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Comparison of power series solutions to
the stationary monoenergetic neutron transport equation

for slabs

by B. Sigg and J. Mennig
Eidg. Technische Hochschule Zürich, Institut für Reaktortechnik, 5303 Würenlingen

(5. V. 1977)

Abstract. A perturbation expansion of the neutron flux in powers of the total cross-section or an
ordinary power series expansion with respect to the space coordinate inserted into the transport equation
lead to the same system of linear equations for the expansion coefficients. Two different truncation methods
are compared, and after showing the asymptotic behaviour of the flux expansion coefficients, various
asymptotic approximation methods are formulated, which permit to reduce the truncation error by
several orders of magnitude.

1. Introduction

The following investigations were initiated by some work on phonon transport
in a slab-shaped insulator containing small amounts of impurities [1,2]. The problem
could be described by a linear transport equation being equivalent to the one-speed
neutron transport equation for an absorption-free material with isotropic scattering.
Whereas in [1] the problem was treated by a simple approximation of the scattering
integral, applicable for weakly anisotropic flux, in some later unpublished work [3],
the problem was tackled by expanding the particle flux into powers of the collision
cross-section, the latter being considered a small quantity, and truncating this at
order 2. Both methods led to solutions which were shown to be relatively accurate
for small optical thicknesses and, against expectation, also for large ones.

Whereas in a few recent publications perturbation expansions into powers of
the inverse optical depth were successfully used mainly for the treatment of neutron
transport problems in large systems [4-7], a corresponding expansion into powers
of the collision cross-section or equivalently the optical thickness was used in this
work like in [3], first. It proved to be identical to a spatial power series expansion of
the flux, a procedure that has evidently been used by other authors before (e.g. 8-10).
However only in [10], for more general problems in radiative and neutron transfer
the same treatment of the angular variable was chosen. The aim of the present
investigation is to present first two power series approximations with different
truncation and to show then especially the asymptotic behaviour of the flux expansion
coefficients which will be used for improved approximations, afterwards.
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2. Formulation of the power series method

In one-dimensional slab geometry the monoenergetic stationary neutron
transport equation may be written in case of linearly anisotropic scattering as follows :

A-fr-^A- (c/> + + cp dp' + p\cfL (cp+ - A)P' äß'.

(2.1)
The meaning of the symbols in (2.1) being:

p E [0, 1] modulus of projection of angular unit vector on x-axis
cp+(x, p) cp(x, p) angular flux (upper sign in equation (2.1))

cp~(x, p) cp(x, —p) angular flux (lower sign in equation (2.1))
E total cross-section
c, moments of scattering and fission kernel.

Equation (2.1) shall be solved in a homogeneous slab with half-thickness d
and the boundary conditions :

A(x= -d,p) s+(p)
cp~(x d,p) S~(p).

The flux is expanded into the power series :

(2.2)

<PHx,p)* Y^rffAiP)-
V!

(2.3)

Insertion of this truncated expansion into (2.1) and sorting out coefficients of equal
powers in 1.x leads to the following recurrence relation :

f\i +~(fA - ~ f iA Af')dpT - \cx( + p)

With the definitions :

Av=l (ff +f-)dp!

(ff -A)p'dp'
o

iA -A)p'dp'

B..

/,*-(Tf|(/o*

(2.4)

(2.5a)

(2.5b)

(2.6)

ff can be expressed in terms of/„* and the above coefficients :

cfYAn(+py-3-^YBn(+py+1
L n=0 Z n=0

where /0*(/i) remains to be determined by the boundary conditions.
The coefficients Av and Bv represent simply the expansion coefficientsof integrated

flux and current respectively, since with (2.3) and (2.5)

f1 _
" (i.xy

F0(x) (cp + (x,p) + cp (x,p))dp « Y —f-''*»'
Jo v=0 V-

f1 _
N (£x)v

Fx(x) (cp + (x, p) - cp-(x, P))P dp x - Y —.—

(2.7a)

(2.7b)
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Insertion of (2.6) into (2.3) yields after satisfying the boundary conditions and some
rearrangement for 0 < v < N:

N

f7 +{fjf i An( + p)" + 3-^Y Bn( + P)"+1
n v

N am \ — 1

+ l ,?o^m
" 8l

x I
n=0

s*- ZR^W + ^AX+^
3r
2

0 l\p[

where

8 lid.

(2.8)

(2.9)

Making use of (2.8) in (2.5) would yield a system of equations for the coefficients
Av and By. Some special features of these equations may be visualized more easily,
however, when using (2.6) instead of (2.8). Obviously, it is necessary to distinguish
between even and odd v. (2.6) in (2.5) gives :

"¦2k —
p di* [f+
}oP2klfo

k-lI/=0
+ /o - c0 E A2,p21 - 3c. Y B2l+1p21

k-lI(=0
(2.10a)

A2k+1 —
dp

o P

k— 1 k

Jo — /o — co Lj A2l+1p — 3Cj 2j B2lp
1=0 1=0

/>2(c + 2 - I ,,2*+l
0 P

fo -fo+ - c0 E A2l + 1p2l+1 - 3c, Y B2,p21+1

1 0

B2k+1
dp

P2k
/o+ +U -c0Y A2iP21 - 3q Y B2l+iP2l + 2

1=0 1=0

(2.10b)

(2.10c)

(2.1 Od)

(2.11a)

(2.11b)

Taking the difference between (2.10a) and (2.10d) yields:

B2k+i Alk(l - cf)
and similarly from (2.10b, c)

"2k-¥2 — A2k+X(\ — Cf).

These relations permit to substitute the coefficients By in the equations for Av
Formally, this can be done also for B0 by introduction of a dummy coefficient

B0 (l -c0)A_x. (2.11c)

The final equations result from (2.10a, b) after insertion of/J from (2.8) and the
coefficients Bv from (2.11). In these equations certain exponential-like integrals occur,
being defined as

fl / (V nm \-lw"I *'"""C?.--5=) ' (2.12)
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With this, one obtains

k-l C 21 am 21+1 nm

Z A2,\c0 Y T77lJ2(k-l-l) + m + 3cl0 - Co) Z
„Tn ml

[Jv/2] r /
+ Z A2i yKi + c0( -

m=0 W!
21 gm

| J2(k-l-2) + m

' Z w, ^2(le-l-l) + m

KN-D/2]
+ Z A2l\3cx([-c0)[-

2(1 - k) + 1
m 0

i 21+ 1 am

dp(S+ + S~)p-

2(1 -k) + 3 m=0

N am \ — 1

z
m 0/^ W

0 < )t <

m.

'N
1

2) + m

(2.13a)

and

k-l C 21+1 am

Z ^2i+i )co Z rn^2(t-i-i)
(=-1 m 0m- l) + m + 3C,(1 C0) 2^ lv,|-'2('c-l-2) + m

[(/v-D/2] r /
Z ^21+1 \Ki + co( -

l(W-2)/2] r
Z ^ai+ii3ciO - co)
l-lr 1

fl / N am s

J -<2*+l)[ y °
o
*" Uo^!

1

m 0

21+1 am

mi

2(l-k)+l + ml0m\J^-'-l>l) + m)

1

2(1 - k) + 3
+ m?0

21 + 2 am

— JNm]J2(k-l-2)^

A < k <
N - 1

(2.13b)

In these equations, the expressions [AV2] etc. stand for the integer part of the
numbers in brackets. Moreover, it is understood that a sum vanishes if the lower
index exceeds the upper. ôk, is the usual Kronecker symbol.

If the boundary sources S± are expanded into power series of p, the integrals
on the right-hand sides of (2.13) can be expressed in terms of the functions J™, as well.

After determination of the quasi-exponential integrals, which is performed via
a partial fraction decomposition, the matrix elements are calculated by a recurrence
procedure. Then, equations (2.13) can be solved for the coefficients Av. In practical
computation, the coefficient B0 was kept back in the equations, because the case

c0 1 would have required special treatment, otherwise. With the coefficients Av
and Bv the fluxes and the current may be calculated for every point in the slab.
Numerical results will be given in Section 5. In the following, the above expounded
method will be referred to as the Consistent Approximation (CA).

3. The limit N —? oo and the Inconsistent Approximation (IA)

If this limit is taken, the number N may simply be replaced by oo in all equations.
Furthermore, the quasi-exponential integrals converge towards :

lim JNn(8)^Jn(8) /|-<"+2) e-ei» dp Ife-^dij. (3.1)

The functions /„(0), elsewhere [11] denoted by a„, are related to the usual exponential
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integrals as follows :

JAG) En(8) T" e"« dt (3.2)
Ji

Of course, the infinite system of equations resulting thus from (2.13) cannot be solved
directly, it is possible, however, to make further approximations in order to obtain
finite systems.

The most simple assumption is to truncate the flux expansion at some order M,
i.e. to put

Av 0 for v > M. (3.3)

The resulting equations are essentially those of (2.13) with N substituted by M in the
summation limits if Jjj and the truncated exponential power series are replaced by
Jn and exp (—8/p) respectively. Because this method can be obtained from the CA
by this substitution procedure, it is called Inconsistent Approximation (IA). It must
be noted that it satisfies the boundary conditions exactly as well as the CA.

Finally the fluxes and currents for the IA-method can be calculated according
to (2.3) and (2.7) with N replaced by M. The main advantage of the IA- over the CA-
method is the ease by which the functions Jn may be calculated even for high order,
where the partial fraction expansions in the calculations for jjj lead to large numerical
errors. As a matter of fact, the IA is obtained certainly for isotropic and most probably
also for anisotropic scattering if expansion (2.7a) and truncation (3.3) is inserted into
the integral form of the transport equation [8, 9]. Therefore, this approximation
may be considered to be consistent with integral transport theory where it has been
used earlier at least in [9]. There, a relatively slow convergence was reported for the
power series method, a result which is confirmed by our own calculations. Numerical
results can be found in Section 5.

4. The asymptotic behaviour of the flux expansion coefficients and its use for approximation

methods

In order to show this behaviour, a modified version of the limiting form of
equations (2.13) shall be used, which is obtained therefrom by help of the recurrence
relations (A.l, A.4) and equation (A.6). In addition, a power series expansion

s± Y i+Wfp' (4.1)
; o

is inserted into equations (2.13), too. For the sake of simplicity, all coefficients being
due to anisotropic scattering are omitted, because no relevant additional
contributions arise from them. One obtains after some rearrangement :

£ fl2' / 2/
£oA2lCùWf-\2k-2 +

2(k - I) -~l{J2k~2 ~ /2'-l)
CO I

+ A2k + Z A2iAifr-°A-f £ ((-W + sf)j2ik_X)_, o < k < »,
l k L\K — i) — 1 ;=0

(4.2a)
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co 82l+1 2/ -i- 1

,Li A2l+lC°W+~vy\j2k-1 + 2(k-i)- i{Jlk-x ~ j2l)

CO „ I
+ ^2k+l + Z A2l+lZTrT 77 T — Y i^i - i~ O-Sj )J2k-l-i

l k *-\K »I » i 0

-1 < k < oo. (4.2b)

In the second equation, the following convention was adopted:

0V

— 0 for v < 0.
v!

Because of the asymptotic behaviour of the functions Jv for large v (A.3), the
leading term on the right side of (4.2a) is of order J2k_2. Dividing this equation by
J2k-2 and neglecting terms of order (2k — 2)-1 yields:

A2k £ 02' 21

'2k-2 1 0AAc«LA«m(l + wrrrrx)-* + *¦ <43»

Because the sum in (4.3) must be bounded, one can show that in the limit of k —> oo :

A °° 821
lim —**- ae St + So -c0YA2nm — ue — >j0 -r u0 lO L ^2in/^i
It-» co J2k-2 1 0 V-1)-

K + So - | (F0(rf) + F0(-</)). (4.4a)

Similarly, for the asymptotic form of odd coefficients results :

limf--±i aii S0--50+-c0 S^2,+ rr ~u "O "0 "O L. "21+1 (21 1\|
*-»oo J2k-1 1 0 Vz' + 1-'-

^o" - St - | (F0(rf) - F0(-<*))• (4-4b)

With these relations and (A.3) the first asymptotic approximation for the coefficients
A„ is defined :

(2k_- 2)!
02

(2k_- 1)!
02

A2k ae 02k-i
'

(4.5a)

Ä2k+i au{2k~L". (4.5b)

A higher order approximation is obtained if (4.4a) is subtracted from the
quotient of (4.2a) and J2k-2- After neglecting terms oforder smaller than (2k — 2)"1,
there results :

A2* -a Y A
g2'-1

— + — (S- - S+)
hk-2 e ~ °

1=1
2l (2/ -l)\2(k-l)-A2k-2 (Ò1 òl h

(4.6)



Vol. 50, 1977 Power series solutions of the stationary neutron transport equation 473

The order of magnitude of the sum in (4.6) can be estimated by inserting (4.5a). One
obtains :

A2k 1 k-2 1 /1-a„ x, -Cr,a,— V — - +o
hk-2 ' e 2k - 2 ,f0 2/ + 1 \2k - 2)

Therefore, the following second order asymptotic formula results :

„ (2ÂT-2)!/ c08 kZr 1 \ (2k - 3)! _

and similarly for odd v :

~2 _ (2*-1)1/ c08 y 1 \ <2fc - 2)!

The leading asymptotic terms (4.5a, b) have an interesting physical meaning, since
they contribute significantly to the transient part of the flux at the surfaces x ±d
of the slab. Admitting Ä0 0 and using (4.5) for k > 1 in (2.7a) results in

'#>-±?»0 + $>(> +t)+ ^.(. -$.n(. -|) +

(̂4.8)

This looks very similar to the transient solution for the Milne problem [12].
With this, a number of asymptotic approximation methods can be created.

Their common feature is that for v > M the expansion coefficients are given by
(4.5) or (4.7), and that additional equations must be formulated for the determination
of the unknown coefficients ae, au etc. The salient point of these methods is that they
cause a drastic reduction of the truncation error of the first M + 2 equations, since
the residual series in these equations may be summed up with fairly high accuracy.
For a better understanding of this statement, the formal equations of such an approximation

corresponding to (4.2) with anisotropic scattering are given in the following :

For 0 < k < Ke [M/2]
CO Ke 00

Z A2iGk,i ~ Z A2iGk,i + Z A2iGk,t * Qk (4-9a)
1 0 1 0 l jKe+l

and for -1 < k < Ku [(M - l)/2]
00 Ku 00

Z A2i+iHk,i~ Y A2t+iHk,t+ Y A2i+iHK,*Rk. (4.9b)
(=-1 (=-1 l Ku+l

The infinite residual sums in (4.9) should not be calculated by a direct numerical
addition, because they converge slowly. They can be decomposed, however, into a
number of finite and infinite series for which either analytical summation formulae
exist or numerical addition shows good convergence. Yet, it is not possible to give
here all the resulting formulae, because a great deal of different cases have to be
distinguished and the expressions become too voluminous. The same applies also
to the formulae for the calculation of the flux- and current distributions especially
in case of the second order asymptotic approximation.
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Three different asymptotic methods have been investigated numerically. Their
characteristics are distinguished in the following :

First Asymptotic Approximation AA1

This method is based on the first order approximations (4.5). The additional
equations required are simply those of order M + 1 and M + 2, respectively.

Second Asymptotic Approximation AA2

Again expressions (4.5) are applied, but here together with the asymptotic
equations (4.4).

Improved Asymptotic Approximation IAA

Only in this method the second order approximations (4.7) are used. Since in
(4.7) four free coefficients occur, the equations of order M + 1 and M + 2 together
with (4.4) are chosen to give the required number of conditions.

log e

- 1 -

^¦—-__ IA\ ^ -—-_ c0- 2 ""» ^""¦^-¦¦•»»^ *—-——^ - 1.2

\ \ \^ ^--^ -~ 0.5\ ^ \ c0 ^\-3 W^ ^- 1-2
V. ^ ^ -- 0.8\\v --0.5 AA1

"- 0.1

-4

- 5 -

\ \.^0.8 IAA\ \0.5
-6 \

\
\0.1

i ¦ l i ¦ i_i ¦ i i i

6 10 20 30 40 50 Z

Figure I

Comparison of the relative error e of the flux F0(d) at the vacuum-sided surface of a slab with half-thickness
6 Zd 0.5 and c, 0 for various approximation methods and values of the parameter c0. Z total
approximation order.
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5. Numerical results

In the graphs, relative errors of the flux E0(x d) as functions of the approximation

order Z are given for several examples with different c0, cx, and 8, whereas
the boundary conditions are the same in all cases, i.e. S+ 1, S~ 0.

The number Z is given by the total order of the equation system which has to
be solved. The exact values for F0(d) were obtained by an extrapolation of the results
of the IAA for Z —> oo. In order to test these limit values, they were compared with
those of similar extrapolations of the IA- and CA-calculations and in addition with
results given in the literature [13, 14].

In Figs. 1 and 2 the approximations IA, AA1, and IAA are compared. No
results of the CA- and AA2-methods are included, because the former is roughly
equivalent to the IA and the latter slightly less accurate than the AA1. The results
show the high gain of precision and convergence speed obtained by means of the
IAA over the IA and also the AA1. But, of course, no low order calculations can be
done with this IAA-method. Moreover, an increase of the error with growing c0
or 8 is observed, whereas the scattering coefficient c, causes no significant effect.
All methods are applicable to slab problems with half-thickness d smaller than a few
mean free paths, for the asymptotic methods, however, the loss of accuracy with
increasing 8 is more pronounced.

log e

-2

-4

-5

X

\\
X

2.0
XX

0.5

9=2.0 0.2
^S.\ 0.5 AA1\ \ X 2.0\ 0.2
X

X
XX X 0.5 IAAX

X
X

X 0.2

' i ¦ ¦ '

6 10 20 30 40 50

Figure 2

Comparison of the same quantity and methods as in Figure 1 but for c0 0.8, c, 0.25, and three
different values of 6.
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Finally, a particularity of the CA-method should be mentioned yet, i.e. the
highly symmetrical alternating convergence of the fluxes F0(x ± d) with increasing
order. Thus, a considerable gain of accuracy can be obtained by conveniently averaging

the results of adjacent approximations with different parity in Z.

6. Generalizations

It is possible to show that all methods can be generalized to layered slabs,
multi-energy groups, higher-order scattering, and source- as well as criticality
problems. Optically thick slabs would have to be treated by subdivision. It must be
noted, however, that these generalizations entail certain modifications. Thus, in
multizone problems the equations for odd and even coefficients get coupled, and for
source problems the asymptotic equations contain additional terms. The straightforward

application of the methods to optically thick slabs would obviously lead to
very large systems of linear equations with essentially full matrices. For a treatment
of such problems, it is therefore necessary to investigate whether far-off-diagonal
matrix elements can be eliminated or possibly suppressed.

Appendix

The exponential integrals Jn as defined in (3.1) obey the following recurrence
relations [11]

Jn(x) nxJn_x(x) + e-^- (A.l)

so that

nl
Ux) -„-i e~x Z TA' (A-2)

x v=0 v.

This converges for large n towards

Ux),7t,~i- (A3)

For negative n the usual exponential integrals (3.2) are obtained, where (A.l) is

usually written as :

En(x) —-(e-*-xEn_,(x)) n>2. (A.4)
n — i

The functions En can be determined, therefore, from e~x and Ex(x), where

/ °° f—1YV\
Ex(x) -(in x + y + £ -^TTf-) x > ° (A-5)

y 0.5772156649... (Euler's constant).
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For the derivation of (4.2) the following relation is needed :

^Jn+M f^ÇiiJN+M+i-JN) N>0,M*-1. (A.6)

It results from (A.l), (A.2), (A.4), and the summation formula:

'M + NTA n\ (N+l)\
Ao(M+n)\ (M - 1)(M + N)\

which can be proved by induction.

N + 1
M > 2 (A.7)
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