic approximation methods can be created.
Their common feature is that for v > M the expansion coefficients are given by
(4.5) or (4.7), and that additional equations must be formulated for the determination
of the unknown coeflicients a,, a, etc. The salient point of these methods is that they
cause a drastic reduction of the truncation error of the first M + 2 equations, since
the residual series in these equations may be summed up with fairly high accuracy.
For a better understanding of this statement, the formal equations of such an approxi-
mation corresponding to (4.2) with anisotropic scattering are given in the following:

For0 < k < K, =[M/2]

Z A, G, = Z Ay Gy, + Z AZle L& O (4.92)

1=0 I=Ke+1

andfor -1 <k < K, = [((M — 1)/2]

o Ku o
Y Ay x Y AgcHo+ Y Ay Ho ® R (4.9b)

I=-1 I=-1 I=K,+1

The infinite residual sums in (4.9) should not be calculated by a direct numerical
addition, because they converge slowly. They can be decomposed, however, into a
number of finite and infinite series for which either analytical summation formulae
exist or numerical addition shows good convergence. Yet, it is not possible to give
here all the resulting formulae, because a great deal of different cases have to be
distinguished and the expressions become too voluminous. The same applies also
to the formulae for the calculation of the flux- and current distributions especially
in case of the second order asymptotic approximation.
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Three different asymptotic methods have been investigated numerically. Their
characteristics are distinguished in the following:
First Asymptotic Approximation AAI

This method is based on the first order approximations (4.5). The additional
equations required are simply those of order M + 1 and M + 2, respectively.
Second Asymptotic Approximation AA2

Again expressions (4.5) are applied, but here together with the asymptotic
equations (4.4).
Improved Asymptotic Approximation IAA

Only in this method the second order approximations (4.7) are used. Since in

(4.7) four free coefficients occur, the equations of order M + 1 and M + 2 together
with (4.4) are chosen to give the required number of conditions.

6 10 20 30 40 50 Zz
Figure |
Comparison of the relative error ¢ of the flux F(d) at the vacuum-sided surface of a slab with half-thickness
6 = Xd = 0.5 and c¢; = 0 for various approximation methods and values of the parameter ¢,. Z = total
approximation order.
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5. Numerical results

In the graphs, relative errors of the flux F,(x = d) as functions of the approxi-
mation order Z are given for several examples with different ¢,, ¢, , and 6, whereas
the boundary conditions are the same in all cases, i.e. ST =1, S~ = 0.

The number Z is given by the total order of the equation system which has to
be solved. The exact values for F(d) were obtained by an extrapolation of the results
of the IAA for Z — o0. In order to test these limit values, they were compared with
those of similar extrapolations of the IA- and CA-calculations and in addition with
results given in the literature [13, 14].

In Figs. 1 and 2 the approximations IA, AAIl, and IAA are compared. No
results of the CA- and AA2-methods are included, because the former is roughly
equivalent to the IA and the latter slightly less accurate than the AA1. The results
show the high gain of precision and convergence speed obtained by means of the
IAA over the IA and also the AA1. But, of course, no low order calculations can be
done with this IAA-method. Moreover, an increase of the error with growing c,
or 6 is observed, whereas the scattering coefficient ¢, causes no significant effect.
All methods are applicable to slab problems with half-thickness d smaller than a few
mean free paths, for the asymptotic methods, however, the loss of accuracy with
increasing 0 is more pronounced.

1 i A P | i I | i} >

6 10 20 30 40 50 Z

Figure 2
Comparison of the same quantity and methods as in Figure 1 but for ¢, = 0.8, ¢, = 0.25, and three
different values of 6.
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Finally, a particularity of the CA-method should be mentioned yet, i.e. the
highly symmetrical alternating convergence of the fluxes F,(x = +d) with increasing
order. Thus, a considerable gain of accuracy can be obtained by conveniently averag-
ing the results of adjacent approximations with different parity in Z.

6. Generalizations

It 1s possible to show that all methods can be generalized to layered slabs,
multi-energy groups, higher-order scattering, and source- as well as criticality
problems. Optically thick slabs would have to be treated by subdivision. It must be
noted, however, that these generalizations entail certain modifications. Thus, in
multizone problems the equations for odd and even coefficients get coupled, and for
source problems the asymptotic equations contain additional terms. The straight-
forward application of the methods to optically thick slabs would obviously lead to
very large systems of linear equations with essentially full matrices. For a treatment
of such problems, it is therefore necessary to investigate whether far-off-diagonal
matrix elements can be eliminated or possibly suppressed.

Appendix

The exponential integrals J, as defined in (3.1) obey the following recurrence
relations [11]

—x

%) = —J,_1(x) + (A.1)
so that
nl X
Jn(X) = ?_',—1'6’ = ﬁ (AZ)
This converges for large n towards
n!
Ju(X) e R (A.3)

X

For negative n the usual exponential integrals (3.2) are obtained, where (A.l) is
usually written as:

E(x)= —1—- (e —xE,_(x)) n=2. (A.4)

The functions E, can be determined, therefore, from e™* and E,(x), where

E,(x) = (lnx + 7y + Z )v v) x>0 (A.5)

y = 0.5772156649. . . (Euler’s constant).
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For the derivation of (4.2) the following relation is needed:
N Bn 0 BN
M=M+1m(JN+M+1_JN) Nz0,M# -1 (A.6)

a1 Ynt
n=0 n.

It results from (A.1), (A.2), (A.4), and the summation formula:
N ! 1)!
5 n (N +1) |:(M+N)_l] M>2 A7)

S M+n) M-DM+ N AN+

which can be proved by induction.
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